
Biclustering in Gene Expression Data by Tendency

Jinze Liu1, Jiong Yang2, and Wei Wang1
1Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599

{liuj, weiwang}@cs.unc.edu
2Department of Computer Science, University of Illinois, Urbana-Champaign, IL 61801

jioyang@cs.uiuc.edu

Abstract

The advent of DNA microarray technologies has
revolutionized the experimental study of gene expres-
sion. Clustering is the most popular approach of an-
alyzing gene expression data and has indeed proven
to be successful in many applications. Our work fo-
cuses on discovering a subset of genes which exhibit
similar expression patterns along a subset of condi-
tions in the gene expression matrix. Specifically, we
are looking for the Order Preserving clusters (OP-
Cluster), in each of which a subset of genes induce a
similar linear ordering along a subset of conditions.
The pioneering work of the OPSM model[3], which
enforces the strict order shared by the genes in a clus-
ter, is included in our model as a special case. Our
model is more robust than OPSM because similarly
expressed conditions are allowed to form order equiv-
alent groups and no restriction is placed on the order
within a group. Guided by our model, we design and
implement a deterministic algorithm, namely OPC-
Tree, to discover OP-Clusters. Experimental study on
two real datasets demonstrates the effectiveness of the
algorithm in the application of tissue classification
and cell cycle identification. In addition, a large per-
centage of OP-Clusters exhibit significant enrichment
of one or more function categories, which implies that
OP-Clusters indeed carry significant biological rele-
vance.

Keyword: Gene expression data, Microarray
data, Biclustering, Order Preserving.

1 Introduction

Modern technology provides efficient methods for
data collection. The advent of DNA microarray tech-
nologies has revolutionized the experimental study of
gene expression. Thousands of genes are routinely

probed in a parallel fashion. The expression levels
of their transcribed mRNA are reported. By repeat-
ing such experiments under different conditions (e.g,
different patients, different tissues, or varying cells’
environments), data from tens to hundreds of exper-
iments can be gathered. The analysis of these large
datasets poses numerous algorithmic challenges.

Clustering is the most popular approach of analyz-
ing gene expression data and has proven successful in
many applications, such as discovering gene pathway,
gene classification, and function prediction. There is
a very large body of literature on clustering in gen-
eral and on applying clustering techniques to gene
expression data in particular. Several representative
algorithmic techniques have been developed and ex-
perimented in clustering gene expression data, which
include but are not limited to hierarchical clustering
[7], self-organizing maps [11], and graphic theoretic
approaches (e.g., CLICK [16]).

The traditional clustering algorithm, however, is
incapable of discovering the gene expression pattern
visible in only a subset of experimental conditions.
In fact, it is common that a subset of genes are co-
regulated and co-expressed under a subset of condi-
tions, but behave independently under other condi-
tions. Recently,biclusterhas been studied to discover
the local structure inside the gene expression matrix.
Cheng and Church [6] are among the pioneers in in-
troducing this concept. Their biclusters are based on
uniformity criteria, and a greedy algorithm is devel-
oped to discover them. Plaid [13] is another model
to capture the approximate uniformity in a submatrix
in gene expression data and look for patterns where
genes differ in their expression levels by a constant
factor. Ben-Doret al. [2] discussed approaches to
identify patterns in expression data that distinguish
two subclasses of tissues on the basis of a support-

1

ing set of genes that results in high classification ac-
curacy. Segalet al. [15] described rich probabilistic
models for relations between expressions, regulatory
motifs and gene annotations. Its outcome can be in-
terpreted as a collection of disjoint biclusters gener-
ated in a supervised manner. Tanayet al. [18] de-
fined a bicluster as a subset of genes that jointly re-
spond across a subset of conditions, where a gene is
termed responding under some condition if its expres-
sion level changes significantly under that condition
with respect to its normal level.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Experiment Conditions

G
en

e
E

xp
re

ss
io

n
P

ro
fil

es

gene
1

gene
2

gene
3

a). A Raw Gene Expression Matrix

2 0 3 8
0

0.2

0.4

0.6

0.8

1

Experiment Conditions

G
en

e
E

xp
re

ss
io

n
P

ro
fil

es

gene
1

gene
2

gene
3

b) Largest OPSM found in (a)

2 0 4 3 6 8
0

0.2

0.4

0.6

0.8

1

Experiment Conditions

G
en

e
E

xp
re

ss
io

n
P

ro
fil

es

gene
1

gene
2

gene
3

c). Largest OP-Cluster found in (a)

Figure 1. Comparison of clusters discovered by
OPSM and OP-Clustering within noisy expres-
sion data

Ben-Doret al. introduced the model of OPSM (or-
der preserving submatrix) [3] to discover a subset of
genes identically ordered among a subset of condi-
tions. It focuses on the coherence of the relative order
of the conditions rather than the coherence of actual
expression levels. For example, in the gene expres-
sion data of patients with the same disease, the genes

interfering with the progression of this disease shall
behave similarly in terms of relative expression levels
on this set of patients. These types of pattern can be
observed in data from nominally identical exposure
to environmental effects, data from drug treatment,
and data representing some temporal progression, etc.
The OPSM problem was proven to be NP-hard in [3].
A stochastic model was developed to discover the best
row supported submatrix given a fixed size of condi-
tions. However, one major drawback of the pioneer-
ing work is the strict order of the conditions enforced
by the OPSM model. In this paper, we propose a more
general model, namely OP-Cluster (Order Preserving
Cluster). It includes OPSM model as a special case
but allows controlled flexibility in the ordering of the
conditions in a cluster.

Let M be ann×m data matrix obtained from the
readout of DNA chips, wheren is the number of rows
(genes) andm is the number of columns (conditions).
Let dij be the entry of the matrix, where0 < i≤n and
0 < j≤m. We viewn rows of the data matrix asn
sequences of the column labels. Our model allows a
subset of adjacent column labels in a sequence to be
grouped as an order equivalent group if their values
are similar. Within the group, no strict order of the
columns is imposed. The sequence of each row cor-
responds to a permutation of all column labels, under
which the order equivalent groups are arranged in a
non-decreasing order. This flexibility can be very im-
portant in biological progression. For example, when
more than one condition may correspond to the same
stage of a disease progression, the order of those sim-
ilarly expressed conditions is not important. On the
contrary, applying the strict order to those conditions
may even worsen the problem by introducing incon-
sistent permutations of conditions.

Given a gene expression matrixM , we are seek-
ing the biological progression that can be represented
by a common subsequence S of length s shared by
k genes. Thek genes fromM are coexpressed in
the s conditions. We propose a deterministic biclus-
tering model, namely OP-Cluster, to capture the set
of general tendencies exhibited by a subset of genes
along a subset of conditions inM . Compared with
the OPSM model, our model can tolerate a high de-
gree of noise. For example, given a3×9 gene expres-
sion matrix shown in Figure 1 a), the largest OPSM
and the largest OP-Cluster that can be discovered are
presented in Figure 1 b) and c) respectively. While
both of the OPSM and OP-Cluster exhibit strong ten-

2

dency within the cluster, the OP-Cluster is much more
significant in size by having 6 common conditions.

Besides the robustness of the OP-Cluster model,
we also design a novel deterministic algorithm to au-
tomatically reveal the complete set of the OP-Clusters
in one run. A compact OPC-Tree is built to repre-
sent all tendencies exhibited in the expression data.
By recursively mining and developing the OPC-Tree,
we are able to generate the entire set of OP-Clusters
in an efficient way. Our algorithm is superior to the
OPSM algorithm in both quality and efficiency. The
major portion of the OPSM algorithm is the candidate
model generation. While removing more partial mod-
els or candidate models can improve the efficiency of
the algorithm, it is at the risk of missing many signifi-
cant clusters. Although both algorithms are exponen-
tial in nature, our algorithm achieves an outstanding
performance by discovering all the valid OP-clusters
in parallel with a compact data structure, while the ef-
ficiency of OPSM algorithm is at the expense of the
quality of the OPSMs.

Our experiments on two large real datasets demon-
strate that OP-Clusters can help with the identifica-
tion of the discriminating genes in tissue classifica-
tion and the identification of cell cycles in the time-
series data. In addition, the result of functional en-
richment of OP-Clusters again highlights the fact that
OP-Clusters carry significant biological meaning.

The remainder of the paper is organized as follows.
Section 2 defines the model proposed in the paper.
Section 3 presents the algorithm in detail. An exten-
sive performance study is reported in Section 4. Sec-
tion 5 concludes the paper and discusses some future
work.

2 OP-Cluster Model

In this section, we define the OP-Cluster model for
mining genes that exhibit tendencies on a set of con-
ditions.

2.1 Definitions and Problem Statement

Let D be a set of genes, where each gene is asso-
ciated with a set of experiment conditionsA. We are
interested in the subsets of genes that exhibit a co-
herent tendency on a subset of conditions ofA. The
tendency between a pair of conditions is defined in
terms of the relative order of the corresponding val-
ues and can be of the following three types: equiva-
lent, higher and lower. We first introduce the concept
of order equivalent group of conditions.

Definition 2.1 Assume thatA = {a1, a2, ..., an} is
the condition set. Leto be a gene,o ∈ D. LetE : D×
A→< be a function that returns the expression level
of a gene under a given condition. Given a grouping
thresholdδ, δ ≥ 0, we say that the conditions inA′,
A′ ⊆ A form anorder equivalent group for geneo,
if

max
ai,ai′∈A′

|E(o, ai)− E(o, ai′)| < δ × min
aj∈A′

E(o, aj) (1)

and

∀ai, ai ∈ A′, min
ai′∈A′

|E(o, ai)− E(o, ai′)| < (2)

minai′′∈(A−A′) |E(o, ai)− E(o, ai′′)|,

The intuition behind the first criterion (Inequality 1)
is that, if the difference between the values under
two conditions is insignificant, we consider the two
conditions to be ‘equivalent’ and no order is placed
on the conditions. For example, in gene expression
data, several conditions with similar expression levels
might belong to the same group corresponding to a
stage or time point in the progression of a disease or
a type of genetic abnormality. In this case, no strict
order should be enforced within the group.

The right part of Inequality 1 is the maximum dif-
ference allowed within a group. Although there are
multiple ways to define it based on the characteristic
of the data distribution [14], the maximum difference
allowed within a group is defined as a percentage of
the minimum value of the group in this paper since
the expression levels usually follow a skewed distri-
bution.

The second criterion (Inequality 2) guarantees that,
for each condition, the minimum difference between
its expression level and the rest of its order equivalent
group is always smaller than the difference with the
expression levels outside its group. In other words,
a condition is always grouped with its closest neigh-
bor if the difference between them is within the max-
imum difference allowed. For example, assume that a
gene from four conditions{a, b, c, d} has expression
level {100, 110, 145, 155}. Given δ = 50%, both b
and c are in the maximum allowed difference ofa.
However, the closest neighbor ofc is d, notb. There-
fore, instead of grouping the three conditions(abc),
we group(ab) and(cd) separately.

In the rest of paper, we use≈ to denote the relation-
ships of being in the same equivalent group. For ex-
ample, ifa1 anda2 are in the same equivalent group,
we say,a1 ≈ a2.

3

Two genes are coherent under two conditions if
their expression values under the two conditions have
the same relationships, i.e,>, <, or ≈. The formal
definition of coherent tendency is presented in Defi-
nition 2.2.

Definition 2.2 Given two genesoi, oi′ ∈ D and two
conditionsaj , aj′ ∈ A, oi andoi′ havecoherent ten-
dencyonaj andaj′ if one of the following is true:

(1)∀o, o ∈ {oi, oi′}, E(oi, aj) > E(oi, aj′);
(2)∀o, o ∈ {oi, oi′}, E(oi, aj) < E(oi, aj′);
(3)∀o, o ∈ {oi, oi′}, aj ≈ aj′ ;

(3)

Definition 2.3 Let O be a subset of genes in the
database,O ⊆ D. Let T be a subset of conditions
in A. (O, T) forms anOP-Cluster(Order Preserv-
ing Cluster) if every pair of genes inO have coherent
tendency for every pair of conditions inT .

A less strict model of OP-Cluster may allow that
each pair of conditions within a cluster has either the
combination of the relationships (1) and (3) or the
combination of (2) and (3) defined in Definition 2.2.

Suppose that we have two geneso1 ando2 mea-
sured under four experiment conditions{a, b, c, d}.
The expression levels are{401, 281, 120, 298} and
{280, 318, 37, 215}, respectively. Withδ = 0.1, (bd)
is an order equivalent group foro1 and no order equiv-
alent group exists foro2. According to Definition 2.3,
with o1 ando2 form an OP-Cluster on the condition
set {a, c, d}. Essentially, each OP-Cluster captures
the consistent tendency exhibited by a subset of genes
in a subset of conditions. In the following sections,
since the input data is a matrix, we refer to genes as
rows and conditions as columns.

Lemma 2.1 Given a matrix of sizen ×m, the prob-
ability of finding a submatrix of sizenc × nr is

p(nc, nr) =
m!
nc!

n∑
i=nr

(
n
i

)
(

1
nc!

)i(1− 1
nc!

)n−i

(4)

The above probability originally discussed in [3] mea-
sures the significance of a submatrix with size(nc ×
nr). Hence, given the size of the OP-cluster, we will
be able to determine the significance of the cluster.
This can be used during the postprocessing in order
to select the most significant clusters.

Problem Statement LetD be a database with gene
setO and condition setA. Given a group thresholdδ,
the minimum number of rowsnc, the minimum num-
ber of columns allowed within a cluster, the problem
is to find all maximal OP-Clusters(O, T) according
to Definition 2.3.

Mathematically, the problem of finding maximum
OP-Clusters can be transformed to the following
problem: after representing each row of the matrix by
an ordered sequence of columns and order equivalent
groups, identify the longest common subsequences (if
the length is longer thannc) for any subset of at least
nr rows.

3 OPC-Tree Algorithm

In this section, we present the algorithm to gener-
ate OP-Clusters. The algorithm consists of two steps:
(1) preprocess each row of the data matrix into a se-
quence of groups by Definition 2.1; (2) mine the sub-
sets of rows containing frequent subsequences. We
design a novel compact structure OPC-Tree to orga-
nize the sequences and to guide the pattern generation
in the second step. The OPC-Tree algorithm gains its
advantage by sharing the same prefixes with a subset
of genes avoiding repeated work in the future.

3.1 Preprocessing

To preprocess the data, each row in the database
will be converted into an ordered sequence of
columns. Given a rowo, the ordered sequence will
be generated by the following approach. First, sort
all columns (conditions) in non-descending order of
their values: Then, iterative scans through this se-
quence will be undertaken to identify the order equiv-
alent groups. During the first scan, the pairs of condi-
tions whose expression levels are closest and within
the maximum allowed difference are identified and
grouped together. For example, for geneo in Fig-
ure 2, givenδ = 100%, after the first scan of non-
descending ordered values, four pairs are grouped to-
gether. The next scan through the sequence merges
the groups which can result in minimum intervals
within the groups, which is less than the maximum
allowed distance. The interval within the group is the
distance between minimum and maximum value. For
the four groups in the second line of Figure 2, the
first group cannot merge with the second because of
the violation of maximum allowed difference inside
a group. The merge of the group (1.5, 1.7) and the
group (2.3, 2.5) can meet the requirement of the max-
imum distance allowed. However, the interval [1.5,

4

2.5] with width 1 is wider than the interval of merg-
ing the group (2.3, 2.5) and group (2.9,3.1), which is
0.8. The same procedure is applied to the grouped
sequence iteratively until no groups can be combined
together. The example in Figure 2 stops after the third
scan because of no merging can meet the maximum
difference allowed. The iterative approach can guar-
antee that the closest neighbors within the maximum
allowed difference always stay in the same group.

o: [0.5 0.6, 0.8, 1.5, 1.7, 2.3, 2.5, 2.9, 3.1]

 1st scan o: [(0.5 0.6, 0.8), (1.5, 1.7), (2.3, 2.5), (2.9, 3.1)]

 2nd scan o: [(0.5 0.6, 0.8), (1.5, 1.7), (2.3, 2.5, 2.9, 3.1)]

Figure 2. An example for identifying equivalent
groups, δ=100%.

3.2 OPC-Tree

In the above subsection, each row in the matrix has
been converted into a sequence of column labels. The
goal in the next step is to discover all frequent sub-
sequences in the generated sequences. Our algorithm
uses a compact tree structure to store the crucial in-
formation used in mining OP-Clusters. The discovery
of frequent subsequences and the association of rows
with frequent subsequences are performed simultane-
ously. Sequences sharing the same prefix are gathered
and recorded in the same branch. Hence, further oper-
ations along the shared prefix will be performed only
once for all rows sharing it. Pruning techniques can
also be applied easily in the OPC-Tree structure.To
make the algorithm more scalable with respect to the
number of columns, the original OPC-Tree algorithm
can be improved by collapsing all nodes along a sin-
gle path [14].

Before we define the OPC-Tree algorithm for-
mally, we first give the following example.

Example 3.1 Given the sequences in the last column
of Figure 3 (O), givennc=nr=3, the OPC-Tree algo-
rithm makes a pre-order depth-first traversal of the
tree and works in the following steps.

Step 1: Create the root -1(NULL) and insert all
sequences into the tree.This is shown in Figure 3 (A).
Notice that all rows sharing the same prefix fall on
the same branch of the tree. The gene IDs are stored
in the leaves. This is theinitial OPC-Tree on which
a recursive procedure (AlgorithmgrowTree) depicted
in Steps 2-5 is performed to fully develop the tree.

Step 2: For each child of the root, insert all suffixes
in its subtree to the root’s child that has a matching la-
bel. In Figure 3 (B),c is a child of the root−1. In this

subtree, the suffix subtree starting atd (for Sequences
3, 4) is inserted into the childd of root -1. If the same
subtree exists in the destination node, the gene IDs as-
sociated with the suffixes are combined with existing
IDs in the destination node. Otherwise, a new sub-
tree will be created in the destination node. In the
case where a suffix is too short to satisfy the inequal-
ity current depth+ length of the suffix> nc, the suffix
will not be inserted. For example,ba in sequence3 is
also a suffix, it is not to be inserted becausedepth 0 +
length ofba < nc.

Step 3: Prune current root’s children.If the num-
ber of rows that fall in a subtree is smaller thannr, the
subtree will be deleted because no further develop-
ment can generate a cluster with more thannr rows.
For example, the subtree leading from−1b in Figure 3
(B) is deleted in Figure 3 (C) since there are only two
sequences falling in this subtree.

Step 4: Repeat Step 2-Step 5 on the root’s first
child and its subtree recursively. For example,c is
the first child of root−1. Therefore, the same pro-
cedure in Step 2 is applied toc first. The suffixes
of c’s subtreed, such asba andab are inserted into
c’s subtreesb anda respectively. Since there are less
than three sequences falling onc’s subtreesa andb,
the branches−1ca− and−1cb− are deleted. Follow-
ing the same procedure, we developc’s only subtree
−1cd−, which is shown in Figure 3(D).

Step 5: Follow the sibling link from the first child
and repeat Step 2-Step 5 on each sibling node recur-
sively. For example, after developing the subtree of
-1c-, the next subtree to be developed is its sibling
−1d−.

Definition 3.1 OPC-tree (Order Preserving Clus-
tering tree). An OPC-Tree is a tree structure defined
below.
1. It consists of a root labeled as “-1” and a set of
subtrees as the children of the root;
2. Each node in the subtrees has four entries: entry
value, a link to its first children node, a link to its next
sibling node, and the list of sequences, each of which
has a suffix corresponding to the path from the root
to this node. In other words, the gene IDs are only
recorded at the node that marks the end of a common
subsequence.

Analysis of OPC-Tree construction Only one scan
of the entire data matrix is needed during the con-
struction of the OPC-Tree. Each row is converted into
a sequence of column labels. The sequences are then

5

-1

c

d

b :4

a:2,3

c :1

a :3

b

d

b :4

a

!Y e s
n c = 3
n r= 3

-1

c

d

b :4

a :2 ,3

a :3 c :1

a :3

b

d

b :4

a

b :4

! N o
n r< 3

!Y e s
n c = 3
n r= 3

-1

c

b

d

a :2

d

b :4

a :2 b

a :3 c :1

a :3

b

d

b :4

a

b :4

a

a :3

! N o
n r< 3

! N o
n r< 3

-1

c

b

d

a :2

d

b :4

a b

a :3 c :1

a :3

b

db

a

c :1

d

a :2 b :4

a

! N o
n r< 3

-1

c

b

d

a :2

d

b :4

a b

a :3 c :1

a

b

d
gID a b c d Seq
1 4392 284 4108 228 db(ac)
2 401 281 120 298 c(bd)a
3 401 292 109 238 cdba
4 280 315 37 215 cdab
5 2857 285 2576 226 dbca

 48 a(cd b

(O) (A) (B)

(C) (D) (E)

Figure 3. An example of construction of OPC-Tree. O) holds the original raw data set. The last column
in O) presents the converted sequence of columns of each row. The trees in A),B),C),D),E) show the procedure of
OPC-Tree step by step. The label in the oval node represents the column label. The numbers following ’:’ are the
gene IDs. The node with double oval is the node currently being visited(active) in the depth first traversal. ’!No’
means that the subtree must be pruned. ’!Yes’ means that the subtree corresponds an OP-Cluster. A) Initiate the
tree with all rows. B) The active node is -1. Insert the suffix of -1’s subtrees to node -1. C) The active node is
-1c-. Insert and Prune the subtree (nr < 3). D) The active node is -1cd-. Identify the first OP-Cluster. E) Finish
growing the -1’s first subtree-1c. The next subtree is -1d.

inserted into the OPC-Tree. In the initial OPC-Tree
structure, sequences that have the same prefix natu-
rally fall onto the same path from the root to the node
corresponding to the end of prefix. To save space, the
gene IDs associated with each path are only recorded
at the node marking the end of the longest common
prefix shared by these sequences. To find OP-Clusters
using the OPC-Tree, the common subsequences are
developed by adding suffixes of each sub-tree as the
tree’s children, via a pre-order traversal of the OPC-
Tree.

Space Complexity: Each node in the tree corre-
sponds to a subsequence leading from root to this
node. Therefore, the total number of nodes is equal to
the total number of subsequences in the tree. Given an
n×m matrix, the total number of sequences of length
m is limited by the minimum ofn andm!. Each se-
quence of lengthm may have

(
m
1

)
subsequences of

length (m − 1). For all sequences of lengthm, if
all subsequences of length(m − 1) are different, the
number of subsequences of length(m − 1) will be(
m
1

)
×min(n, (m − 1)!). Therefore, the upper bound

of the maximal number of subsequences with mini-
mum lengthnc will be

∑m
s=nc

(
m
s

)
min(n, s!) which

is also the worst case space complexity. However,
since we use the depth-first traversal of the tree and
the part of tree that has been traversed will not be
needed for future mining, they can be deleted and
reused. At depthd (d 6= 0), we only need to keep
(m − d + 1) nodes all from one of the nodes at
depth(d − 1). Therefore, the maximal space to be
allocated during the running tree will be limited to
O(n

∑m
i=1(m− i + 1)) = O(n×m2).

Time Complexity: In the worst case, the algorithm
has to visit every possible node. The time complex-
ity for the insertion operation isO(n × m2). Ac-
cording to the total number of nodes in the tree an-
alyzed above, the time complexity is bounded by
nm2

∑m
s=nc

(
m
s

)
min(n, s!).

Algorithm growTree(T, σ,depth)
Input: T : the root of the initial tree,σ
Output: OP-Cluster existed inT
(∗ Grow patterns on the initial OPC-TreeT ∗)
1. if T = nil
2. return ;
3. Tchild←T ’s first child;
4. for any sub-treesubT of T
5. do insertSubTree(subT , T);
6. pruneTreeNode(T);

6

7. growTree(Tchild, σ, depth + 1);
8. growTree(T ’s next sibling,σ, depth);
9. return .

We can observe that, in the worst case scenario, both
the time and space complexities of the algorithm in-
crease exponentially with the number of columns.
However, according to the algorithm, we should also
note that the complexity largely depends on the num-
ber of distinct nodes in the tree. The more the number
of sequences sharing a branch of the tree, the smaller
the tree and the less the time and space complex-
ity. Therefore, our algorithm will perform better in
cluster-rich real dataset than in any random dataset.

Lemma 3.1 Given a matrixM , a grouping threshold
δ, the initialized prefix tree contains all the informa-
tion of matrixM .

Rationale: Based on the first step of the algorithm,
each row in the matrix is translated into a sequence
which is then mapped onto one path in the OPC-Tree.
The row IDs and the order of the columns are com-
pletely stored in the initial tree.

3.2.1 Mining OP-Cluster Using OPC-Tree

Lemma 3.2 Given a prefix tree representing a set of
ordered sequences, the OPC-Tree discovers all fre-
quent subsequences inD.

Rationale: Given any sequence S =
x1x2x3x4 . . . xn, we want to show that every subse-
quence ofS can be found in a path starting from the
root. Through the initiation of OPC-Tree, we know
thatS is present in the initial OPC-Tree. Then given
any subsequenceSS = xixj . . . xs, (1 ≤ i, s ≤ n),
we can obtainSS by the following steps. First,
at nodexi, insert suffixxixi+1 . . . xn. Now in the
subtree ofxi, nodexj can be found by traversing the
pathxixi+1 . . . xn inserted in the first step. Similarly,
we insert the suffixxj . . . xn. As a result, we get
the pathxixjxj+1 . . . xn. By repeating the same
procedure until we insert the suffix starting withxs,
we get the pathxixj . . . xs. Because all suffixes are
inserted in the OPC-Tree, the OPC-Tree contains all
subsequences presented in the original OPC-Tree.

Each frequent subsequence corresponds to the path
from the root to a node in the OPC-Tree, which rep-
resents a particular order of a subset of columns pre-
served by a subset of rows. We can conclude that the
OPC-Tree contains all clusters. This leads to the fol-
lowing lemma.

Lemma 3.3 The OPC-Tree contains all OP-Clusters,
each of which corresponds to a node in the OPC-Tree.

3.2.2 Pruning OPC-Tree
Without any pruning, the whole OPC-Tree fits well
into memory when we have a matrix of small to
medium size (15 columns by 3000 rows). However,
for large matrices, some pruning strategies have to
be employed to minimize the size of the OPC-Tree.
The pruning techniques used in our implementation
mainly utilize the two parametersnc andnr. The suf-
fixes to be inserted that are shorter thannc will not
be considered; the visited node in the OPC-Tree with
the row support belownr will be eliminated together
with all of its subtrees. These pruning techniques will
not harm the correctness of the result.

3.3 Merging the overlapping clusters

So far, the clusters discovered by our algorithms
are strictly defined in Definition 2.3, which means that
any row in the cluster has the same subsequence as
others. However, because of the noisy nature of the
microarray data, it would be rational to loosen the re-
striction and allow some degree of disorder between
the columns in the subsequences representing a clus-
ter. In addition, since a large number of subsequences
can overlap heavily with each other with minor dif-
ferences, our algorithm may create a large number of
clusters with a large percentage of rows appearing in
more than one clusters. To tackle these problems, we
apply a hierarchical approach to merge the clusters
with high correlations in the set of columns appearing
in at least one of these clusters.

Given a subset of columnsS = {a1, a2, ..., ad},
the ordered subsequence of the columns for each row
can be equally represented by the rank list of columns,
which is a permutation of{1...d}. Assume that we
have a cluster ofk genes overS. Each gene is asso-
ciated with a rank listli, (0 < i≤k), and letRj(0 <
j≤n) denote the sum of the actualaj ’s value of all
rows. The Kendall coefficient of concordance of thek
genes are defined as 12

d2(k3−k)
(
∑k

i=1 R2
i −

kd2(k+1)2

4)
It measures the communality ofk genes under thed
conditions [12].

Given two clusters with two different condition
setsS1 andS2, a third union clusterS3 of the two
clusters is first created. Rank information ofS3 is
then computed or retrieved and the rank correlation is
computed according to the above formula.

7

The merge of all discovered clusters is done in a
level-wise hierarchical manner. Given a constant fac-
tor θ, starting from the original clusters in the lowest
level, the pair of clusters with the highest rank cor-
relation is merged if their rank correlation is higher
than1− θ. With the rank correlation threshold1− θ,
two clusters are merged if their rank correlation is the
highest and is higher than the correlation threshold.
This step repeats until no cluster can be merged. Then
the current correlation threshold is loosened byθ, the
next level will be built upon the current level with the
same procedure. The hierarchy construction is com-
plete when the proper correlation value or cluster size
is reached.

4 Results on Gene Expression Data

In this section, we use two real datasets to evaluate
our algorithm. The two datasets are the breast tumor
data from Chenget al. [5] and the yeast cell cycle data
from Spellmanet al. [17]. Our experiments demon-
strate the power of the OP-Cluster model in clustering
biologically related genes. We compared our cluster-
ing result with the OPSM model using breast cancer
data. For yeast cell cycle data, the generated clusters
are evaluated against gene annotations [22] and the P-
value measuring the significance of function enrich-
ment in a cluster is calculated to assess the effective-
ness of the model. The OP-Clustering algorithm was
implemented in C and the experiments were executed
on a Linux machine with a 700 MHz CPU and 2G
main memory. With various parameter settings, the
running time of the algorithm usually takes less than
5 minutes on both datasets.

4.1 Breast Tumor Dataset

We ran our first set of experiments on the breast
tumor dataset. This dataset has 3226 genes and 22
tissues. Among the 22 tissues, there are 7 brca1 muta-
tions, 8 brca2 mutations and 7 sporadic breast tumors.
We compare our experiment result with the OPSM al-
gorithms.

First, we report the significance of our clusters in
Table 1. For this set of experiments, we setδ = 0.
Therefore, the clusters will be identical to OPSM.
In practice, our clustering algorithm generates much
more significant clusters than the clusters reported by
the OPSM clustering algorithm. For example, one
significant cluster found by OPSM has 4 tissues and is
supported by 347 genes. However, our OP-Clustering
algorithm was able to find a cluster with 4 tissues sup-
ported by 690 genes, which doubles the number of

genes.

Number
of Tissues

Max Sup-
port(OPC)

Max Sup-
port(OPSM)

4 690 304
6 126 42
7 47 8
8 32 N/A
9 9 N/A
10 6 N/A

Table 1. Comparison with Original OPSM al-
gorithms, nc is the number of tissues, nr is the
minimum number of genes in a cluster. N/A:
no result available.

Secondly, we present several representative pat-
terns discovered by the OP-Clustering algorithm. The
goal of the heredity cancer expression analysis is
to identify the set of genes whose variations in ex-
pression best differentiates among different types of
breast tumors(BRCA1, BRCA2, Sporadic). Our al-
gorithm is able to find significant clusters which ex-
hibit patterns discriminating the three types of tis-
sues in a more consistent way. The original algorithm
in paper [5] discovered 51 genes discriminating the
three types of tissues (BRCA1, BRCA2, Sporadic)
and 176 genes discriminating the two types of tumors
(BRCA1, BRCA2). Our OP-Clustering algorithm not
only is able to recover most of the previously iden-
tified genes but may suggest more genes that may
serve the same purpose as well. Two examples of OP-
Clusters with completely opposite trends along the
tree types of tissues (BRCA1, BRCA2, Sporadic) are
presented in Figure 4. The expression levels of Spo-
radic tissues are always in the middle of the other two
types of tissues that may have completely different or-
ders themselves. This observation is consistent with
the pattern presented in [5]. Figure 5 presents two ex-
ample clusters with completely opposite trends. The
genes in Figure 5(A) have lower expression profiles in
BRCA1 tissues than BRCA2 tissues while the genes
in (B) supports the opposite trend. The discriminating
genes identified in [5] were retrieved and compared
with the genes in each OP-cluster. The comparison
shows that each OP-Cluster can identify part of these
identified genes. We do not expect OP-Cluster to dis-
cover most of them because the model of OP-Cluster
is stricter because it not only applies order constraints
among different types of tissues but requires a consis-
tent order among the tissues of the same type as well.

8

However, if we collect the genes in all clusters that
contain discriminating genes, we are able to recover
most of the 176 genes. For example, if we setnc =
7, nr = 20, andδ = 10, we are able to detect 88%
of 176 genes presented in [5]. There are 8 out of 20
genes in Figure 5 (A) and 7 out of 22 genes in Figure 5
(B), which are from the 176 genes. This means that
our algorithm is capable of detecting relevant genes
for discriminating different types of tissues.

Besides, OP-Clustering also reveals additional
genes that may be used for the same discriminating
purpose. Figure 6(A) presents a cluster with a consis-
tent trend in 3 BRCA2 tissues followed by 3 BRCA1
tissues. Figure 6(B) includes the same set of genes
in (A) side by side with the expression profiles along
all the tissues in BRCA2 and BRCA1. According to
(B), clear distinction between these two types of tis-
sues exists in the gene expression profiles including
those not identified previously. The OP-clusters do
not require all tissues of the same type, but rather rep-
resent consistent trends demonstrated by majority of
the tissues of different types.

Figure 4. Two examples of OP-Clusters with
opposite trends across three types of tis-
sues{BRCA1, Sporadic, BRCA2}. * marks
genes that are among the previously identified
51 genes

4.2 Gene Annotation and P-value

The hypergeometric distribution is used to model
the probability of observing at leastk ORFs from a
cluster of sizen by chance in a category containing
f ORFs from a total genome size ofg ORFs. The

Figure 5. Two examples of OP-Clusters with
opposite trends across two types of tis-
sues{BRCA1, BRCA2}, * marks genes that
are among the previously identified 176 genes

P-value is given byP = 1 −
∑k

i=0
(f

i)(
g−f
n−i)

(g
n)

. The

test measures whether a cluster is enriched with genes
from a particular category to a greater extent than that
would be expected by chance. For example, if the ma-
jority of genes in a cluster appear from one category,
then it is unlikely that this happens by chance and
the category’s P-value would be close to 0. Adopt-
ing the Bonferroni correction for multiple indepen-
dent hypotheses,0.01

Na is used as the defaut threshold
to measure the significance of the P-value in our ex-
periments. We expect a large fraction of the clusters
to conform to the known classification.

4.3 Yeast Cell Cycle Datasets

The OPC-Tree algorithm was also tested on the
yeast cell cycle data of Spellmanet al.(1998). The
study monitored the expression levels of 6,218 S.
cerevisiae putative gene transcripts (ORFs) measured
at 10-minute intervals over two cell cycles (160 min-
utes) with 18 time points. Spellmanet al. identi-
fied 799 genes that are cell cycle regulated. We used
the expression levels of the 799 genes across 18 time
points as the original input matrix. The OP-Cluster
procedure groups together genes on the basis of their
common expression tendency across a subset of time
points.

By takingnc = 7, nr = 20 and grouping thresh-
old δ = 10%, the OPC-Tree algorithm outputs 225
original clusters with average size 22.5. Since the

9

Figure 6. An example OP-Cluster and its cor-
responding full dimensional profiles along two
types of tissues{BRCA1, BRCA2}, * marked
genes are among previously identified 176
genes

total number of genes covered by all the clusters is
667, the average number of clusters a gene might ex-
ist is larger than22.5×225

667 = 7.5, which may indicate a
high degree of overlapping between clusters. To min-
imize the overlap, we use the hierarchical merging al-
gorithm described in Section 3. Givenθ = 0.1, we
obtain 12 merged clusters with an average size of 89.

To assess the classification capability of the clus-
ters, we use gene ontology information of each gene
to evaluate whether the cluster has significant enrich-
ment of one or more function groups. The ontology
of the 799 yeast genes is downloaded from gene on-
tology consortium [22] in July, 2003. We use104
different function categories below ontology level 2
and with a family size at least 8. The discovered OP-
Clusters in each level of the hierarchy are evaluated
for enrichment with any of those function categories.
Table 2 shows the details of several clusters with en-
riched function groups.

Cluster 1 in Table 2 contains 53 genes. In Clus-
ter 1, one of the function groups enriched is the pre-
replicative complex group. The algorithm discov-
ers 6 out of 8 genes in the pre-replicative complex
group which is presumably to help set up origins for
the next cell cycle. The six genes are{MCM2,
MCM3, MCM4,MCM5,MCM7, CDC6} plot-

Figure 7. Expression Levels of Cluster 1 in Ta-
ble 2 . (a) shows the expressions of all the genes in
pre-replicative complex function family. (b) shows
the genes in pre-replicative complex group in clus-
tered by Cluster 1

ted in Figure 7 (b) while all 8 genes in the same
function group are plotted in Figure 7 (a). A con-
sistent tendency along the time course shared by the
six genes can be observed. The remaining two genes
{MCM6, CDC45} in the pre-replicative complex
group do not induce the same tendency and hence are
excluded from the OP-Cluster. The remaining three
clusters in Table 2 are presented in Figure 8. Ac-
cording to the three expression graphs, we can ob-
serve significant similarity of the cell cycle among
genes within the same cluster and clear distinction of
cell cycle patterns between different clusters. For ex-
ample, cluster 2 peaks first at the 4th time point and
peaks again at the 10th time point. The first peak of
Cluster 3 occurs one time point later than Cluster 1
while Cluster 4 occurs even later in both two peaks.
Significant function groups closely related to the reg-
ulation of cell cycle [17] have also been discovered
in the three clusters(Table 2). Those function groups
include, but are not limited to, cell cycle, DNA repli-
cation, DNA repair, mitotic cell cycle, glycoprotein
biosynthesis and cykoskeleton.

10

Cluster Number of Enriched functional Clustered genes −log10

genes Category(total genes) within the category(k) (P-value)
1. 53 pre-replicative complex(8) 6 5

ATP dependent DNA helicase activity(10)4 3
2. 109 cell proliferation(77) 33 13

Cell cycle(66) 28 11
DNA replication and chromosome cycle
(38)

17 6

Mitotic cell cycle(41) 17 6
3. 66 Nuclear chromatin(9) 7 5

Cytoskeleton(27) 11 6
4. 70 Cytoplasm(97) 27 11

DNA binding(27) 11 6
glycoprotein biosynthesis(6) 5 5

Table 2. Enrichment of OP-Clusters by at least one function category

It is also observed in several studies that co-
expressed genes tend to share common regulatory el-
ements in their promoter regions [19]. We use Gene-
Spring software to find common motif appearing in
the promoter regions(500 bases upstream of the trans-
lation start sites) of the genes in Cluster 2, 3 and 4.
Significant motifs have been discovered. For exam-
ple, the motif ACGCGT which was shown to be a
perfect MCB element in [17] is located in 74 genes
in Cluster 2.

5 Conclusions and Future Work

To discover clusters representing consistent ten-
dencies exhibited by a subset of conditions in gene
expression data, we introduce a new model named
OP-Cluster and devise a depth-first algorithm that can
efficiently and effectively discover all OP-Clusters
satisfying some user-specified threshold. Our OP-
Cluster model extends the original OPSM by relax-
ing strict orders among conditions to allow equivalent
groups defined on similar expression levels.

Meanwhile, we also investigate the overlap among
OP-clusters. Overlap is usually unavoidable due to
the fact that genes belonging to different function cat-
egories may appear in more than one clusters. One
approach to minimize the number of clusters is to
merge clusters guided by the principle of maximizing
the similarity between them but minimizing the simi-
larity with respect to the rest. We build a hierarchy of
clusters. This may serve as one step toward the goal
of building a computational framework to systemati-
cally analyze and predict genes’ function categories.

Still, there are several extensions we can make
based on our model. Although we’ve relaxed the
strict order requirement among the conditions by in-

troducing order equivalent groups, it is still too op-
timistic to expect the order among groups are always
meaningful, in the presence of normal biological vari-
ations and noises in microarray data. Therefore, one
extension of the current model is to explore similar
but not exact orders among a subset of conditions.
The similarity measure of two sequences can base on
the number of reverse pairs. For example, two se-
quencesabcd anddcba have six reverse pairs,{{a, b},
{a, c}, {a, d}, {b, c}, {b, d}, {c, d}} while abcd and
acbd only have one reverse pairs,{b, c}. If the simi-
larity threshold is 3, we can takeabcd andacbd as two
similarly ordered sequences. Our algorithm can also
be adapted to accommodate this by implementing a
similarity check at each branch during the depth-first
development.

Besides the above extensions and improvements,
we will continue to investigate the functional, clinical
or biochemical interpretations of OP-Clusters.

References

[1] A. Ben-Dor, R.Shamir, and Z.Yakhini. Clustering gene
expression patterns. inJ Comput Biol6(3-4):281-97.

[2] A. Ben-Dor, N. Friedman and Z. Yakhini. Class dis-
covery in gene expression data. InRECOMB2001.

[3] A. Ben-Dor, B. Chor, R.Karp, and Z.Yakhini. Discov-
ering Local Structure in Gene Expression Data: The
Order-Preserving Submatrix Problem. InRECOMB
2002.

[4] M.P.S. Brown, W.N. Grundy, N. Cristianini, C.W. Sug-
net, T.S. Furey, M. Ares, and D. Haussler. Knowledge-
basedanalysis of microarray gene expression data by
using support vector machine.proc. Natl Acad. Sci.
USA, 97, 262-267.

11

Figure 8. Expression Levels of Enriched Clus-
ters of Table 2. Figure A, B and C represent Clus-
ter 2, 3, and 4 in Table 2 respectively. Gene expres-
sion levels during the yeast cell cycle of the three
Clusters 2,3 and 4. The columns in each graph cor-
respond to 18 time points while the rows correspond
to the genes in the cluster.

[5] Y. Chen, M. Radmacher, M. Bittner, R. Simon, P.
Meltzer, B. Custerson, M. Esteller, M. Raffeld, Z.
Yakhini, A. Ben-Dor, E. Dougherty, J. Kononen, L.
Bubendorf, W. Fehrle, S. Pittaluga, S. Gruvberger, N.
Loman, O. Johannsson, H. Olsson, B. Wilfond, G.
Sauter, O.-P. Kallioniemi, A. Borg, J. Trent, I. Heden-
falk , and D. Duggan. Gene-expression profiles in
hereditary breast cancer.NEJM, 344:539-548, 2001.

[6] Y. Cheng and G. Church. Biclustering of expression
data. InISMB, 2000.

[7] M.B. Eisen, P.T. Spellman, P.O. Brown, and D. Bot-
stein. Cluster analysis and display of genome-wide
expression patterns. InProc Natl Acad Sci U S A,
95(25):14863-8, 1998.

[8] A. V. Heydebreck, W. Huber, A. Poustka, and M. Vin-
gron. Identifying splits with clear separation: a new

class discovery method for gene expression data.Bioin-
formatics, Vol.17 Suppl.1, 2001.

[9] J. Hartigan.Clustering Algorithms. Wiley.

[10] G. Getz, E. Levine, and E. Domany. Coupled two-
way clustering analysis of gene microarray data.Proc.
Natl Acad. Sci.USA, 97, 12079-12084, 2000.

[11] S. Kaski, J. Nikkil, and G. Wong. Analysis And
Visualization Of Gene Expression Data Using Self-
Organizing Maps,Proceedings of NSIP-01, IEEE-
EURASIP Workshop on Nonlinear Signal and Image
Processing, 2001.

[12] M. Kendall and J. D. Gibbons.Rank Correlation
methods. 1990.

[13] L. Lazzeroni and A. Owen. Plaid mod-
els for gene expression data. http://www-
stat.stanford.edu/ owen/plaid/,2000

[14] J. Liu and W. Wang. Subspace clustering by tendency
in high dimensional space. InICDM 2003.

[15] E. Segal, B. Taskar, A. Gasch, N. Friedman, and D.
Koller. Rich probabilistic models for gene expression.
Bioinformatics, 17, S243-S252, 2001.

[16] R. Sharan and R. Shamir. Click: A clustering algo-
rithm with applications to gene expression analysis. In
ISMB, pages 307-216, 2000.

[17] P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Lyer,
K. Anders, M.B. Eisen, P.O. Brown, D. Botstein, and
Futcher. Comprehensive identification of cell cycle-
regulated genes of the yeast sacccharomyces cerevisiae
by microaray hybidization.Molecular Biology of the
Cell, 9:3273-2297, 1998.

[18] A. Tanay, R. Sharan, and R. Shamir. Discovering sta-
tistically significant biclusters in gene expression data.
Bioinformatics, Vol.18, pages S136-S144, 2002.

[19] S. Tavazoie, J. D. Hughes, M.J. Campbell, R.J. Cho,
and G.M. Church. Systematic determination of genetic
network architecture,Nature Genetics, 22: 281-285,
1999.

[20] S. Tavazoie, J. Hughes, M.Campbell, R.
Cho, and G. Church. Yeast micro data set. In
http://arep.med.harvard.edu/biclustering/yeast.matrix,
2000.

[21] L.F. Wu, T.R. Hughes, A.P. Davierwala, M.D. Robin-
son, R. Stoughton, and S.J. Altschuler. Large-scale pre-
diction of Saccharomyces cerevisiae gene function us-
ing overlapping transcriptional clusters.Nature Genet-
ics2002, 31:255-265.

[22] Gene Ontology Consortium,
www.geneontology.org.

12

