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Abstract

In this paper, we focus on mining surprising periodic patterns in a sequence of events. In many applications, e.g.,
computational biology, an infrequent pattern is still considered very significant if its actual occurrence frequency exceeds
the prior expectation by a large margin. The traditional metric, such as support, is not necessarily the ideal model to
measure this kind of surprising patterns because it treats all patterns equally in the sense that every occurrence carries the
same weight towards the assessment of the significance of a pattern regardless of the probability of occurrence. A more
suitable measurement, information, is introduced to naturally value the degree of surprise of each occurrence of a pattern
as a continuous and monotonically decreasing function of its probability of occurrence. This would allow patterns with
vastly different occurrence probabilities to be handled seamlessly. As the accumulated degree of surprise of all repetitions
of a pattern, the concept of information gain is proposed to measure the overall degree of surprise of the pattern within a
data sequence. The bounded information gain property is identified to tackle the predicament caused by the violation of
the downward closure property by the information gain measure and in turn provides an efficient solution to this problem.
Furthermore, the user has a choice between specifying a minimum information gain threshold and choosing the number of
surprising patterns wanted. Empirical tests demonstrate the efficiency and the usefulness of the proposed model.

Jiong Yang isthe contact author. His addressis 1304 W. Springfield Ave, Urbana, IL 61801. His phone number
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1 Introduction

Periodic pattern discovery is an important problem in mining time series data and has wide application. A periodic pattern
isan ordered list of events which repeatsitself in the event sequence. It is useful in characterizing the cyclic behavior. Asa
newly developed research area, most previous work on mining sequential data addresses the issue by utilizing the support
(number of occurrences) as the metric to identify important patterns from the rest [22, 23, 37, 56]. A qudified patternin the
support model must occur sufficient number of times. In some applications, e.g., market basket, such a model has proved
to be meaningful and important. However, in other applications, the number of occurrences may not always represent the
significance of a pattern. Consider the following examples.

e Computational Biology. A genome consists of along sequence of nucleotides. Researchers are interested in motifs
(i.e., (short) subsequences of nucleotides) which are statistically significant rather than those occurring frequently.
The statistical significance of a motif is defined as how likely such a nucleotide permutation would occur in an
equivalent random data sequence [10]. In other words, we want to find the motifs that occur at a frequency higher
than their expected frequencies. It is obviousthat a statistically significant motif may not necessarily occur frequently,
thus, the support metric is not an appropriate measurement of the significance of a motif.

e \WEb server load. Consider a web server cluster consisting of 5 servers. The workload on each server is measured
by 4 ranks: low, relatively low, relatively high, and high. Then there are 45 = 1024 different events, one for each
possible combination of server states. Some preliminary examination of the cluster states over time might show that
the state fluctuation complies with some periodic behavior. Obtaining such knowledge would be very beneficial for
understanding the cluster’s behavior and improving its performance. Although having high workload on all servers
may occur at amuch lower frequency than other states, patternsinvolving it may be of moreinterest to administrators
if the occurrence of such patterns contradicts the prior expectation.

e Earthquake. Earthquakes occur very often in California. It can be classified by its magnitude and type. Scientists
may be interested in knowing whether there exists any inherent seismic period so that prediction can be made. Note
that any unidentified seismic periodicity involving major earthquake is much more valuable even though it occurs at
amuch lower frequency than minor ones.

In above examples, we can see that users may be interested in not only the frequently occurred patterns, but also the
surprising patterns (i.e., beyond prior expectation) aswell. A large number of occurrences of an “expected” frequent pattern
sometimes may not be as interesting as a few occurrences of an “expected” rare pattern. The support model is not ideal
for these applications because, in the support model, the occurrence of a pattern carries the same weight (i.e., 1) towards
its significance, regardless of its likelihood of occurrence. Intuitively, the assessment of significance of a pattern in a
sequence should take into account the expectation of pattern occurrence (according to some prior knowledge). Recently,
many research has been proposed [4, 9, 11, 12, 26, 28, 29, 33, 36, 39, 40, 50, 55, 59] towards this objective. We will furnish
an overview in the next section. In this paper, a new model is proposed to characterize the class of so-called surprising
patterns (instead of frequent patterns). We will show that our model not only has solid theoretical foundation but also allows
an efficient mining a gorithm.

Themeasure of surprise should havethe following properties. (1) The surprise of apattern occurrenceis anti-monotonic
with respect to the likelihood that the pattern may occur by chance (or by prior knowledge). (2) The metric should have
some physical meaning, i.e., hot arbitrary created. It is fortunate that the information metric [7] which is widely studied
and used in the communication field can fulfill both requirements. Intuitively, information is a measurement of how likely
a pattern will occur or the amount of “surprise” when a pattern actually occurs. If a pattern is expected to occur frequently
based on some prior knowledge or by chance, then an occurrence of that pattern carries less information. Thus, we use



information to measure the surprise of an occurrence of a pattern. The information gain metric is introduced to represent
the accumulated information of a pattern in an event sequence and is used to assess the degree of surprise of the pattern. In
the remainder of this paper, we refer to this model as the information model.

The information model is different from the support model. For a given minimum information gain threshold, let ¥
be the set of patterns that have information gain higher than this threshold. Under the support model, in order to find all
patternsin ¥ when event occurrence frequencies are vastly different, the minimum support threshold hasto be set very low.
A major problem could rise from this: too many patterns. Table 1 shows a comparison between the support model and the
information model. The test sequences are constructed from real traces. (The construction of the sequence is described in
the experimental section.) In order to find the pattern with the highest information gain, the support threshold has to be set
at 0.000234 and there are over 16,000 satisfied patterns in one sequence. It is obvious that the support threshold has to be
set very low to discover a small number of patterns with high information gain. This means that patterns with very high
information gain are buried in a sea of patterns with relatively low information gain. This could be a large burden for the
end user to distinguish the surprising patterns (i.e., patterns with high information gain) from the rest. In addition, since a
large number of patterns have to be generated, the support model may yield an inefficient algorithm.

Table 1: Support threshold vs. information gain threshold

Number of Patterns Scour Trace IBM Trace

Satisfied Info. Thresh. | Support Thresh. | Num. of satisfied patterns | Support Thresh. | Num. of satisfied patterns
1 0.000234 16,123 0.0035 637

10 0.000212 16,953 0.0031 711

100 0.000198 17,876 0.0024 987

Although the information gain is a more meaningful metric for the problems addressed previously, it does not preserve
the downward closure property (as the support does). For example, the pattern (a1, a2) may have enough information
gain while neither (a1, *) nor (x, as) does'. The x symbol represents the “don’t care” position, which is proposed in [22].
We cannot take advantage of the standard pruning technique (e.g., Apriori algorithm) developed for mining association
rules [2] and temporal patterns [3, 23]. Fortunately, we are able to identify the bounded information gain property where
patternswith inextensible prefixes could not be surprising (given someinformation gain threshold) and can be excluded from
consideration at a very early stage. This motivates us to devise a recursive algorithm as the core of our pattern discovery
tool, InfoMiner. In summary, this paper has the following contributions.

e We propose a new mining problem that is to find surprising periodic patternsin a sequence of data.

e The concepts of information and information gain are proposed to measure the degree of surprise of the pattern
exhibited in a sequence of data.

e Since the downward closure does not hold with information gain, we devise an efficient algorithm to mine the sur-
prising patterns and associated subsequences based on the bounded information gain property that is preserved by the
information gain metric.

e The proposed agorithm is capable of finding not only the surprising patterns for a given information gain threshold,
but also the K most surprising patterns.

The remainder of this paper is organized as follows. Some related work is discussed in Section 2. We present the
information model in Section 3. Section 4 discusses the detailed algorithm of finding patterns whose information gain is

Twewill explain it in more detail later in this paper.



above a certain threshold while Section 5 presents a simple modification to solve an aternative problem where the K’ most
surprising patterns are wanted. Section 6 discusses some optimization technique. Experimental results are shown in Section
7. Finally, we draw the conclusion in Section 8.

2 Related Work

In this section, we provide a brief overview of recent advancesthat is closely related to our work presented in this paper.

2.1 Mining Sequence Data

Most previous work on mining sequence data fell into two categories: discovering sequential patterns[3, 5, 6, 14, 17, 20,
25, 32, 39, 52, 58] and mining periodic patterng[22, 23, 37, 56]. The primary difference between them is that the models
of sequentia pattern purely take into account the number of occurrences of the pattern while the frameworks for periodic
patterns focus on characterizing cyclic behaviors. Our work belongsto the latter category.

2.1.1 Sequential Patterns

Discovering frequent sequential patterns was first introduced in [3]. The input data is a set of sequences, called data-
sequences. Each data-sequenceis alist of transactions and each transaction consists of a set of items. A sequential pattern
also consists of a (fully ordered) list of transactions. The problem is to find all frequent sequential patterns with a user-
specified minimum support, where the support of a sequential pattern is the percentage of data-sequences that contain the
pattern. Apriori-based algorithms, such as AprioriALL [3] and GSP [52], were proposed to mine patterns with some mini-
mum supportsin a level-wise manner. To further improve the performance, projection-based a gorithms such as FreeSpan
[25] and PrefixSpan [43] were introduced to reduce the candidate patterns generated and hence reduce the number of scans
throughthe data. Additional useful constraints (such astime constraint and regular expression constraint) and/or taxonomies
were also studied extensively in[17, 52, 58] to enable more powerful models of sequentia patterns.

As amore generative model, the problem of discovering frequent episodes from a sequence of events was presented in
[32]. An episodeis defined to be a collection of events that occur relatively close to each other in a given partial order. A
time window is moved across the input sequence and all episodes that occur in some user-specified percentage of windows
are reported. The model was further generalized by Padmanabhan et al. [38] to suit temporal logic patterns.

2.1.2 Periodic Patterns

Full cyclic pattern was first studied in [37]. The input data to [37] is a set of transactions, each of which consists a set
of items. In addition, each transaction is tagged with an execution time. The goal is to find association rules that repeat
themselves throughout the input data. 1n [22, 23], Han et. a. presented algorithms for efficiently mining partial periodic
patterns. In practice, not every portion in the time series may contribute to the periodicity. For example, a company’s stock
may often gain a couple of points at the beginning of each trading session but it may not have much regularity at later time.
Thistype of looser periodicity is often referred to as partial periodicity. We will see later that our model also allows partia
periodicity. The difference between our model and [22, 23] is that we aim at mining surprising periodic patterns while Han
et a. focused on frequent periodic patterns.



2.2 Modésof Interestingness

Despite the difference in problem formulation, most work surveyed in the previous subsection adopted the support as the
measure of interestingness/significance and aimed at discovering frequent patterns. Recently, many efforts have been carried
out to address the potential disadvantages associated with the support model and to propose alternative solutions.

221 Refining Mined Results

As a well-known fact, the number of patterns/rules discovered under the support model can be very large. Many post-
processing techniques have been developed to reduce the number of discovered patterns into a manageable size while
preserving the discovered knowledge as much as possible. Human interaction is involved in [28, 48, 51] to specify the
interestingness or beliefsto guide the process while others[8, 29, 31] focused on reducing redundant i nformation possessed
by the discovered rules. It isclear that these post-processing techniques are typically used as an additional pruning step after
the normal mining procedure (which produces a large rule set). In contrast, our proposed scheme successfully avoids the
generation of a large number of insignificant/uninteresting patterns from the beginning and enables a much more efficient
solution.

Another approach to reduce redundancy is to return only closed frequent itemset [41, 42, 59]. Intuitively, an itemsetisa
closed itemset if all of its supersets have smaller support. While the set of frequent closed itemsetsistypically much smaller,
it has been proved that all frequent itemsets can be uniquely derived from the set of frequent closed itemsets. Again, this
approach still focuses on mining frequent itemsets and fails to address the problem we mentioned in the previous section.

2.2.2 Multiple Supports Scheme

Multiple supports scheme was introduced by Liu et. a. [29] and later extended by Wang et al. [55] to find itemsets which
do not occur frequently overall, but have high correlation to occur with some other items. The support threshold to qualify
a frequent itemset can be specified as a fraction of the minimum support of al items [29] or subsets of items [55] in the
itemset. This variable support has similar effect as the information gain introduced in this paper. However, there exists
some fundamental difference between these two concepts. For example, if the support of item A, B, and Cis0.01, 0.02, 0.8,
respectively, then the support threshold to qualify itemset AB and AC is the same. Nevertheless, the itemset AC is expected
to occur more frequently than AB because the support of C is much larger than that of B. This aspect was not fully taken
into account by the multiple support model 2. In contrast, the information gain metric proposed in this paper would capture
the difference of occurrences between B and C.

2.2.3 Statistically Significant Patterns

Mining patternsthat are statistically significant (rather than frequent) becomesa popular topic. Brin et a. [9] first introduced
the concept of correlation and it was shown that in many applications the correlation measurement can reveal some very
important patterns. The Chi-squared test was used to test the correlation among items. Instead of explicitly enumerating all
correlated itemsets, the border comprising the set of minimal correlated itemsets? isidentified, and no further distinction is
made on the degree of correlation of itemsets above the border (i.e., supersets of some itemset on the border). This model
sometimes becomes sub-optimal. As shown in Figure 1, itemsets A and B are highly correlated but C' is independent of
them®. In addition, {4, B, C, D} isaso highly correlated. We can view that the degree of correlation of {4, B, C'} is not

2Theoretically, the model in [55] is capable of addressing this problem by explicitly enumerating all itemsets, which is unfortunately impractical in
general.

3A minimal correlated itemset is a correlated itemset whose subsets are all independent.

4Prob(AB) x Prob(C) = 3 x 2 = Prob(ABC).



as strong as that of {A, B} and {A, B, C, D}. This observation can also be confirmed by the Chi-squared test®. In many
applications, users are only interested in the itemsets such as { A, B} and { A, B, C, D}, but not { A, B, C'}. However, [9]
cannot distinguish between { A, B, C'} and {A, B, C, D} once { A, B} isidentified as a correlated itemset. Furthermore, if a
user isinterested in finding k& itemsets with the highest correlation, then all itemsets in the latti ce have to be examined before
k highest ones can be determined. Another potential drawback of this model is the expensive computation required by this
model. The running time of all patterns with i-correlated itemsis O(n x |CAN D| x min{n,2%}) wheren and |C AN D]
are the number of transactions and the number of candidates at the ith level, respectively. To overcome these drawbacks,
Oates et al. [35, 36] proposed models for statistical dependencies using G statistic and devised randomized a gorithms to
produce approximate results. In contrast, our model not only can successfully identify { A, B} and { A, B, C, D} without
including {4, B, C'} but also leads to a much more efficient deterministic algorithm.

Transaction 1D Items
1 ABCD
ABFG

CEGF

ABCD

CEGH

2
3
4
5
6

CEFH

Figure 1. An example of transaction set

More recently, Cohen et a. [12] and Fujiwara et al. [16] address the problem of identifying pairs of attributes with
high confidence or similarity (in terms of probabilistic correlations in the database) in the absence of support requirement.
Hashing based a gorithms [12] are proposed to tackle the problem, which consist of three general phases. computing hash
signature, generating candidates, and pruning candidates. To avoid both false negatives and false positives that may be
yielded with the hashing based scheme, a family of so called dynamic miss counting algorithms are proposed in [16].
Instead of counting the number of hits (as most other algorithm does), the number of transactions where the given pair of
attributes disagree is counted and this counter is deleted as soon as the number of misses exceeds the maximum number of
allowed misses for that pair. This strategy is proved to be able to reduce the memory size significantly.

Another important advance is accomplished in mining so-called unexpected patterns. Berger et al. [4] proposed a
probabilistic measure of interestingness based on unexpectedness in the context of temporal logic, whereby a pattern is
deemed interesting if the ratio of the actual number of occurrences of the pattern exceeds the expected one by some user
defined threshold. Solving the problemin its general frameisin nature NP-hard and hence some heuristics are proposed to
produce an approximate answer. Our model presented in this paper can in fact achieve a similar objective but enables an
efficient solution without sacrificing the accuracy. Padmanabhan et a. [39, 40, 50] define the unexpectedness of association
rules relative to a system of prior beliefs. Specifically, the belief is of theform X — Y and aruleis said to be unexpected
if it contradictsthe belief. The set of beliefs (given by the user) are used to conduct the mining process efficiently so that an
exhaustive search is avoided. The primary advantage of this model is that it can customize the mining process for the users
who have fairly good prior knowledge and specific interests, and is particularly useful in refinements of user’s beliefs.

A formal study of surprising patternsis furnishedin [11], focusing on the analysis of variation of inter-item correlations
aong time. The surprise is defined in terms of the coding length in a carefully chosen encoding scheme and has solid
theoretic foundation, but requires much more expensive computation comparing to other models.

51n general, the chi-squared test requires a large sample. For the demonstration purpose only, we assume that the chi-squared test is valid in this
example.



2.3 Projection-based Approaches

Some research [1, 24, 25, 60] has been carried out on mining frequent patterns in a depth-first projection-based fashion
as opposite to the traditional breadth-first level-wise traversal. As patterns are usually organized via atree [1, 24, 25] (or
lattice in [60]) structure, along with the discovery of frequent patterns when traversal through the structure, data projection
onto each newly identified frequent pattern is aso taken to facilitate the subsequent examination of its super-patterns. The
Apriori property is (sometimes implicitly) used to efficiently prune the tree. In particular, Han et al. [24] propose a so-
called frequent pattern tree (FP-tree) to organize the produced data projection in a concise and ingenious manner so that the
generation of a huge number of candidate patterns can be avoided completely. While the FP-growth [24] is designed for
mining frequent itemsetsin general, the FreeSpan [25], PrefixSpan [43], and SPADE [60] are specifically tailored for mining
sequential patterns. It isinteresting to notice that, the depth-first approaches generally perform better than breadth-first ones,
and the advantage becomes more substantial when the pattern islong.

However, the Apriori property does not hold on the information gain metric proposed in this paper and hence can not be
employed to mine patterns satisfying a user specified information gain threshold. Looking ahead, we will introduce a so-
called bounded information gain property and employ a depth-first, projection-based approach that starts from the patterns
with only one filled position and then proceeds to more complex patterns gradually, and in the mean time utilizes the
bounded information gain property to continuously refine the candidate event list associated with each unspecified position
in the pattern.

3 Mode of Surprising Patterns

In this paper, we adopt the general model for periodic patterns proposed in [23] with one exception: Instead of finding
frequent patterns®, our goal is to discover surprising patterns in an event sequence. Let E = {a1,as, ...} be aset of
distinct events. The event sequence is a sequence of eventsin E. A periodic pattern is a list of / events that may occur
recurrently in the sequence with period length . The information carried by an event a; (a; € FE) is defined to be
I(a;) = —log g Prob(a;) where | E | and Prob(a;) are the number of eventsin £ and the probability that a; occurs,
respectively. The probability Prob(a;) can be assessed in many ways which include but are not limited to:

e Uniformdistribution: Prob(a;) = Prob(az) = ... = Prob(a;) =...= 1B

e Experimental evidence: Prob(a;) = %D(‘” for al a; € F where Nump(a;) and N are the number of occur-
rences of the event «; in an event sequence D and the length of D, respectively;

e Prior belief: Prob(a;) isdetermined by some domain expert.

Without loss of generality, we adopt the second option to assess the information carried by an event, i.e. an occurrence of
a frequent event carries less information/surprise than that of a rare event. Note that this also coincides with the original
intention of information in the data communication community. We shall show later that this gives us the opportunity
to handle patterns with divergent probabilities ssamlessly. Theoretically speaking, the base of the logarithm function can
be any real number that is greater than 1. Typically, | E | is chosen to be the base to play a normalization role in the
computation (i.e., I(a;) = 1 if Prob(a;) = ﬁ). For example, the sequence in Figure 2 contains 6 different events a 1, ao,
as, a4, as, and ag. Their probabilities of occurrence and information are shown in Table 2.

A pattern of length [ isatuple of [ events, each of which is either an eventin E, or the eternal event (represented by
symbol ). An eternal eventisavirtua event that matches any event in £ and is used to represent the “don’t care” position

6For apattern s in asequenceds , dz, . . . , dy, the frequency count isdefined as| {i | 0 < i < ‘_—]:",andthestringsistrueindﬂs‘ﬂ,...,di‘sms‘} B
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projected subsequenceof ( @ 8 * *) A 3 ag azi 8 8 85 82 8 85 B &

Figure 2: Event sequence and projected subsequence

Table 2: Probability of Occurrence and Information

Event | Probability Information
ax 5 =0.15 | —logs(0.15) = 1.06
as £ =020 | —logg(0.20) =0.90

as 2 =030 | —logg(0.30) = 0.67
as | & =0.125 | —logg(0.125) = 1.16
as 5 =015 | —logg(0.15) = 1.06

2 =0.075 | —logg(0.075) =1.45

ae

in a pattern. By definition, the information of the eternal event * is I(x) = —log g Prob(x) = 0 since Prob(x) = 1.
An intuitive interpretation is that the occurrence of an event that is known to be always true does not provide any “new
information” or “surprise”. A pattern P with length [ isin theform of (p1,po,...,p;) Wherep, € EU {x} (1 < i <)
and at least one position has to befilled by an eventin E7. P iscalled asingular pattern if only one positionin P isfilled
by an event in E and the rest positions are filled by *. Otherwise, P is referred to as a complex pattern. For example,
(%, a3, x) isasingular pattern of length 3 and (a2, as, *, a2) is acomplex pattern of length 4. Note that an event may have
multiple occurrences in a pattern. As a permutation of a list of events, a pattern P = (p1,po, ..., p) will occur with a
probability Prob(P) = Prob(p1) x Prob(ps) x ... x Prob(p;) in arandom event sequence if no advanced knowledge
on correlation among these eventsis assumed. Then the information carried by P is I(P) = —log g Prob(P) = I(p1) +
I(p2) + ...+ I(p;). It follows directly that the information of a singular pattern always equals to the information of
the event specified in the pattern. This property provides a natural bridge between events and patterns. For example,
I((%,a6,%,%)) = I(ag) = 1.45 and I((az2, as, *, %)) = I(a2) + I(ag) = 0.90 + 1.45 = 2.35 according to Table 2.

Given apattern P = (p1,p2,...,p) ad asegment S of [ events sy, so, . . ., s;, we say that S supports P if, for each
event p; (1 < i < [) specified in P, either p, = * or p; = s; istrue. The segment as, ag, as, az supports the pattern
(ag, as, *, *) while the segment a1, ag, a4, a5 does not. To assess whether a pattern of length [ is surprising in an event
sequence D, D is viewed as alist of digoint contiguous segments, each of which consists of [ events. The number of
segments that support P is also called the support of P (denoted by Support(P)). The event subsequence® consisting
of the list of segments that support P is called the projected subsequence of D on P. In Figure 2, the event sequence
consists of 40 events. When mining periodic patterns with [ = 4, it can be viewed as alist of 10 segments, each of which
contains 4 events. The support of (as, ag, *, *) IS 3 in the sequence and the projected subsequence on (a9, ag, *, ) iS
as, ag, as, Az 4z, ag, as, a2, A2, g, A2, az. ASameasurement of the degree of surprise of a pattern P in an event sequence
D, the information gain of P in D is defined as G(P) = I(P) x (Support(P) — 1). Since our objective is to mine
surprising periodic patterns, an event combination appearing in the event sequence which never recurs is of little value in
this problem domain. Therefore, in the proposed model, only recurrences of a pattern will have positive contribution to
the information gain. Support(P) — 1 is indeed the number of recurrences of P. In the rest of the paper, we will use
Repetition(P) to denoteit. For example, Repetition((as, ag, *,*)) =3 —1 = 2 and G((az, as, *, *)) = 2.35 x 2 = 4.70

"This requirement is employed to exclude the trivial pattern (x, *, . . ., *) from being considered.
8 Given two sequences D and I, D isasubsequence of D’ if D can be obtained by removing some eventsin I



in Figure 2.

Similar to the support model, an information gain threshold, min gain, is specified by the user to define the minimum
information gain to qualify a surprising pattern. Given an event sequence and an information gain threshold, the goal isto
discover al patterns whose information gains in the event sequence exceed the threshold. Obviously, the proper vaue of
this threshold is application dependent and may be specified by a domain expert. A user may use the following heuristic to
choose the value of min _gain. If apattern with probability p is regarded as a surprising pattern when it repeatsitself by at
least n times in the sequence. Then the min_gain can be set to (— log \E| p) x n where — log| g p istheinformation of the
pattern. Alternatively, the user aso has the opportunity to specify the number of (most) surprising patterns needed. We will
show later that our proposed a gorithm can efficiently produce desired results under both specifications.

It is conceivable that the information model can aso be applied to define both surprising itemsets from transaction
database and surprising sequential patterns from sequence database. Without loss of generality, we focus our discussion to
the domain of mining periodic patternsin a sequencein this paper. To facilitate the explanation in the rest of the paper, we
refer to a pattern, say P, as a subpattern of ancther pattern, say P’, if P can be generated by replacing some event(s) in
P’ by the eternal event *. P’ iscalled asuperpattern of P. For example, (a2, ag, *, *) and (x, ag, *, *) are subpatterns of
(a2, ag, *, az). The pattern-subpattern relationship essentially defines a partial order among patterns of the same length.

4 Projection-based Algorithm

Previous work on pattern discovery usualy utilizes the Apriori property that can be stated as “if a pattern P is significant,
then any subpattern of P is also significant”. This property holds for the support model but is not true in the information
model. For example, in Figure 2, theinformationgain G((a 2, *, *, *)) = 0.90 x 3 = 2.70 which isless than theinformation
gain of pattern (az, as, *, *) (i.e., 4.70). If the threshold is set to be 4.5, then (a2, ag, *, *) quaifies while (az, *, *, )
does not. (Note that ag is an infrequent event which occurs only three times in the event sequence.) Thisimplies that the
algorithms developed for the support model are not applicable. The pruning power of the support model essentially comes
from the fact that if we know a pattern is not valid, we do not need to examine its superpatterns. Can we achieve asimilar
pruning power under the information model? To answer this question, we first introduce a concept called extensible prefix.

Definition 4.1 For apattern P = (p1,pe, ..., p1), thetuple (p1, p2, ..., p;) iscalled a prefix of P where1 < <.

A prefix is part of apattern. A pattern can be generated by appending more eventsto the prefix. For instance, (a 1, *, a4) is
aprefix of patterns (a1, *, a4, as) (a1, *, as, az), (a1, *, as,as), ad (a1, *, a4, *), etc.

Definition 4.2 Given an information gain threshold min gain, a prefix is extensibleif at least one pattern with this prefix
issurprising (i.e., whose information gain meets min _gain), and is inextensible otherwise.

It follows from the definition that, al prefixes of a surprising pattern are extensible, and any pattern with an inextensible
prefix cannot be a surprising pattern. In order to find all surprising patterns, we only need to examine extensible prefixes.
The challenge lies on how to recognize inextensible prefixes as early as possible so that they can be excluded from fur-
ther investigation. However, if al patterns with a certain prefix have to be examined exhaustively before we are able to
determine whether the prefix is inextensible, then we will not be able to save any computation. Fortunately, the assessment
of extensibility can be done efficiently due to a so-called bounded information gain property discussed in the following
context.

Lemma4.l Let P = (p1,p2,...,p) beapatternand P; = (p1,p2,--.,p;) be a prefix of P. Given an event sequence,
G(P) < I(P) x Repetition(FP;), where I(P) = 22:1 I(py) istheinformation of the pattern P.



Proof. Since P; isaprefix of P, Repetition(P) < Repetition(P;) dueto the Apriori property. Thus G(P) = I(P) x
Repetition(P) < I(P) x Repetition(F;). O

Consider the pattern P = (a1, as, a4, as5) and its prefix P = (a1, as3) in the sequence in Figure 2. Clearly, we have
G(P) = I(P) x Repetition(P) = 4.34 x 2 = 8.68 which isless than thevalue of I(P) x Repetition(P;) = 4.34 x 3 =
13.02. This suggests that we may take advantage of this “bounding” effect when we assess the extensibility of a prefix. For
agiven prefix P;, consider the set (denoted by A(P;)) of patterns of period length I with the same prefix P; and let P,,,,.. be
the pattern with the highest information in A(P;). Then, for any pattern P with prefix P; (i.e., P € A(F;)), theinequality
G(P) < I(Pyaz) X Repetition(P;) holds by Lemma 4.1. Therefore, we can determine whether P; is extensible by
estimating the maximum information I ( P,,,..) that may be carried by any pattern with prefix P,. Thevalue of I(Py,..) can
be computed by, first, for each unspecified position (following the prefix P;), identifying the highest information possessed
by any potential event for that position; and then aggregating them together with the information possessed by P;. Itis
conceivable that the prefix P; can not be extensible if I(Pp,q.) X Repetition(F;) is below the information gain threshold
min_gain. Thisleadsto the following theorem.

Theorem 4.2 (Bounded information gain) Given an information gain threshold min gain and a period length [, a prefix
P = (p1,p2, .. .,pi), isnot extensible iff Repetition(P;) < Z1=99 \wheye max_info = I(P;) + Zﬁc:iﬂ fr isthe

maz_info

maximum information that can be carried by any pattern with prefix P; and fy is the highest information that can be
carried by any potential event at the (unspecified) position k.

Once a prefix is deemed to be inextensible, we will immediately eliminate it from any further examination. Only
extensible prefixes will be used to extend to longer (extensible) prefixes and to construct candidate patterns. Furthermore,
given aperiod length [, for any prefix P; = (p1,p2, . .., pi), consider an unspecified position k£ wherei < k < [. Not every
event can potentially be at position k in a surprising pattern with prefix P;. An event e € E can possibly be a candidate for
position & only if e recurs on position & for a sufficient number of times. In particular, the minimum required number of
repetitionsis min_rep = % Thisindicates that only a (small) subset of events may serve as the candidates
for each unspecified position and we can limit our search to these candidate events, and a so leads to the following remark.
Remark 4.3 (Candidate refinement) For any two prefixes P;; = (p1,p2,...,pi) and Pis = (p1,pe, ..., pi2) Where
i1 < 42, any candidate event e on position k (i2 < k < [) for prefix P;, must also be a candidate on position & for prefix
P;1, where isthe period length.

Proof. With prefix P;», an event has to recur at least min_rep, = I(PT)TZ% times on position & to qualify
i2 j=i2+41 77

as a candidate while the minimum required number of repetition with prefix Py is min_rep; = —— =g — T ;’f“i‘é“i" ;=
. - _ _ _ . i1 j=i1l41 I
min_gain min_gain man_garn = min_reps. Therefore, any can-

7 < 7 =
I(P“)Jrzjzza,u-l 15 +Z_l7~:7:2+1 fi I(P“)+Z‘72:711+1 pJ+Zi:¢2+1 fi I(P52)+Z_l7~:i2+1 fi
didate on position & for prefix P;; must be acandidate on position k for prefix P;;. O

Remark 4.3 states that, as the prefix grows longer by filling some unspecified positions, the candidate set of each
remaining unspecified position will only shrink monotonically. This provides us with the opportunity to mine surprising
patterns by only proceeding with candidate event for each position. Powered by this pruning technique, we develop a
progressive approach by starting from extensible prefixes that contain only one filled position (the remaining positions are
unspecified) and then proceeding to extensibl e prefixeswith morefilled positions gradually to achieve the maximum pruning
effect. A candidate event list for each open (i.e., unspecified) position is maintained and continuously refined when more
positions are filled. This process continues until al surprising patterns have been identified by examining and extending
extensible prefixes. A depth first algorithm is then developed to generate all qualified patternsin arecursive manner.

Another observation we madeisthat asegment shall not support apattern P, if it doesnot support oneof P’s prefixes. To
expedite the process, when we examine a prefix 0, we may screen out those segments that do not support @ and only retain



the projected subsequence of @ so that the evaluation of any prefix containing @@ would not have to resort to the origina
sequence. Notethat the projected subsequencewill also be further refined every time the algorithm proceedsto a prefix with
more specified positions. For agiven period [, starting with a pattern frame of [ sots (without any specific event assigned),
potential patterns (or prefixes of potential patterns) are generated progressively by subsequently assigning a candidate
event to a yet-unspecified position one at atime. Such assignment may lead to both a refinement of event candidates for
the remaining position(s) by applying the above property and a further projection of the projected subsequence onto the
remaining open positions. There certainly exist many different orders according to which the open positions are examined.
For brevity, we assume the left-to-right order if not specified otherwise in the following discussion. Some heuristic on
determining the optimal order is discussed in Section 6 and its effect is shown in Section 7.2.2.

41 Main Routine

As shown in Algorithm 4.1, the main procedure of mining patterns for a given pattern period is described in the procedure
InfoMiner. InfoMiner is a recursive function. At the kth level of recursion, the patterns with & non-eternal events are
examined. For example, al singular patterns (e.g., (a1, *, %, %)) are examined at the initial invocation of InfoMiner; at
the second level of invocations of InfoMiner, all candidate patterns with two non-eternal events (e.g., (a1, %, *,a5)) ae
evaluated; an so on. This is achieved by extending the extensible prefixes to include an additional event during each
invocation of InfoMiner (Line 5-6) and passing the new prefixes to the next level of recursion (Line 8-10). Notice that at
most [ levels of recursion may be invoked to mine patterns of period [.

Being more specific, at each level of the recursion, we evaluate patterns with certain prefixesin a projected subsequence
S. Starting from anull prefix and the sequencein Figure 2, a step-by-step exampleis shown in Figures 3(i), 3(ii), 4(i), and
4(ii) for prefix null, (a1), (a1,a3), and (a1, as, aq), respectively. First, in the procedure Repetition Calculation(l, S)
(Line 1), the number of repetitions for each candidate event of each open position is collected from the projected subse-
guence S. Then the bounded information gain property is employed to refine the candidate list for each remaining open
position (Line 2). Finally, for each open position ¢ and each event e in the refined candidate list, a new prefix is created by
extending the original one to include the event e on position ¢ (Line 5). Note that this newly created prefix is guaranteed to
be extensible and would have the same number of repetitions as the event e at position i (i.e., repetition[i][e]). A candidate

l—1
pattern P = (prefixz,*...x) is constructed by filling al remaining open positions following the new pre fiz with the
eterna event * (Line 6). A subroutine Pattern Validation (Line 7) is then invoked to verify whether P has sufficient
information gain. The projected subsegquence on each new prefix is aso generated (Line 8).
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Algorithm 4.1 InfoMiner

I* Generate qualified patterns prefixed by prefiz and having
[ other undecided positions from the projected subsequence S

Algorithm 4.2 Repetition Calculation

/* For each of these [ undecided positions, compute the number
of repetitions for each candidate event for this position from the

where min_gain isthe required minimum information gain of a
qualified pattern. */

projected subsequence S. */

Repetition_Calculation(Z, S)

InfoMiner(min_gain,l, S, prefiz) {
{ L:for i — 1tol do
1:Repetition_Calculation(l, S) 2:  for each candidate event e of the ith position do
2:Bounded_Information_Pruning(min_gain, [, S, pre fiz) 3: calculate repetitionli][e] from S
3:for i — 1toldo }
4:  for each candidate event e at the ith open position do
i—1

5: new_prefix (prefix,m, e)

1—i
6: P~ (newprefix,m)
7 Pattern_Validation(min_gain, P, repetition[i][e])
8: S’ «+ Projected_Subsequence(S, new_pre fiz)
9 ifS" #£0
10: then InfoMiner(min_gain,l — i, 8", new_prefix)

On theinitial call of InfoMiner, the entire event sequence and null are taken as the input sequence S and the pattern pre-
fix, respectively. In addition, the candidate list of each position consists of al eventsinitially (Figure 3(i)(a)). For each
successive invocation of InfoMiner, a non-empty prefix and its corresponding projected subsegquence are passed in as input
arguments, and for each remaining open position, those retained events after Bounded In formation Pruning in the
previous invocation are taken as the candidates for Repetition Calculation. Consider Figure 3(ii), where InfoMiner is
invoked with min_gain = 4.5, aprefix (a1 ), and the projected subsequence given in Figure 3(ii)(a). The retained events
for positions 2, 3, and 4 in Figure 3(i)(b) are taken as the candidates in Figure 3(ii)(b) to calculate the repetition in the
projected subsequence of prefix (a1). After the Repetition_Calculation subroutine, afurther pruning of these candidates
iscarried out in the Bounded_In formation_Pruning subroutine. The refined candidate lists are given in Figure 3(ii)(c).
It is obvious that the candidate list of each open position shrinks after each pruning. This observation can also be made
by comparing Figures 3(i)(b), 3(ii)(c), 4(i)(c), and 4(ii)(c), and is demonstrated in Section 7.2. From the candidates in
Figure 3(ii)(c), four new prefixes are generated by extending the previous prefix (a 1): (a1, as), (a1, *, as), (a1, *, as), and
(a1, *,*,as) in Figure 3(ii)(d). The same procedure (i.e., InfoMiner), if applicable, is performed recursively on the newly
generated prefixes and their corresponding projected subsequences. In the following subsections, we will discuss each
subroutine separately.

11



Algorithm 4.3 Bounded Information Gain Pruning

[* For each of these [ undecided positions, generate arefined list
of candidate events. */

Bounded_Information_Pruning(min_gain, [, S, pre fiz)

{

Limax-info « information of prefiz

2:for i — 1toldo{

3. max[i] < the maximum value of I(e)

4: for al candidate event e of the ith position

Algorithm 4.4 Pattern Validation

/* Verify whether a given candidate pattern has sufficient infor-
mation gain. If so, add it to the Result. */

Pattern_Validation(min_gain, P, repetition)
{

Linfo < information of P

2:G(P) = repetition X info

3if G(P) > min_gain

4:then Result — Result U{(P,G(P))}

5. maz_nfo «— mazinfo+ max[i] } }

min_gain “
maz_info

7:for i« 1toldo
8. removeal events e whose repetition|i][e] < min_rep
9 from the candidates list

}

6:min_rep — [

4.2 Repetition Calculation

This subroutine in Algorithm 4.2 is responsible for collecting the number of repetitions for each candidate event of each

position. At the first time this subroutine is invoked, the pre fix is specified as null and every event is considered as a
candidate for every position as illustrated in Figure 3(i)(a). The entire sequence is scanned to collect the repetition for
each event-position combination. The repetitions shown in Figure 3(i)(a) is computed from the event sequence in Figure 2.

During each subsequent invocation, anewly generated non-empty pre fix is specified and only the projected subsequence on

this prefix is passed in as shown in Figure 3(ii)(a), 4(i)(a), and 4(ii)(a). Only the repetition of each retained candidate event

(after pruning in preceding recursions) of each open position in the projected subsequenceis collected (e.g., Figure 3(ii)(b),

4(i)(b), and 4(ii)(b)).

Algorithm 4.5 Projected Subsegquence Construction

[* Construct the projected subsequence of a data sequence S for
agiven prefix. */

Projected_Subsequence(.S, pre fiz)
{

1S 0

2:for each segment s in S do

3. if s supports (prefiz,*. .. x)
4:  then append s to the end of S’
5return S’

}

12



4.3 Bounded Information Gain Pruning

Arming with the bounded information gain property, the procedure Bounded Lnformation Pruning aims to refine the can-
didate list for each open position (Algorithm 4.3). The general idea is that, by calculating the maximum information
(denoted by mazx_in fo) that may be carried by a candidate pattern® (with a certain prefix) (Linel-4), we can obtain the
minimum repetitions (denoted by min rep) that is necessary to accumulate enough information gain (Line 5). Those
events that do not have sufficient repetitions are then removed from the candidate list (Line 6-7). To calculate the value
of max_info, for each open position, the event of the maximum information among all candidates for that position
is identified (Line 3). The aggregation is taken on the information of each identified event and the information car-
ried by the prefixz (Line 1, 4). The value of this aggregation serves as max info, and min rep can be calculated
Zi’;jﬁ;’;]. For example, events a1, ag, a4, and a; are the events that have the maximum informa-
tion among the candidates for position 1, 2, 3, and 4 in Figure 3(i)(a), respectively. (The information associated with
each event is shown in Table 2.) Then the maximum information that a qualified pattern may carry can be computed as
maz_info = I(a1)+1I(as)+I(as)+1(as) = 1.064+1.45+1.16+1.06 = 4.73. Inturn, the required minimum repetition
ismin_rep = [%1 = 1if min_gain = 4.5. Finally, after removing all events whose repetition is less than min rep, the
refined candidate list for each position is shown in Figure 3(i)(b).

In the case that the prefix contains some non-eternal event (e.g., prefix = (a1) in Figure 3(ii)), the information of the
prefix (a1) is aggregated together with the maximum information from each open position (i.e., the information of a 4, a4,
and as, respectively). We have maz_info = I(a1) + I(as) + I(aq) + I(as) = 1.06 + 1.16 + 1.16 + 1.06 = 4.44 and
min_rep = [ 427 = 2if min_gain = 4.5. Figure 3(ii)(c) showsthe refined candidate lists.

The bounded information gain pruning serves as the core of the entire algorithm in the sense that it plays a dominant
role in the overal efficiency of the scheme. For each open position, only events that may generate extensible prefixes are
retained. Even though the number of candidate events for each position is O(|E|) theoretically, the bounded information

gain pruning can substantially reduce the candidate scope in practice via success