Biclustering in Gene Expression Data by Tendency
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Abstract probed in a parallel fashion. The expression levels
of their transcribed mMRNA are reported. By repeat-
The advent of DNA microarray technologies hasg such experiments under different conditions (e.g,
revolutionized the experimental study of gene exprefifierent patients, different tissues, or varying cells’
sion. Clustering is the most popular approach of arenvironments), data from tens to hundreds of exper-
alyzing gene expression data and has indeed proverents can be gathered. The analysis of these large
to be successful in many applications. Our work felatasets poses numerous algorithmic challenges.

cuses on discovering a subset of genes which eXhi_biqustering is the most popular approach of analyz-

similar expression patterns along a subset of condijy gene expression data and has proven successful in

tions in the gene expression matrix. Specifically, Weany applications, such as discovering gene pathway,
are looking for the Order Preserving clusters (OPx

_ gene classification, and function prediction. There is
\USEET), . 10UC&Jery large body of literature on clustering in gen-

S|m|Iar Imear ordering along a subset of condltlons ral and on applying clustering techniques to gene
The pioneering work of the OPSM model[3], whicR, ession data in particular. Several representative

enforces the strict order shared by the genesin a Cl%ﬁgorithmic techniques have been developed and ex-

ter,0||s||nc|uded mbourt rtr;]odelo?z;ssi/lsgemal case. IO erimented in clustering gene expression data, which
MOAE! IS more robust than ecause similarye) ,je put are not limited to hierarchical clustering

expressed conditions are allowed to form order equi 7], self-organizing maps [11], and graphic theoretic
alent groups and no restriction is placed on the ordgf .’ roaches (e.g., CLICK [16]5

within a group. Guided by our model, we design and’P R g _ C _
implement a deterministic algorithm, namely OPC- The tradltlonal clugtermg algorithm, hoyvever, is
Tree, to discover OP-Clusters. Experimental study #fcapable of discovering the gene expression pattern
two real datasets demonstrates the effectiveness offisible in only a subset of experimental conditions.
algorithm in the application of tissue classificatiodn fact, it is common that a subset of genes are co-
and cell cycle identification. In addition, a large perfegulated and co-expressed under a subset of condi-
centage of OP-Clusters exhibit significant enrichmeR@ns. but behave independently under other condi-
of one or more function categories, which implies th#ens. Recentlybiclusterhas been studied to discover
OP-Clusters indeed carry significant biological relethe local structure inside the gene expression matrix.

vance. Cheng and Church [6] are among the pioneers in in-
Keyword: Gene expression data, Microarray troducing this concept. Their biclusters are based on
data, Biclustering, Order Preserving. uniformity criteria, and a greedy algorithm is devel-

oped to discover them. Plaid [13] is another model
to capture the approximate uniformity in a submatrix
in gene expression data and look for patterns where
Modern technology provides efficient methods fayenes differ in their expression levels by a constant
data collection. The advent of DNA microarray tectfactor. Ben-Doret al. [2] discussed approaches to
nologies has revolutionized the experimental study iofentify patterns in expression data that distinguish
gene expression. Thousands of genes are routinelyp subclasses of tissues on the basis of a support-

1 Introduction



ing set of genes that results in high classification aiciterfering with the progression of this disease shall
curacy. Segaét al. [15] described rich probabilistic behave similarly in terms of relative expression levels
models for relations between expressions, regulatany this set of patients. These types of pattern can be
motifs and gene annotations. Its outcome can be observed in data from nominally identical exposure
terpreted as a collection of disjoint biclusters gendn environmental effects, data from drug treatment,
ated in a supervised manner. Taretyal. [18] de- and data representing some temporal progression, etc.
fined a bicluster as a subset of genes that jointly rfehe OPSM problem was proven to be NP-hard in [3].
spond across a subset of conditions, where a gené istochastic model was developed to discover the best
termed responding under some condition if its expra®w supported submatrix given a fixed size of condi-
sion level changes significantly under that conditidions. However, one major drawback of the pioneer-

with respect to its normal level. ing work is the strict order of the conditions enforced
by the OPSM model. In this paper, we propose a more
T gene, ’ general model, namely OP-Cluster (Order Preserving

--- gene,
---. gene,

Cluster). It includes OPSM model as a special case
but allows controlled flexibility in the ordering of the
conditions in a cluster.
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Let M be ann x m data matrix obtained from the
readout of DNA chips, where is the number of rows
(genes) andn is the number of columns (conditions).
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Exoeriment Condiions . Letd;; be the entry of the matrix, whefle< i<n and
a). A Raw Gene Expression Matrix 0 < j<m. We viewn rows of the data matrix as
T gene, sequences of the column labels. Our model allows a

-~ gene,
---- gene,

o
@

subset of adjacent column labels in a sequence to be
grouped as an order equivalent group if their values
are similar. Within the group, no strict order of the

ression Profiles
o
[o2]

g columns is imposed. The sequence of each row cor-

§o.z responds to a permutation of all column labels, under
o which the order equivalent groups are arranged in a
2 ExovrimentConditons  © non-decreasing order. This flexibility can be very im-

b) Largest OPSM found in (a) portant in biological progression. For example, when

more than one condition may correspond to the same
stage of a disease progression, the order of those sim-
ilarly expressed conditions is not important. On the
contrary, applying the strict order to those conditions

1

— gene;
-~ gene,
---- gene,

o
©

on Profiles

o
)

§0,4~ >>>>>>>> may even worsen the problem by introducing incon-
2, sistent permutations of conditions.
)
0 Given a gene expression mat{, we are seek-
> °exerimentcondiions . ° ing the biological progression that can be represented
c). Largest OP-Cluster found in (a) by a common subsequence S of length s shared by

k genes. The: genes fromM are coexpressed in
Figure 1. Comparison of clusters discovered by the s conditions. We propose a deterministic biclus-
OPSM and OP-Clustering within noisy expres- tering model, namely OP-Cluster, to capture the set
sion data of general tendencies exhibited by a subset of genes
Ben-Doret al. introduced the model of OPSM (or-along a subset of conditions ilf. Compared with
der preserving submatrix) [3] to discover a subset tife OPSM model, our model can tolerate a high de-
genes identically ordered among a subset of condree of noise. For example, givel a 9 gene expres-
tions. It focuses on the coherence of the relative orddon matrix shown in Figure 1 a), the largest OPSM
of the conditions rather than the coherence of actwald the largest OP-Cluster that can be discovered are
expression levels. For example, in the gene exprgsesented in Figure 1 b) and c) respectively. While
sion data of patients with the same disease, the geheth of the OPSM and OP-Cluster exhibit strong ten-
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dency within the cluster, the OP-Cluster is much motefinition 2.1 Assume thatd = {a1,as,...,a,} is
significant in size by having 6 common conditions. the condition set. Letbe ageneyp € D. LetE : D x
Besides the robustness of the OP-Cluster modd — ¥t be a function that returns the expression level

we also design a novel deterministic algorithm to aﬁirgsgh%r;géugdgroa %eslﬁﬂg{“tﬂg C%w;goigr&gpmg

tomatically reveal the complete set of the OP-Clusteip ~ 4 form anorder equivalent group for geneo
in one run. A compact OPC-Tree is built to reprgf — ’

sent all tendencies exhibited in the expression data.
By recursively mining and developing the OPC-Tree,max [E(o0,a;) — E(o,a;)| < d x min E(o,a;) (1)
we are able to generate the entire set of OP-Clustérs” "€
in an efficient way. Our algorithm is superior to thegnd
OPSM algorithm in both quality and efficiency. The
major portion of the OPSM algorithm is the candidatéai ai € A’ min [E(o,a;) — (0, air)| < )
model generation. While removing more partial mod- '
els or candidate models can improve the efficiency of
the algorithm, it is at the risk of missing many signifi-
cant clusters. Although both algorithms are exponehbe intuition behind the first criterion (Inequality 1)
tial in nature, our algorithm achieves an outstanding that, if the difference between the values under
performance by discovering all the valid OP-clustef#/0 conditions is insignificant, we consider the two
in parallel with a compact data structure, while the egonditions to be ‘equivalent’ and no order is placed
ficiency of OPSM algorithm is at the expense of then the conditions. For example, in gene expression
quality of the OPSMs. data, several conditions with similar expression levels
Our experiments on two large real datasets demdhight belong to the same group corresponding to a
strate that OP-Clusters can help with the identificatage or time point in the progression of a disease or
tion of the discriminating genes in tissue classific& type of genetic abnormality. In this case, no strict
tion and the identification of cell cycles in the timeorder should be enforced within the group.
series data. In addition, the result of functional en- The right part of Inequality 1 is the maximum dif-
richment of OP-Clusters again highlights the fact th&rence allowed within a group. Although there are
OP-Clusters carry significant biological meaning. multiple ways to define it based on the characteristic
The remainder of the paper is organized as follow&f the data distribution [14], the maximum difference
Section 2 defines the model proposed in the papafowed within a group is defined as a percentage of
Section 3 presents the algorithm in detail. An extefle minimum value of the group in this paper since
sive performance study is reported in Section 4. Sébe expression levels usually follow a skewed distri-
tion 5 concludes the paper and discusses some fut#éon.

minai”e(A_-A') |E(O7 ai) - E(07 ai”)|a

work. The second criterion (Inequality 2) guarantees that,
for each condition, the minimum difference between
2  OP-Cluster Model its expression level and the rest of its order equivalent

group is always smaller than the difference with the

In this section, we define the OP-Cluster model f@xpression levels outside its group. In other words,
mining genes that exhibit tendencies on a set of camcondition is always grouped with its closest neigh-
ditions. bor if the difference between them is within the max-
imum difference allowed. For example, assume that a
gene from four conditionga, b, ¢, d} has expression

Let D be a set of genes, where each gene is askyel {100,110, 145,155}. Givend = 50%, bothb
ciated with a set of experiment conditiods We are andc are in the maximum allowed difference of
interested in the subsets of genes that exhibit a ¢ddewever, the closest neighbor ofs d, notb. There-
herent tendency on a subset of conditionsdofThe fore, instead of grouping the three conditiansc),
tendency between a pair of conditions is defined We group(ab) and(cd) separately.
terms of the relative order of the corresponding val- In the rest of paper, we useto denote the relation-
ues and can be of the following three types: equivahips of being in the same equivalent group. For ex-
lent, higher and lower. We first introduce the concepmple, ifa; andas are in the same equivalent group,
of order equivalent group of conditions. We say,a; ~ as.

2.1 Definitions and Problem Statement



Two genes are coherent under two conditions Froblem Statement LetD be a database with gene
their expression values under the two conditions haset© and condition set. Given a group threshold
the same relationships, i.e,, <, or ~. The formal the minimum number of rowsc, the minimum num-
definition of coherent tendency is presented in Defder of columns allowed within a cluster, the problem
nition 2.2. is to find all maximal OP-Cluster&), 7) according
to Definition 2.3.

Mathematically, the problem of finding maximum
OP-Clusters can be transformed to the following
problem: after representing each row of the matrix by
an ordered sequence of columns and order equivalent
groups, identify the longest common subsequences (if
the length is longer than.) for any subset of at least
n, FOWS.

3 OPC-Tree Algorithm

Definition 2.3 Let O be a subset of genes in the In this section, we present the algorithm to gener-
database O C D. Let7 be a subset of conditionsate OP-Clusters. The algorithm consists of two steps:
in A. (O, T) forms anOP-Cluster(Order Preserv- (1) preprocess each row of the data matrix into a se-
ing Cluster) if every pair of genes i® have coherent quence of groups by Definition 2.1; (2) mine the sub-
tendency for every pair of conditions . sets of rows containing frequent subsequences. We

A less strict model of OP-Cluster may allow tha(fl.eSIgn a novel compact structure QPC-Tree to orga-

each pair of conditions within a cluster has either {He%e the sequences and to guide the pattern generation

combination of the relationships (1) and (3) or the, the second step. The OPC-Tree algorithm gains its

combination of (2) and (3) defined in Definition 2.2.advantage by sharing the same prefixes with a subset

Suppose that we have two genesand o, mea- of genes av0|d|ng repeated work in the future.
sured under four experiment conditiofs, b,c,d}. 3.1 Preprocessing
The expression levels argl01, 281,120,298} and

Definition 2.2 Given two genes;, oy € D and two
conditionsa;, a;: € A, o; ando; havecoherent ten-
dencyona; andaj if one of the following is true:

(1)Vo,0 € {0, 04}, E(0;,a5) > E(0;, a;);
(2)V0,0 € {Oi,Oi’},E(Oi,aj) < E(Oiuaj'); (3)
(3)V070 € {Oia Oi/}a aj = ajr;

, ) To preprocess the data, each row in the database
{280, 318,37, 215}, respectively. With) = 0.1, (bd) il pe converted into an ordered sequence of
is an order equivalent group for and no order equiv- ¢4 jymns. Given a row, the ordered sequence will
al_entgroup exists fay,. According to Definition 23 be generated by the following approach. First, sort
with o; ando, form an OP-Cluster on the conditiony) cojumns (conditions) in non-descending order of
set{a, c,d}. Essentially, each OP-Cluster capturpeir vajues: Then, iterative scans through this se-
the consistent tendency exhibited by a subset of geRnce will be undertaken to identify the order equiv-
in a subset of conditions. In the following sectiongjent groups. During the first scan, the pairs of condi-
since the input data is a matrix, we refer to genes g§ns whose expression levels are closest and within
rows and conditions as columns. the maximum allowed difference are identified and
grouped together. For example, for gemén Fig-
ure 2, givend = 100%, after the first scan of non-
descending ordered values, four pairs are grouped to-
| n gether. The next scan through the sequence merges
_m n\ Ly o1 the groups which can result in minimum intervals
pne,ny) = F ()i - =) e ) e .
Ner (= ! Te! within the groups, which is less than the maximum
(4) allowed distance. The interval within the group is the
distance between minimum and maximum value. For
The above probability originally discussed in [3] meahe four groups in the second line of Figure 2, the
sures the significance of a submatrix with sfzg x first group cannot merge with the second because of
n,). Hence, given the size of the OP-cluster, we withe violation of maximum allowed difference inside
be able to determine the significance of the clustargroup. The merge of the group (1.5, 1.7) and the
This can be used during the postprocessing in oradgoup (2.3, 2.5) can meet the requirement of the max-
to select the most significant clusters. imum distance allowed. However, the interval [1.5,

Lemma 2.1 Given a matrix of size. x m, the prob-
ability of finding a submatrix of size. x n, is



2.5] with width 1 is wider than the interval of merg-subtree, the suffix subtree startingidfor Sequences
ing the group (2.3, 2.5) and group (2.9,3.1), which & 4) is inserted into the child of root -1. If the same
0.8. The same procedure is applied to the groupsuabtree exists in the destination node, the gene IDs as-
sequence iteratively until no groups can be combinedciated with the suffixes are combined with existing
together. The example in Figure 2 stops after the thilids in the destination node. Otherwise, a new sub-
scan because of no merging can meet the maximtnee will be created in the destination node. In the
difference allowed. The iterative approach can guarase where a suffix is too short to satisfy the inequal-
antee that the closest neighbors within the maximuity current deptht length of the suffix- n., the suffix
allowed difference always stay in the same group. will not be inserted. For examplég in sequenca is
0: [0.50.6,0.8, 1.5, 1.7, 2.3, 2.5, 2.9, 3.1] also a suffix, it is not to be inserted becadspth 0 +
1st scan o: [(0.5 0.6, 0.8), (1.5, 1.7), (2.3, 2.5), (2.9, 3.1)] length ofba < n.. _
2nd scan o: [(0.5 0.6, 0.8), (1.5, 1.7), (2.3, 2.5, 2.9, 3.1)] Step 3 Prune current root's childrenlf the num-
Figure 2. An example for identifying equivalent ber of rows that fall in a subtree is smaller than the
groups, 0=100%. subtree will be deleted because no further develop-
ment can generate a cluster with more tharrows.
For example, the subtree leading frerib in Figure 3
3.2 OPC-Tree (B) is deleted in Figure 3 (C) since there are only two
In the above subsection, each row in the matrix hagquences falling in this subtree.
been converted into a sequence of column labels. TheStep 4 Repeat Step 2-Step 5 on the root’s first
goal in the next step is to discover all frequent sulshild and its subtree recursivelyFor examplec is
sequences in the generated sequences. Our algorithénfirst child of root—1. Therefore, the same pro-
uses a compact tree structure to store the crucial @@dure in Step 2 is applied tofirst. The suffixes
formation used in mining OP-Clusters. The discovesf c¢'s subtreed, such asa andab are inserted into
of frequent subsequences and the association of ravgssubtrees anda respectively. Since there are less
with frequent subsequences are performed simultatizan three sequences falling o8 subtrees: andb,
ously. Sequences sharing the same prefix are gathdhgdoranches-1ca— and—1cb— are deleted. Follow-
and recorded in the same branch. Hence, further opeg the same procedure, we develdp only subtree
ations along the shared prefix will be performed only 1cd—, which is shown in Figure 3(D).
once for all rows sharing it. Pruning techniques can Step 5: Follow the sibling link from the first child
also be applied easily in the OPC-Tree structufe. and repeat Step 2-Step 5 on each sibling node recur-
make the algorithm more scalable with respect to tisévely. For example, after developing the subtree of
number of columns, the original OPC-Tree algorithrrilc-, the next subtree to be developed is its sibling
can be improved by collapsing all nodes along a sin=1d—.

gle path [14]. _ Definition 3.1 OPC-tree (Order Preserving Clus-
Before we define the OPC-Tree algorithm forgring tree). An OPC-Tree is a tree structure defined
mally, we first give the following example. below.

Example 3.1 Given the sequences in the last columh It consists of a root labeled as “-1” and a set of
of Figure 3 (O), givem.=n,=3, the OPC-Tree algo- subtrees as the children of the root;

rithm makes a pre-order depth-first traversal of th2. Each node in the subtrees has four entries: entry
tree and works in the following steps. value, a link to its first children node, a link to its next

. ibli de, and the list of , each of which
Step 1 Create the root -1(NULL) and insert all > oing NOCE, and Me 1S: 01 SEqUences, sach of whie

: o ;< has a suffix corresponding to the path from the root
sequences into the treghis is shown in Figure 3 (A). 15 this node. In other words, the gene IDs are only

Notice that all rows sharing the same prefix fall OpLcorded at the node that marks the end of a common
the same branch of the tree. The gene IDs are Stoé%f?)sequence.

in the leaves. This is thimitial OPC-Tree on which

a recursive procedure (AlgorithgrowTreg depicted

in Steps 2-5 is performed to fully develop the tree. Analysis of OPC-Tree construction Only one scan
Step 2 For each child of the root, insert all suffixesf the entire data matrix is needed during the con-

in its subtree to the root’s child that has a matching lastruction of the OPC-Tree. Each row is converted into

bel. In Figure 3 (B),cis a child of the root-1. In this a sequence of column labels. The sequences are then
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gD | a b c d | Seq
4392 | 284 | 4108 | 228 | db(ac)
401 | 281 | 120 | 298 | c(bd)a

‘ 401 | 292|109 | 238 | cdba
280 | 315 |37 215 | cdab

W | =

~

(B)

Figure 3. An example of construction of OPC-Tree. O) holds the original raw data set. The last column

in O) presents the converted sequence of columns of each row. The trees in A),B),C),D),E) show the procedure of
OPC-Tree step by step. The label in the oval node represents the column label. The numbers following ;" are the
gene IDs. The node with double oval is the node currently being visited(active) in the depth first traversal. ''No’
means that the subtree must be pruned. ''Yes’ means that the subtree corresponds an OP-Cluster. A) Initiate the
tree with all rows. B) The active node is -1. Insert the suffix of -1's subtrees to node -1. C) The active node is
-1c-. Insert and Prune the subtreg (< 3). D) The active node is -1cd-. Identify the first OP-Cluster. E) Finish
growing the -1’s first subtree-1c. The next subtree is -1d.

inserted into the OPC-Tree. In the initial OPC-Treis also the worst case space complexity. However,
structure, sequences that have the same prefix naince we use the depth-first traversal of the tree and
rally fall onto the same path from the root to the nodée part of tree that has been traversed will not be
corresponding to the end of prefix. To save space, theeded for future mining, they can be deleted and
gene IDs associated with each path are only recordedsed. At depthl (d # 0), we only need to keep
at the node marking the end of the longest comm¢m — d + 1) nodes all from one of the nodes at
prefix shared by these sequences. To find OP-Clustéepth (d — 1). Therefore, the maximal space to be
using the OPC-Tree, the common subsequences @lecated during the running tree will be limited to
developed by adding suffixes of each sub-tree as hén >""" | (m — i+ 1)) = O(n x m?).
tree’s children, via a pre-order traversal of the OPC- Time Complexity: In the worst case, the algorithm
Tree. has to visit every possible node. The time complex-
. _ ity for the insertion operation i€ (n x m?). Ac-
Space Complexity: Each node in the tree Cormgs ging to the total number of nodes in the tree an-

sponds to a subsequence leading from root to this;aq above, the time complexity is bounded by
node. Therefore, the total number of nodes is equal } 25m (m) min(n, s!)
S=nNe¢ VA

the total number of subsequences in the tree. Givenan -

nxm matrix, the total number of sequences of lengthgorithm growTregT, ,depth)

m is limited by the minimum of. andm!. Each se- Input: 7" the root of the initial treeg
quence of lengthn may have('?") subsequences ofoutput: OP-Cluster existed i

length (m — 1). For all sequences of length, if (* Grow patterns on the initial OPC-Tréex)
all subsequences of lengt — 1) are different, the % ifT= ?clalturn'

nrlimber' of subsequences of length — 1) will be 3’ Ty T’ first child:

(") % min(n, (m — 1)!). Therefore, the upper boun(ﬁ_ for any sub-treeubT of T

of the maximal number of subsequences with mirg- doinsertSubTreefubT', T);

mum lengthn. will be >°7" (") min(n, s!) which 6.  pruneTreeNod@Y);
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7. growTree(Lniq, o, depth + 1); Lemma 3.3 The OPC-Tree contains all OP-Clusters,

g. growTree('s next sibling,o, depth); each of which corresponds to a node in the OPC-Tree.
. return.

We can observe that, in the worst case scenario, both
the time and space complexities of the algorithm i@-2.2 Pruning OPC-Tree
crease exponentially with the number of column¥Vithout any pruning, the whole OPC-Tree fits well
However, according to the algorithm, we should algoto memory when we have a matrix of small to
note that the complexity largely depends on the numpedium size (15 columns by 3000 rows). However,
ber of distinct nodes in the tree. The more the numbier large matrices, some pruning strategies have to
of sequences sharing a branch of the tree, the smalleremployed to minimize the size of the OPC-Tree.
the tree and the less the time and space compldéke pruning techniques used in our implementation
ity. Therefore, our algorithm will perform better inmainly utilize the two parameters. andn,.. The suf-
cluster-rich real dataset than in any random datasefixes to be inserted that are shorter thanwill not

. i i be considered; the visited node in the OPC-Tree with
Lemma 3.1 Given a matrix\/, a grouping threshold e o\ support belows,. will be eliminated together
0, the initialized prefix tree contains all the informagyi, a)| of its subtrees. These pruning techniques will
tion of matrix /. not harm the correctness of the result.

Rationale: Based on the first step of the algorithrr@ 3
each row in the matrix is translated into a sequence
which is then mapped onto one path in the OPC-Tree.So far, the clusters discovered by our algorithms
The row IDs and the order of the columns are conare strictly defined in Definition 2.3, which means that

Merging the overlapping clusters

pletely stored in the initial tree. any row in the cluster has the same subsequence as
others. However, because of the noisy nature of the
3.2.1 Mining OP-Cluster Using OPC-Tree microarray data, it would be rational to loosen the re-

riction and allow some degree of disorder between
e columns in the subsequences representing a clus-
r. In addition, since a large number of subsequences
can overlap heavily with each other with minor dif-
Rationale: Given any sequenceS  — ferences, ouralgorithm may create a large number of
21293y . . . 20y WE WaNt to show that every subse€lUSters with a large percentage of rows appearing in
quence ofS can be found in a path starting from th&0ré than one cI_usters. To tackle these problems, we
root. Through the initiation of OPC-Tree, we knovPPly @ hierarchical approach to merge the clusters
that S is present in the initial OPC-Tree. Then givel¥ith high correlations in the set of columns appearing
any subsequenc&S = zx; ...z, (1 < i,s < n), in at_Ieast one of these clusters.
we can obtainSS by the following steps. First, Given a subset of columnS = {as, as, ..., aa},
at nodex;, insert suffixz;z;1...2,. Now in the theordered subsequence of the columns for each row
subtree ofz;, nodez; can be found by traversing thetan be equally represented by the rank list of columns,
pathz;z;,1 . .. z,, inserted in the first step. Similarly,Which is & permutation of1...d}. Assume that we
we insert the suffixz;...z,. As a result, we get have a cluster ok genes ovess. Each gene is asso-
the pathaz;z; 1 ...z,. By repeating the sameciated with a rank list;, (0 < i<k), a,nd letR;(0 <
procedure until we insert the suffix starting with, J<7) denote the sum of the actuaj's value of all
we get the pathr;z; ... z,. Because all suffixes are/OWs- The Kendall coefficient of concordance of the
inserted in the OPC-Tree, the OPC-Tree contains 8fines are defined gsys—5 (O, By — =5 )
subsequences presented in the original OPC-Tree.It measures the communality éfgenes under thé
Each frequent subsequence corresponds to the pe@ditions [12].
from the root to a node in the OPC-Tree, which rep- Given two clusters with two different condition
resents a particular order of a subset of columns pgetsS; and S, a third union clusteSs of the two
served by a subset of rows. We can conclude that ¢lgsters is first created. Rank information 8 is
OPC-Tree contains all clusters. This leads to the féhen computed or retrieved and the rank correlation is
lowing lemma. computed according to the above formula.

Lemma 3.2 Given a prefix tree representing a set Q[Sht
ordered sequences, the OPC-Tree discovers all fE%
quent subsequencesin



The merge of all discovered clusters is done ingenes.
level-wise hierarchical manner. Given a constant fac-

tor 0, starting from the original clusters in the lowest Number | Max Sup-| Max Sup-
level, the pair of clusters with the highest rank cor- of Tissues| port(OPC)| port(OPSM
relation is merged if their rank correlation is higher 4 690 304
thanl — 6. With the rank correlation threshold— 9, 6 126 42

two clusters are merged if their rank correlation is the 7 47 3]

highest and is higher than the correlation threshold. 3 32 N/A

This step repeats until no cluster can be merged. Then o] o] N/A

the current correlation threshold is loosenedbthe 10 6 N/A

next level will be built upon the current level with the
same procedure. The hierarchy construction iS COm-Table 1. Comparison with Original OPSM al-
plete when the proper correlation value or cluster sizegorithms, 7, is the number of tissues, 1, is the
is reached. minimum number of genes in a cluster. N/A:
no result available.

4 Results on Gene Expression Data

In this section, we use two real datasets to evaluateSecondly, we present several representative pat-
our algorithm. The two datasets are the breast tunigfns discovered by the OP-Clustering algorithm. The
data from Chengt al. [5] and the yeast cell cycle dategoal of the heredity cancer expression analysis is
from Spellmaret al. [17]. Our experiments demon-t0 identify the set of genes whose variations in ex-
strate the power of the OP-Cluster model in clusterimgession best differentiates among different types of
biologically related genes. We compared our clustdieast tumors(BRCA1, BRCA2, Sporadic). Our al-
ing result with the OPSM model using breast canc@rithm is able to find significant clusters which ex-
data. For yeast cell cycle data, the generated clusteit patterns discriminating the three types of tis-
are evaluated against gene annotations [22] and th&Pes in a more consistent way. The original algorithm
value measuring the significance of function enricii? paper [5] discovered 51 genes discriminating the
ment in a cluster is calculated to assess the effectifieree types of tissues (BRCA1, BRCA2, Sporadic)
ness of the model. The OP-Clustering algorithm w&#d 176 genes discriminating the two types of tumors
implemented in C and the experiments were executdRCA1, BRCA2). Our OP-Clustering algorithm not
on a Linux machine with a 700 MHz CPU and 2®nly is able to recover most of the previously iden-
main memory. With various parameter settings, tfiéied genes but may suggest more genes that may
running time of the algorithm usually takes less th&ierve the same purpose as well. Two examples of OP-
5 minutes on both datasets. Clusters with completely opposite trends along the
tree types of tissues (BRCAL, BRCA2, Sporadic) are
presented in Figure 4. The expression levels of Spo-

We ran our first set of experiments on the breastdic tissues are always in the middle of the other two
tumor dataset. This dataset has 3226 genes andgies of tissues that may have completely different or-
tissues. Among the 22 tissues, there are 7 brcal mudars themselves. This observation is consistent with
tions, 8 brca2 mutations and 7 sporadic breast tumadise pattern presented in [5]. Figure 5 presents two ex-
We compare our experiment result with the OPSM ample clusters with completely opposite trends. The
gorithms. genes in Figure 5(A) have lower expression profiles in

First, we report the significance of our clusters iIBRCAL tissues than BRCA2 tissues while the genes
Table 1. For this set of experiments, we et 0. in(B) supports the opposite trend. The discriminating
Therefore, the clusters will be identical to OPSMjenes identified in [5] were retrieved and compared
In practice, our clustering algorithm generates muetith the genes in each OP-cluster. The comparison
more significant clusters than the clusters reported slyows that each OP-Cluster can identify part of these
the OPSM clustering algorithm. For example, ondentified genes. We do not expect OP-Cluster to dis-
significant cluster found by OPSM has 4 tissues anddsver most of them because the model of OP-Cluster
supported by 347 genes. However, our OP-Clusteriisgstricter because it not only applies order constraints
algorithm was able to find a cluster with 4 tissues supmong different types of tissues but requires a consis-
ported by 690 genes, which doubles the number teiht order among the tissues of the same type as well.

4.1 Breast Tumor Dataset
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However, if we collect the genes in all clusters that
contain discriminating genes, we are able to recover
most of the 176 genes. For example, if we sgt=
7,n, = 20, and¢d = 10, we are able to detect 88%
of 176 genes presented in [5]. There are 8 out of 20
genesin Figure 5 (A) and 7 out of 22 genes in Figure 5
(B), which are from the 176 genes. This means that
our algorithm is capable of detecting relevant genes

for discriminating different types of tissues.

Besides, OP-Clustering also reveals additional
genes that may be used for the same discriminating
purpose. Figure 6(A) presents a cluster with a consis-
tent trend in 3 BRCA2 tissues followed by 3 BRCA1
tissues. Figure 6(B) includes the same set of genes
in (A) side by side with the expression profiles along
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Figure 4. Two examples of OP-Clusters with
opposite trends across three types of tis-
sues{BRCAl, Sporadic, BRCA2}. * marks
genes that are among the previously identified
51 genes

4.2 Gene Annotation and P-value

£y (-1
P-value is given byP = 1 — Zk M The

=0 g
test measures whether a cluster is enriched with genes
from a particular category to a greater extent than that
would be expected by chance. For example, if the ma-
jority of genes in a cluster appear from one category,
then it is unlikely that this happens by chance and
the category’s P-value would be close to 0. Adopt-
ing the Bonferroni correction for multiple indepen-
dent hypothesesoz'v%1 is used as the defaut threshold
to measure the significance of the P-value in our ex-
periments. We expect a large fraction of the clusters
to conform to the known classification.

4.3 Yeast Cell Cycle Datasets

The OPC-Tree algorithm was also tested on the
yeast cell cycle data of Spellmaat al(1998). The
study monitored the expression levels of 6,218 S.
cerevisiae putative gene transcripts (ORFs) measured
at 10-minute intervals over two cell cycles (160 min-
utes) with 18 time points. Spellmaet al. identi-
fied 799 genes that are cell cycle regulated. We used
the expression levels of the 799 genes across 18 time
points as the original input matrix. The OP-Cluster
procedure groups together genes on the basis of their
common expression tendency across a subset of time

The hypergeometric distribution is used to modebints.
the probability of observing at leastORFs from a
cluster of sizen by chance in a category containingld 6 = 10%, the OPC-Tree algorithm outputs 225
f ORFs from a total genome size gfORFs. The original clusters with average size 22.5. Since the
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Figure 7. Expression Levels of Cluster 1 in Ta-

ble 2 . (a) shows the expressions of all the genes in
total number of genes covered by all the clusters ispre-replicative complex function family. (b) shows
667, the average number of clusters a gene might exthe genes in pre-replicative complex group in clus-
istis larger thar?%:2x225 = 7.5, which may indicate a ~ tered by Cluster 1

high degree of overlapping between clusters. To min-

imize the overlap, we use the hierarchical merging %’d in Fi . .
: : ) ; T gure 7 (b) while all 8 genes in the same
gorithm described in Section 3. Givén= 0.1, we nction group are plotted in Figure 7 (a). A con-

obtain 12 merged clusters with an average size of stent tendency along the time course shared by the
To assess the classification Capablllty of the CIU§i‘X genes can be observed_ The remaining two genes
ters, we use gene ontology information of each ge ®1CM6,CDC45} in the pre-replicative complex
to evaluate whether the cluster has Signiﬁcant enri(g‘@up do not induce the same tendency and hence are
ment of one or more function groups. The ontolog¥xcluded from the OP-Cluster. The remaining three
of the 799 yeast genes is downloaded from gene Qilusters in Table 2 are presented in Figure 8. Ac-
tology consortium [22] in July, 2003. We ud®4 cording to the three expression graphs, we can ob-
different function categories below ontology level Zerve significant similarity of the cell cycle among
and with a family size at least 8. The discovered Oljenes within the same cluster and clear distinction of
Clusters in each level of the hierarchy are evaluatgg)| cycle patterns between different clusters. For ex-
for enrichment with any of those function Categorleamp|e1 cluster 2 peaks first at the 4th time point and
Table 2 shows the details of several clusters with 8heaks again at the 10th time point. The first peak of
riched function groups. Cluster 3 occurs one time point later than Cluster 1
Cluster 1 in Table 2 contains 53 genes. In Clusrhile Cluster 4 occurs even later in both two peaks.
ter 1, one of the function groups enriched is the pr&ignificant function groups closely related to the reg-
replicative complex group. The algorithm discowlation of cell cycle [17] have also been discovered
ers 6 out of 8 genes in the pre-replicative compléx the three clusters(Table 2). Those function groups
group which is presumably to help set up origins fanclude, but are not limited to, cell cycle, DNA repli-
the next cell cycle. The six genes af@/CM2, cation, DNA repair, mitotic cell cycle, glycoprotein
MCM3, MCM4, MCM5, MCM7, CDC6} plot- biosynthesis and cykoskeleton.

10



Cluster | Number of | Enriched functional Clustered genes —log1o
genes Category(total genes) within the category() (P-value)

1. 53 pre-replicative complex(8) 6 5
ATP dependent DNA helicase activity(10)4 3

2. 109 cell proliferation(77) 33 13
Cell cycle(66) 28 11
DNA replication and chromosome cyclel? 6
(38)
Mitotic cell cycle(41) 17 6

3. 66 Nuclear chromatin(9) 7 5
Cytoskeleton(27) 11 6

4. 70 Cytoplasm(97) 27 11
DNA binding(27) 11 6
glycoprotein biosynthesis(6) 5 5

Table 2. Enrichment of OP-Clusters by at least one function category

It is also observed in several studies that ctroducing order equivalent groups, it is still too op-
expressed genes tend to share common regulatorytietistic to expect the order among groups are always
ements in their promoter regions [19]. We use Genmeaningful, in the presence of normal biological vari-
Spring software to find common motif appearing iations and noises in microarray data. Therefore, one
the promoter regions(500 bases upstream of the traestension of the current model is to explore similar
lation start sites) of the genes in Cluster 2, 3 and Hut not exact orders among a subset of conditions.
Significant motifs have been discovered. For exarhe similarity measure of two sequences can base on
ple, the motif ACGCGT which was shown to be ghe number of reverse pairs. For example, two se-
perfect MCB element in [17] is located in 74 geneguencesbcd anddcba have six reverse pair§{a, b},

in Cluster 2. {a,c}, {a,d},{b,c},{b,d},{c,d}} while abed and
. acbd only have one reverse pair§), c}. If the simi-
5 Conclusions and Future Work larity threshold is 3, we can takécd andacbd as two

To discover clusters representing consistent teg\[mlgrlyto&d?red sequengef. tcl?]l'” glgprlthlm car}[_also
dencies exhibited by a subset of conditions in ge & adapted to accommodate this by Impiementing a

expression data, we introduce a new model nam Hﬂilarity check at each branch during the depth-first

OP-Cluster and devise a depth-first algorithm that ¢ ﬁvelo_pmen;[]. . .
efficiently and effectively discover all OP-Clusters BeSides the above extensions and improvements,

satisfying some user-specified threshold. Our ope will continue to investigate the functional, clinical

Cluster model extends the original OPSM by relaf’ Piochemical interpretations of OP-Clusters.
ing strict orders among conditions to allow equivalent
groups defined on similar expression levels. References
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