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ABSTRACT
We present a new method for identifying gene sets asso-
ciated with labeled samples, where the labels can be case
versus control, or genotype differences. Existing approaches
to this problem assume that variations observed within a
group are due primarily to noise and they, therefore, look
for significant mean shifts between groups. Biological evi-
dence suggests variations can also result from the coordina-
tion of genes. Our method attempts to identify and assess
the significance of changes in gene-gene correlation patterns.
We model gene-gene correlations using principal component
analysis and compare their significance to a baseline of a lin-
ear models generated by random permutations of the sam-
ple labels. Simulation results show that our method detects
changes that are undetectable by Hotelling’s T 2 method. Its
performance on real data is comparable to existing methods
with the additional capability of detecting changes in gene-
interactions between sample groups.

1. INTRODUCTION
Expression microarrays provide a valuable tool for measur-
ing the relative abundance of RNA transcripts both within
and between cell and tissue types. Standard analysis meth-
ods either compare these expression levels between case and
control examples and/or correlate expression levels between
genes in many samples. A common simplifying assumption
that is widely applied in such analyzes is that genes func-
tion independently, which is inconsistent with the underly-
ing biology that suggests most genes interact in regulatory
modules or networks.

Coordination between genes leads researchers to be more
interested in the expression of gene sets rather than individ-
ual genes. Many researchers have used annotated databases
of gene categories to incorporate biological knowledge into
microarray expression analysis. The objective of these ap-
proaches is to determine which gene categories might be in-
fluenced by the conditions of the given experiment. Statis-
tical methods are used both to identify and assess the sig-

nificance of any changes seen among these gene categories.
In this paper we evaluate predefined gene sets to determine
the extent that they are associated with expression pattern
differences between a given set of class labels. These class
labels can be case/control or any binary phenotypic or geno-
typic variation.

Common statistical methods for assessing differential gene-
set expression patterns between sample classes look for shifts
in the vector-mean of the set and assume the observed vari-
ance is due to noise. We are interested in identifying changes
in gene correlation patterns associated with the class labels.
Figure 1b shows a synthetic example where the expression of
two genes have a strong positive correlation in group 2 sam-
ples, and the same two genes are less and slightly negatively
correlated in group 1, yet both groups have similar means.
This difference in of gene interactions might be the most
significant signal differentiation between the sample classes,
but it is not detected by classical methods.

Our method captures significant changes in gene-set expres-
sion patterns between samples belonging to different classes.
It considers more than shifts in the mean expression levels
of the gene set; it also accounts for significant changes in
correlation structure between genes in the set. We show
the utility of our method by applying it to simulated data,
and two real data examples. We also directly compare our
method to [10] using a common data set.

2. RELATED WORK
One can divide existing approaches for scoring differential
gene-set expression into two types based on their approach.
The first type calculates a statistic for each gene individu-
ally and then calculates a summary statistic for the gene set.
An example of these methods is Gene Set Enrichment Anal-
ysis (GSEA) [13], which calculates signal-to-noise ratio for
each gene. GSEA ranks genes according to this score, an en-
richment score (ES) for the gene set, which is calculated by
comparing ranks of the genes in the gene set to the genes not
in the set by using a one-sided Kolmogorov-Simirnov test.
Another example is the Q2 test of Tian et al. [14] in which
an association measure (either t-test or Wilcoxon rank sum)
between each gene and phenotype is calculated and a gene
set score is calculated by the average of individual gene asso-
ciation measures. Barry et al. [5] described a framework that
is based on using local statistics derived for each gene and
combining local statistics in a global statistic for each gene
set. There are also 2x2 contingency table based methods [3,
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Figure 1: (a) Example where the information is on the means and all the variation is due to noise. Means are shown by squares.
Line connecting the means is also shown. (b) Example where the information is on the correlation between genes. Lines indicate
the fitted model (two lines) (c) Sample simulated data where number of genes is 3 (d = 3). Plot shows the case where there is
low noise (σ = 0.1) so that the embedded pattern is evident.Group 1 lives on a plane whereas group 2 lives on a line, so the
intrinsic dimensionality of group 1 and group 2 are d1 = 2 and d2 = 1 respectively. (d) Has the same setup as in (c) but with a
high noise (σ = 0.5). It is very hard to see the differential behavior between two groups at this noise level found by PCA.

8, 11] where statistics for each gene are ranked and, based
on significance cut-off, the independence of significance of
genes versus existence of genes in the gene set is tested. A
common assumption of these approaches is that if a gene set
is associated with the class label then significant number of
genes in the gene set should be similarly impacted. How-
ever, genes need not behave in unison, and class differences
might reflect the extent to which subsets genes in the set are
co-regulated. Methods of this type cannot capture subtle,
but coordinated changes in the expression of the genes in
the gene set.

A second approach assesses the significance of the gene set
directly from raw expression data rather than the scores cal-
culated for each gene [6, 7, 12, 15, 10]. Kong et al. [10] used
Hotelling’s T 2 statistic to test association of genes in the set
with the binary phenotype. Tomfohr et al. [15] projected the
expression levels of genes onto their first principal compo-
nent and significance is calculated by using t-test. Goeman
et al. [6, 7] scored gene sets by measuring how well expression
levels can predict the class labels using logistic regression.
To detect the differential expression, Mansmann and Meister
[12] used an ANOVA based model which takes into account
the interaction between gene and the phenotype. The as-
sumption underlying all of these methods (t-test, Hotelling’s
T 2 statistic,ANOVA) is that class differences are exhibited
by shifts in mean expression levels and the observed vari-
ance is due to noise. This assumption ignores the possibility
of differences due to coordination between genes. Perturba-
tions can affect gene correlation patterns rather than their
mean expression. In this paper we introduce a novel method
to capture more effects.

3. METHODS
Our method assumes that the samples are drawn from one or
more linear manifolds according to their class label. These
linear manifolds constitute our model. Formally, our method
assumes that the samples are generated as follows:

xi = fi(.) + ε

where xi, the gene expression vector for a sample with the
class label i, fi(.), is a linear function of the form mi +
αi1vi1+αi2vi2+...+αidividi where di is the intrinsic dimen-
sion of the group i and ε ∼ N(0, σI) where I is the identity
matrix and σ is the variance of the noise. The vectors, vij ,
encode interactions between genes and scalars αij encode the
state of each sample in group i. Our method estimates the
functions, fi(.), using principal component analysis. Then

we test the null hypothesis H0 : f1(.) = f2(.) = . . . = fN (.)
using the permutation testing over the residuals.

Multivariate Hypothesis Testing
There are many possible sources for gene-set candidates in-
cluding gene ontology annotations (GO)[4], Kegg pathways[2],
or derived gene networks[1]. Our method treats predefined
gene-sets from gene ontology annotations (GO)[4], Kegg path-
ways[2], or derived gene networks[1] as vector variables, and
solves for some lower dimensional space that captures the
variation within the groups identified by class labels. After
fitting a model, which consist of one linear manifold per class
label, we test the significance of this fit using permutation
testing over the residuals. The intuition behind the pro-
posed method is to test whether partitioning of the samples
(according to given sample labels, i.e response to a toxin) en-
ables us to achieve a significantly lower residual than could
be achieved by chance. The difference between ANOVA and
our method is that ANOVA (or its high-dimensional ana-
log, Hotelling’s T 2) measure the residual by calculating the
squared distance to the mean, whereas our method mea-
sure the residual by calculating squared distance to the es-
timated model whose form is described above. This reflects
a difference in assumptions. Where ANOVA assumes that
all variation is due to noise (hence only the mean contains
signal) our model asssumes that variation within the groups
contains some signal. Therefore, we estimate a model by
extracting a linear manifold for each class label using PCA,
and we measure the residual. If this residual is unlikely due
to chance then this means that there is a significant asso-
ciation between class labels and the gene set. We measure
the significance of association by using permutation testing
using residuals as a test statistic.

Formally, suppose we have N groups; let Xi be the ni × d
data matrix of group i where columns are gene expression
levels and rows are samples. We apply PCA on both data
matrices in order to estimate the linear manifolds at our
model. We do so by eigen-decomposition of covariance ma-
trix where λi1, λi2, ..., λid and vi1,vi2, ...,vid are eigenvalues
and eigenvectors of covariance matrix of the data matrix Xi.
We estimate a linear manifold for each group i, by select-
ing ki eigenvalues and corresponding eigenvectors where ki

is the number of dimensions required to explain some frac-
tion, α, of the total variance within the group. The sum of
remaining d − ki eigenvalues is the sum of the squared dis-
tances of each point to linear ki-dimensional manifold giving
a measure of the residual of the fit of this derived model to
the actual data. We next randomly permute the class labels
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Sim. Params. T 2 PCA Method
d d1 d2 σ α=.90 α=.80 α=.70 α=.50
3 2 1 0.1 0.330 0.001 0.001 0.001 0.004
3 2 2 0.1 0.492 0.001 0.001 0.001 0.054
10 2 2 0.1 0.368 0.001 0.001 0.001 0.001
10 8 6 0.1 0.051 0.001 0.001 0.001 0.002
3 2 1 0.5 0.300 0.001 0.001 0.001 0.002
3 2 2 0.5 0.448 0.001 0.001 0.001 0.006
10 2 2 0.5 0.311 0.639 0.030 0.001 0.001
10 8 6 0.5 0.046 0.001 0.001 0.001 0.005

Table 1: P-values for simulated data. P-values less than 0.05
are shown in bold. Parameterization: d is dimensionality of
the whole data (number of genes). d1, d2 are dimensionalities
of the two groups. σ is the variance of the added noise. α is
the explained variance threshold that is used by our model

Net Name Role T 2 PCA
mmu00970 Aminoacyl-tRNA biosynth. 0.00010 0.00005
mmu04920 Adipocytokine signaling 0.00015 0.00005
mmu05222 Small cell lung cancer 0.00055 0.00005
mmu00750 Vitamin B6 metabolism 0.00330 0.00005
mmu04320 Dorso-ventral axis formation 0.08535 0.00005
mmu00750 Vitamin B6 metabolism 0.00330 0.00015
mmu03060 Protein export 0.00150 0.00010
mmu04540 Gap junction 0.01220 0.00015
mmu03050 Proteasome 0.00245 0.00020
mmu04340 Hedgehog signaling 0.00130 0.00105

Table 2: P-values as result of applying T 2 method and our
method.

and search for alternative models of the same dimensions
with a better fit (smaller residual). The p-value is calcu-
lated as the proportion of random group-label assignments
that result in a better fit than the observed one.

4. RESULTS
We first compared our method to Hotelling’s T 2 method us-
ing simulated data. We synthesized gene expression values
with embedded correlation patterns that differed between
class labels to which we then added Gaussian noise. Then
we applied ours and the T 2 methods to detect patterns of dif-
ferential expression and calculated estimated p-values based
on 1000 permutations (i.e. we applied random label assign-
ments to the same set of expression values). We also varied
our method’s parameter settings to explore its robustness
under different conditions.

Table 1 shows results on simulated data. Notice that the T 2

method does not detect any of the embedded patterns. The
T 2 method tests for significance of the mean shift, but in our
simulated data set the means of the two groups were very
close. On the other hand, our method gives significant p-
values (< 0.05) especially when noise level is low (σ < 0.5).
At low noise levels our method detects correlated differen-
tial expression levels for any variance thresholds, α > 0.5.
When we look at the high noise cases (σ = 0.5), our method
still detects most patterns. This result is impressive because
a noise variance of 0.5 makes the two groups nearly indis-
tinguishable from each other as shown in Figure 1d.

In general, p-values are insensitive to the threshold setting,
α, however, for data with unknown noise levels one can
search for an optimal setting of α by searching the range
between 0 and 1 for the smallest p-value.

4.1 Gene Regulation Pathways
We used the publicly available dataset cited in [10] to com-
pare our method the Hotelling’s T 2 method used by the same
paper. In this dataset there are 23695 genes and 19 samples,
10 were from mice treated with a chemical, RAD001, which

Gene Name Chromosome Position
Hadhsc 3- 131,816,213-131,854,921
Ppt1 4+ 121,206570-121,228,697

Hadha 5- 28,524982-28,561,657
Hadha 5- 28,524982-28,561,657
Hadhb 5+ 28,561999-28,591,338
Hadhb 5+ 28,561999-28,591,338
Echs1 7- 127,763417-127,774,118
Ppt2 17- 33,112,563-33,122,931
Acaa2 18+ 75,308,994-75,337,099

Hsd17b4 18+ 50,574,867-50,642,794

Table 3: Positions of the genes in the mmu00062 network.
Positions are given in base pairs.

prevents the activation of TOR (Target of Rapamycin). The
remaining 9 samples are from the mice were treated with
a placebo. The mouse gene pathway sets are taken from
KEGG database [9]. We used 201 pathways obtained from
KEGG database on September 2009

We varied the threshold values and observed more signifi-
cant results for lower threshold values. We hypothesize that
this is due to a high-level of noise in the expression data,
thus, causing small gene-correlation signals to be lost if the
threshold is too selective, which is consistent with the trend
seen in the simulated data. Table 2 shows top 10 networks
based on our method with threshold α=0.75, which core-
sponds to linear-group models that explain 75% or more of
the observed variance.

The most significant network is mmu00970 is also among the
top ten networks found by T 2 method. This is an example
of an overlap between our method and the T 2 method. In
general, when either method gives a significant p-value (i.e.
<0.05) the other method also gives a significant p-value,
which means our method is comparable to the existing ap-
proaches. However there are notable exceptions, such as,
mmu05410, which was detected as significant by our method
but was not detected by T 2. This network is related to heart
disease which is related to the experiment under investiga-
tion, and might warrant addtional exploration.

4.2 eQTL study
Expression Quantitative Trait Locus (eQTL) analysis stud-
ies gene expression as a phenotypic variation relative to dif-
ferences in genetic background. For genetic background, we
considered DNA sequence variants called Single Nucleotide
Polymorphisms (SNPs).

The data used are from a selection strain of mice produced
to investigate fat metabolism. The mice were selected over
several generations to have a high ratio of body fat for a
fixed diet. Gene expression data was extracted from hy-
pothalamus which is responsible for metabolic processes and
controlling the hormonal activity. Expression and genotype
data was provided for both founder and derived mice. We
expect to observe a perturbation in expression levels of the
genes that are related to fat metabolism. Thus, we fixed the
set of genes to be in KEGG pathway mmu00062 - Fatty
Acid Elongation in mitochondria, which is related to fat
metabolism in cells. The group labels are defined by 1813
genome-wide SNPs. In this experiment we fixed the set of
genes and searched for group labels (genotypes) that are
associated with the selected set of genes,whereas in the pre-
vious experiment group labels were given apriori and we
searched through gene-sets. The variance threshold was set
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SNP Name Chr. Pos. P-value Heterozygosity
rs3704486 4 125.09 0.001 Dominant Minority

mCV22554962 5 117.83 0.002 Dominant Minority
rs3719258 7 134.52 0.002 Dominant Minority
rs8253487 1 87.49 0.002 Dominant Majority
rs3700831 1 177.85 0.002 Additive
rs3683699 18 30.65 0.003 Additive
rs6286913 18 30.96 0.003 Additive

mCV24690992 12 63.87 0.004 Additive
rs3677302 10 20.8 0.004 Additive
rs3708441 1 177.49 0.004 Additive

Table 4: Results of eQTL analysis applied on hypothalamus
tissue. Top 10 SNPs that are found to be significantly at-
tached to genes in mmu00062 pathway are shown

to α = 0.75. Table 3 shows the genes in the selected network
and their genomic positions.

In eQTL experiments, it is common to compare the genomic
positions of genes to the positions of those genetic markers
that are found to be most significant. If the most significant
markers are close to the genes in the pathway, it is per-
haps due to regulation behavior modifications in the gene
set corresponding to a potential cis-regulatory module. Ta-
ble 4 shows most significant SNPs found using our algorithm.
As can be seen from the table the most significant SNP is
rs3704486 which is located on the chromosome 4 at approx-
imately 125 megabases. Table 3 shows that the Ppt1 gene
(palmitoyl-protein thioesterase 1) is also located on chro-
mosome 4 at the 121th megabase. A 4 megabase distance
might be considered to be quite large, but note that our
SNP data is sparse (it does not cover the DNA in high res-
olution), and that the identified SNP is the second closest
SNP to this gene. We also applied Hotelling’s T2 test to this
SNP and got a p-value of 0.76, implying that our method
indentified a potential association where Hotelling’s T2 test
does not. The proximity of SNP position to one of the genes
of the pathway signifies a likely true association. This re-
sult shows the utility of our method, but any inferences are
subject to further experimental investigations.

5. CONCLUSION AND FUTURE WORK
Analyzing gene expression experiments gives us insights about
biological mechanisms. Existing computational tools con-
centrate on detecting shifts in gene expression due to changes
in the mean-level of expression. Our PCA-based method
goes beyond merely detecting mean shifts by modeling the
correlation patterns among coordinating genes. Using sim-
ulated and real data, we have shown that this method offers
a tool for detecting differentially expressed gene patterns
under different conditions.

We demonstrated our method’s use for eQTL analysis where
the categories are based on genotypic variations. Current
approaches to eQTL study analyze the data on gene-by-gene
basis, ignoring gene-gene interactions) whereas our method
treats gene-sets as a unit. This approach enables the detec-
tion the genetically influenced gene-network variations. We
showed an example of the utility of our approach on eQTL
data, by detecting potential cis-regulatory modules.

In this work, we focused on cases where gene sets are pro-
vided a priori. Our long-term goal is to discover gene-sets
that work together to regulate a phenotype of interest. This
would enable biologists to focus on gene-networks that are
supported by computational evidence. Considering the fact
that there are tens of thousands of genes, the space of poten-

tial gene-sets is huge, and efficiently searching through this
space is a daunting computational problem. Furthermore,
when applied to eQTL analysis, the number of potential
group-labels considered, which scales with the size of the
marker set, futher adds to the computational challenge.
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