
InfoMiner: Mining Surprising Periodic Patterns

Jiong Yang Wei Wang Philip S. Yu

UIUC UNC Chapel Hill IBM T. J. Watson Research Center

jioyang@cs.uiuc.edu weiwang@cs.unc.edu psyu@us.ibm.com

September 1, 2003

Abstract

In this paper, we focus on mining surprising periodic patterns in a sequence of events. In many applications, e.g.,

computational biology, an infrequent pattern is still considered very significant if its actual occurrence frequency exceeds

the prior expectation by a large margin. The traditional metric, such as support, is not necessarily the ideal model to

measure this kind of surprising patterns because it treats all patterns equally in the sense that every occurrence carries the

same weight towards the assessment of the significance of a pattern regardless of the probability of occurrence. A more

suitable measurement, information, is introduced to naturally value the degree of surprise of each occurrence of a pattern

as a continuous and monotonically decreasing function of its probability of occurrence. This would allow patterns with

vastly different occurrence probabilities to be handled seamlessly. As the accumulated degree of surprise of all repetitions

of a pattern, the concept of information gain is proposed to measure the overall degree of surprise of the pattern within a

data sequence. The bounded information gain property is identified to tackle the predicament caused by the violation of

the downward closure property by the information gain measure and in turn provides an efficient solution to this problem.

Furthermore, the user has a choice between specifying a minimum information gain threshold and choosing the number of

surprising patterns wanted. Empirical tests demonstrate the efficiency and the usefulness of the proposed model.

Jiong Yang is the contact author. His address is 1304 W. Springfield Ave, Urbana, IL 61801. His phone number

is 217-333-1681, and email address jioyang@cs.uiuc.edu

1 Introduction

Periodic pattern discovery is an important problem in mining time series data and has wide application. A periodic pattern

is an ordered list of events which repeats itself in the event sequence. It is useful in characterizing the cyclic behavior. As a

newly developed research area, most previous work on mining sequential data addresses the issue by utilizing the support

(number of occurrences) as the metric to identify important patterns from the rest [22, 23, 37, 56]. A qualified pattern in the

support model must occur sufficient number of times. In some applications, e.g., market basket, such a model has proved

to be meaningful and important. However, in other applications, the number of occurrences may not always represent the

significance of a pattern. Consider the following examples.

• Computational Biology. A genome consists of a long sequence of nucleotides. Researchers are interested in motifs

(i.e., (short) subsequences of nucleotides) which are statistically significant rather than those occurring frequently.

The statistical significance of a motif is defined as how likely such a nucleotide permutation would occur in an

equivalent random data sequence [10]. In other words, we want to find the motifs that occur at a frequency higher

than their expected frequencies. It is obvious that a statistically significant motif may not necessarily occur frequently,

thus, the support metric is not an appropriate measurement of the significance of a motif.

• Web server load. Consider a web server cluster consisting of 5 servers. The workload on each server is measured

by 4 ranks: low, relatively low, relatively high, and high. Then there are 4 5 = 1024 different events, one for each

possible combination of server states. Some preliminary examination of the cluster states over time might show that

the state fluctuation complies with some periodic behavior. Obtaining such knowledge would be very beneficial for

understanding the cluster’s behavior and improving its performance. Although having high workload on all servers

may occur at a much lower frequency than other states, patterns involving it may be of more interest to administrators

if the occurrence of such patterns contradicts the prior expectation.

• Earthquake. Earthquakes occur very often in California. It can be classified by its magnitude and type. Scientists

may be interested in knowing whether there exists any inherent seismic period so that prediction can be made. Note

that any unidentified seismic periodicity involving major earthquake is much more valuable even though it occurs at

a much lower frequency than minor ones.

In above examples, we can see that users may be interested in not only the frequently occurred patterns, but also the

surprising patterns (i.e., beyond prior expectation) as well. A large number of occurrences of an “expected” frequent pattern

sometimes may not be as interesting as a few occurrences of an “expected” rare pattern. The support model is not ideal

for these applications because, in the support model, the occurrence of a pattern carries the same weight (i.e., 1) towards

its significance, regardless of its likelihood of occurrence. Intuitively, the assessment of significance of a pattern in a

sequence should take into account the expectation of pattern occurrence (according to some prior knowledge). Recently,

many research has been proposed [4, 9, 11, 12, 26, 28, 29, 33, 36, 39, 40, 50, 55, 59] towards this objective. We will furnish

an overview in the next section. In this paper, a new model is proposed to characterize the class of so-called surprising

patterns (instead of frequent patterns). We will show that our model not only has solid theoretical foundation but also allows

an efficient mining algorithm.

The measure of surprise should have the following properties. (1) The surprise of a pattern occurrence is anti-monotonic

with respect to the likelihood that the pattern may occur by chance (or by prior knowledge). (2) The metric should have

some physical meaning, i.e., not arbitrary created. It is fortunate that the information metric [7] which is widely studied

and used in the communication field can fulfill both requirements. Intuitively, information is a measurement of how likely

a pattern will occur or the amount of “surprise” when a pattern actually occurs. If a pattern is expected to occur frequently

based on some prior knowledge or by chance, then an occurrence of that pattern carries less information. Thus, we use

1

information to measure the surprise of an occurrence of a pattern. The information gain metric is introduced to represent

the accumulated information of a pattern in an event sequence and is used to assess the degree of surprise of the pattern. In

the remainder of this paper, we refer to this model as the information model.

The information model is different from the support model. For a given minimum information gain threshold, let Ψ

be the set of patterns that have information gain higher than this threshold. Under the support model, in order to find all

patterns in Ψ when event occurrence frequencies are vastly different, the minimum support threshold has to be set very low.

A major problem could rise from this: too many patterns. Table 1 shows a comparison between the support model and the

information model. The test sequences are constructed from real traces. (The construction of the sequence is described in

the experimental section.) In order to find the pattern with the highest information gain, the support threshold has to be set

at 0.000234 and there are over 16,000 satisfied patterns in one sequence. It is obvious that the support threshold has to be

set very low to discover a small number of patterns with high information gain. This means that patterns with very high

information gain are buried in a sea of patterns with relatively low information gain. This could be a large burden for the

end user to distinguish the surprising patterns (i.e., patterns with high information gain) from the rest. In addition, since a

large number of patterns have to be generated, the support model may yield an inefficient algorithm.

Table 1: Support threshold vs. information gain threshold

Number of Patterns Scour Trace IBM Trace

Satisfied Info. Thresh. Support Thresh. Num. of satisfied patterns Support Thresh. Num. of satisfied patterns

1 0.000234 16,123 0.0035 637

10 0.000212 16,953 0.0031 711

100 0.000198 17,876 0.0024 987

Although the information gain is a more meaningful metric for the problems addressed previously, it does not preserve

the downward closure property (as the support does). For example, the pattern (a 1, a2) may have enough information

gain while neither (a1, ∗) nor (∗, a2) does1. The ∗ symbol represents the “don’t care” position, which is proposed in [22].

We cannot take advantage of the standard pruning technique (e.g., Apriori algorithm) developed for mining association

rules [2] and temporal patterns [3, 23]. Fortunately, we are able to identify the bounded information gain property where

patterns with inextensible prefixes could not be surprising (given some information gain threshold) and can be excluded from

consideration at a very early stage. This motivates us to devise a recursive algorithm as the core of our pattern discovery

tool, InfoMiner. In summary, this paper has the following contributions.

• We propose a new mining problem that is to find surprising periodic patterns in a sequence of data.

• The concepts of information and information gain are proposed to measure the degree of surprise of the pattern

exhibited in a sequence of data.

• Since the downward closure does not hold with information gain, we devise an efficient algorithm to mine the sur-

prising patterns and associated subsequences based on the bounded information gain property that is preserved by the

information gain metric.

• The proposed algorithm is capable of finding not only the surprising patterns for a given information gain threshold,

but also the K most surprising patterns.

The remainder of this paper is organized as follows. Some related work is discussed in Section 2. We present the

information model in Section 3. Section 4 discusses the detailed algorithm of finding patterns whose information gain is

1We will explain it in more detail later in this paper.

2

above a certain threshold while Section 5 presents a simple modification to solve an alternative problem where the K most

surprising patterns are wanted. Section 6 discusses some optimization technique. Experimental results are shown in Section

7. Finally, we draw the conclusion in Section 8.

2 Related Work

In this section, we provide a brief overview of recent advances that is closely related to our work presented in this paper.

2.1 Mining Sequence Data

Most previous work on mining sequence data fell into two categories: discovering sequential patterns [3, 5, 6, 14, 17, 20,

25, 32, 39, 52, 58] and mining periodic patterns[22, 23, 37, 56]. The primary difference between them is that the models

of sequential pattern purely take into account the number of occurrences of the pattern while the frameworks for periodic

patterns focus on characterizing cyclic behaviors. Our work belongs to the latter category.

2.1.1 Sequential Patterns

Discovering frequent sequential patterns was first introduced in [3]. The input data is a set of sequences, called data-

sequences. Each data-sequence is a list of transactions and each transaction consists of a set of items. A sequential pattern

also consists of a (fully ordered) list of transactions. The problem is to find all frequent sequential patterns with a user-

specified minimum support, where the support of a sequential pattern is the percentage of data-sequences that contain the

pattern. Apriori-based algorithms, such as AprioriALL [3] and GSP [52], were proposed to mine patterns with some mini-

mum supports in a level-wise manner. To further improve the performance, projection-based algorithms such as FreeSpan

[25] and PrefixSpan [43] were introduced to reduce the candidate patterns generated and hence reduce the number of scans

through the data. Additional useful constraints (such as time constraint and regular expression constraint) and/or taxonomies

were also studied extensively in [17, 52, 58] to enable more powerful models of sequential patterns.

As a more generative model, the problem of discovering frequent episodes from a sequence of events was presented in

[32]. An episode is defined to be a collection of events that occur relatively close to each other in a given partial order. A

time window is moved across the input sequence and all episodes that occur in some user-specified percentage of windows

are reported. The model was further generalized by Padmanabhan et al. [38] to suit temporal logic patterns.

2.1.2 Periodic Patterns

Full cyclic pattern was first studied in [37]. The input data to [37] is a set of transactions, each of which consists a set

of items. In addition, each transaction is tagged with an execution time. The goal is to find association rules that repeat

themselves throughout the input data. In [22, 23], Han et. al. presented algorithms for efficiently mining partial periodic

patterns. In practice, not every portion in the time series may contribute to the periodicity. For example, a company’s stock

may often gain a couple of points at the beginning of each trading session but it may not have much regularity at later time.

This type of looser periodicity is often referred to as partial periodicity. We will see later that our model also allows partial

periodicity. The difference between our model and [22, 23] is that we aim at mining surprising periodic patterns while Han

et al. focused on frequent periodic patterns.

3

2.2 Models of Interestingness

Despite the difference in problem formulation, most work surveyed in the previous subsection adopted the support as the

measure of interestingness/significance and aimed at discovering frequent patterns. Recently, many efforts have been carried

out to address the potential disadvantages associated with the support model and to propose alternative solutions.

2.2.1 Refining Mined Results

As a well-known fact, the number of patterns/rules discovered under the support model can be very large. Many post-

processing techniques have been developed to reduce the number of discovered patterns into a manageable size while

preserving the discovered knowledge as much as possible. Human interaction is involved in [28, 48, 51] to specify the

interestingness or beliefs to guide the process while others [8, 29, 31] focused on reducing redundant information possessed

by the discovered rules. It is clear that these post-processing techniques are typically used as an additional pruning step after

the normal mining procedure (which produces a large rule set). In contrast, our proposed scheme successfully avoids the

generation of a large number of insignificant/uninteresting patterns from the beginning and enables a much more efficient

solution.

Another approach to reduce redundancy is to return only closed frequent itemset [41, 42, 59]. Intuitively, an itemset is a

closed itemset if all of its supersets have smaller support. While the set of frequent closed itemsets is typically much smaller,

it has been proved that all frequent itemsets can be uniquely derived from the set of frequent closed itemsets. Again, this

approach still focuses on mining frequent itemsets and fails to address the problem we mentioned in the previous section.

2.2.2 Multiple Supports Scheme

Multiple supports scheme was introduced by Liu et. al. [29] and later extended by Wang et al. [55] to find itemsets which

do not occur frequently overall, but have high correlation to occur with some other items. The support threshold to qualify

a frequent itemset can be specified as a fraction of the minimum support of all items [29] or subsets of items [55] in the

itemset. This variable support has similar effect as the information gain introduced in this paper. However, there exists

some fundamental difference between these two concepts. For example, if the support of item A, B, and C is 0.01, 0.02, 0.8,

respectively, then the support threshold to qualify itemset AB and AC is the same. Nevertheless, the itemset AC is expected

to occur more frequently than AB because the support of C is much larger than that of B. This aspect was not fully taken

into account by the multiple support model2. In contrast, the information gain metric proposed in this paper would capture

the difference of occurrences between B and C.

2.2.3 Statistically Significant Patterns

Mining patterns that are statistically significant (rather than frequent) becomes a popular topic. Brin et al. [9] first introduced

the concept of correlation and it was shown that in many applications the correlation measurement can reveal some very

important patterns. The Chi-squared test was used to test the correlation among items. Instead of explicitly enumerating all

correlated itemsets, the border comprising the set of minimal correlated itemsets 3 is identified, and no further distinction is

made on the degree of correlation of itemsets above the border (i.e., supersets of some itemset on the border). This model

sometimes becomes sub-optimal. As shown in Figure 1, itemsets A and B are highly correlated but C is independent of

them4. In addition, {A, B, C, D} is also highly correlated. We can view that the degree of correlation of {A, B, C} is not

2Theoretically, the model in [55] is capable of addressing this problem by explicitly enumerating all itemsets, which is unfortunately impractical in

general.
3A minimal correlated itemset is a correlated itemset whose subsets are all independent.
4Prob(AB) × Prob(C) = 1

2
× 2

3
= Prob(ABC).

4

as strong as that of {A, B} and {A, B, C, D}. This observation can also be confirmed by the Chi-squared test 5. In many

applications, users are only interested in the itemsets such as {A, B} and {A, B, C, D}, but not {A, B, C}. However, [9]

cannot distinguish between {A, B, C} and {A, B, C, D} once {A, B} is identified as a correlated itemset. Furthermore, if a

user is interested in finding k itemsets with the highest correlation, then all itemsets in the lattice have to be examined before

k highest ones can be determined. Another potential drawback of this model is the expensive computation required by this

model. The running time of all patterns with i-correlated items is O(n × |CAND| × min{n, 2 i}) where n and |CAND|
are the number of transactions and the number of candidates at the ith level, respectively. To overcome these drawbacks,

Oates et al. [35, 36] proposed models for statistical dependencies using G statistic and devised randomized algorithms to

produce approximate results. In contrast, our model not only can successfully identify {A, B} and {A, B, C, D} without

including {A, B, C} but also leads to a much more efficient deterministic algorithm.

ABFG

CEGF

ABCD

CEGH

CEFH

ABCD

ItemsTransaction ID

1

2

3

4

5

6

Figure 1: An example of transaction set

More recently, Cohen et al. [12] and Fujiwara et al. [16] address the problem of identifying pairs of attributes with

high confidence or similarity (in terms of probabilistic correlations in the database) in the absence of support requirement.

Hashing based algorithms [12] are proposed to tackle the problem, which consist of three general phases: computing hash

signature, generating candidates, and pruning candidates. To avoid both false negatives and false positives that may be

yielded with the hashing based scheme, a family of so called dynamic miss counting algorithms are proposed in [16].

Instead of counting the number of hits (as most other algorithm does), the number of transactions where the given pair of

attributes disagree is counted and this counter is deleted as soon as the number of misses exceeds the maximum number of

allowed misses for that pair. This strategy is proved to be able to reduce the memory size significantly.

Another important advance is accomplished in mining so-called unexpected patterns. Berger et al. [4] proposed a

probabilistic measure of interestingness based on unexpectedness in the context of temporal logic, whereby a pattern is

deemed interesting if the ratio of the actual number of occurrences of the pattern exceeds the expected one by some user

defined threshold. Solving the problem in its general frame is in nature NP-hard and hence some heuristics are proposed to

produce an approximate answer. Our model presented in this paper can in fact achieve a similar objective but enables an

efficient solution without sacrificing the accuracy. Padmanabhan et al. [39, 40, 50] define the unexpectedness of association

rules relative to a system of prior beliefs. Specifically, the belief is of the form X → Y and a rule is said to be unexpected

if it contradicts the belief. The set of beliefs (given by the user) are used to conduct the mining process efficiently so that an

exhaustive search is avoided. The primary advantage of this model is that it can customize the mining process for the users

who have fairly good prior knowledge and specific interests, and is particularly useful in refinements of user’s beliefs.

A formal study of surprising patterns is furnished in [11], focusing on the analysis of variation of inter-item correlations

along time. The surprise is defined in terms of the coding length in a carefully chosen encoding scheme and has solid

theoretic foundation, but requires much more expensive computation comparing to other models.

5In general, the chi-squared test requires a large sample. For the demonstration purpose only, we assume that the chi-squared test is valid in this

example.

5

2.3 Projection-based Approaches

Some research [1, 24, 25, 60] has been carried out on mining frequent patterns in a depth-first projection-based fashion

as opposite to the traditional breadth-first level-wise traversal. As patterns are usually organized via a tree [1, 24, 25] (or

lattice in [60]) structure, along with the discovery of frequent patterns when traversal through the structure, data projection

onto each newly identified frequent pattern is also taken to facilitate the subsequent examination of its super-patterns. The

Apriori property is (sometimes implicitly) used to efficiently prune the tree. In particular, Han et al. [24] propose a so-

called frequent pattern tree (FP-tree) to organize the produced data projection in a concise and ingenious manner so that the

generation of a huge number of candidate patterns can be avoided completely. While the FP-growth [24] is designed for

mining frequent itemsets in general, the FreeSpan [25], PrefixSpan [43], and SPADE [60] are specifically tailored for mining

sequential patterns. It is interesting to notice that, the depth-first approaches generally perform better than breadth-first ones,

and the advantage becomes more substantial when the pattern is long.

However, the Apriori property does not hold on the information gain metric proposed in this paper and hence can not be

employed to mine patterns satisfying a user specified information gain threshold. Looking ahead, we will introduce a so-

called bounded information gain property and employ a depth-first, projection-based approach that starts from the patterns

with only one filled position and then proceeds to more complex patterns gradually, and in the mean time utilizes the

bounded information gain property to continuously refine the candidate event list associated with each unspecified position

in the pattern.

3 Model of Surprising Patterns

In this paper, we adopt the general model for periodic patterns proposed in [23] with one exception: Instead of finding

frequent patterns6, our goal is to discover surprising patterns in an event sequence. Let E = {a1, a2, . . .} be a set of

distinct events. The event sequence is a sequence of events in E. A periodic pattern is a list of l events that may occur

recurrently in the sequence with period length l. The information carried by an event a i (ai ∈ E) is defined to be

I(ai) = − log|E| Prob(ai) where | E | and Prob(ai) are the number of events in E and the probability that a i occurs,

respectively. The probability Prob(ai) can be assessed in many ways which include but are not limited to:

• Uniform distribution: Prob(a1) = Prob(a2) = . . . = Prob(ai) = . . . = 1
|E| ;

• Experimental evidence: Prob(ai) = NumD(ai)
N for all ai ∈ E where NumD(ai) and N are the number of occur-

rences of the event ai in an event sequence D and the length of D, respectively;

• Prior belief: Prob(ai) is determined by some domain expert.

Without loss of generality, we adopt the second option to assess the information carried by an event, i.e. an occurrence of

a frequent event carries less information/surprise than that of a rare event. Note that this also coincides with the original

intention of information in the data communication community. We shall show later that this gives us the opportunity

to handle patterns with divergent probabilities seamlessly. Theoretically speaking, the base of the logarithm function can

be any real number that is greater than 1. Typically, | E | is chosen to be the base to play a normalization role in the

computation (i.e., I(ai) = 1 if Prob(ai) = 1
|E|). For example, the sequence in Figure 2 contains 6 different events a 1, a2,

a3, a4, a5, and a6. Their probabilities of occurrence and information are shown in Table 2.

A pattern of length l is a tuple of l events, each of which is either an event in E, or the eternal event (represented by

symbol ∗). An eternal event is a virtual event that matches any event in E and is used to represent the “don’t care” position

6For a pattern s in a sequence d1, d2, . . . , dN , the frequency count is defined as | {i | 0 ≤ i ≤ N
|s| , and the string s is true in di|s|+1, . . . , di|s|+|s|} |.

6

1 a3 a3 a1 a3 a5 a1 a3 a4 a5 a2 a3 a3 a5 a1 a3 a4

a2 a6 a5 a2

a2 a6 a2 a2a5 a2 a6 a5 a2a2 aa

projected subsequence of (* *)

6 a3 a2a1 a3a1 a3 a4 a5

a2 a6 a3 a2 a2 a6 a2 a2

a3a4 a4 a3

a2 a6

event sequence

Figure 2: Event sequence and projected subsequence

Table 2: Probability of Occurrence and Information

Event Probability Information

a1
6
40 = 0.15 − log6(0.15) = 1.06

a2
8
40 = 0.20 − log6(0.20) = 0.90

a3
12
40 = 0.30 − log6(0.30) = 0.67

a4
5
40 = 0.125 − log6(0.125) = 1.16

a5
6
40 = 0.15 − log6(0.15) = 1.06

a6
3
40 = 0.075 − log6(0.075) = 1.45

in a pattern. By definition, the information of the eternal event * is I(∗) = −log |E|Prob(∗) = 0 since Prob(∗) = 1.

An intuitive interpretation is that the occurrence of an event that is known to be always true does not provide any “new

information” or “surprise”. A pattern P with length l is in the form of (p 1, p2, . . . , pl) where pi ∈ E ∪ {∗} (1 ≤ i ≤ l)

and at least one position has to be filled by an event in E 7. P is called a singular pattern if only one position in P is filled

by an event in E and the rest positions are filled by *. Otherwise, P is referred to as a complex pattern. For example,

(∗, a3, ∗) is a singular pattern of length 3 and (a2, a6, ∗, a2) is a complex pattern of length 4. Note that an event may have

multiple occurrences in a pattern. As a permutation of a list of events, a pattern P = (p 1, p2, . . . , pl) will occur with a

probability Prob(P) = Prob(p1) × Prob(p2) × . . . × Prob(pl) in a random event sequence if no advanced knowledge

on correlation among these events is assumed. Then the information carried by P is I(P) = − log |E| Prob(P) = I(p1) +

I(p2) + . . . + I(pl). It follows directly that the information of a singular pattern always equals to the information of

the event specified in the pattern. This property provides a natural bridge between events and patterns. For example,

I((∗, a6, ∗, ∗)) = I(a6) = 1.45 and I((a2, a6, ∗, ∗)) = I(a2) + I(a6) = 0.90 + 1.45 = 2.35 according to Table 2.

Given a pattern P = (p1, p2, . . . , pl) and a segment S of l events s1, s2, . . . , sl, we say that S supports P if, for each

event pi (1 ≤ i ≤ l) specified in P , either pi = ∗ or pi = si is true. The segment a2, a6, a3, a2 supports the pattern

(a2, a6, ∗, ∗) while the segment a1, a6, a4, a5 does not. To assess whether a pattern of length l is surprising in an event

sequence D, D is viewed as a list of disjoint contiguous segments, each of which consists of l events. The number of

segments that support P is also called the support of P (denoted by Support(P)). The event subsequence 8 consisting

of the list of segments that support P is called the projected subsequence of D on P . In Figure 2, the event sequence

consists of 40 events. When mining periodic patterns with l = 4, it can be viewed as a list of 10 segments, each of which

contains 4 events. The support of (a2, a6, ∗, ∗) is 3 in the sequence and the projected subsequence on (a 2, a6, ∗, ∗) is

a2, a6, a3, a2 a2, a6, a5, a2, a2, a6, a2, a2. As a measurement of the degree of surprise of a pattern P in an event sequence

D, the information gain of P in D is defined as G(P) = I(P) × (Support(P) − 1). Since our objective is to mine

surprising periodic patterns, an event combination appearing in the event sequence which never recurs is of little value in

this problem domain. Therefore, in the proposed model, only recurrences of a pattern will have positive contribution to

the information gain. Support(P) − 1 is indeed the number of recurrences of P . In the rest of the paper, we will use

Repetition(P) to denote it. For example, Repetition((a2, a6, ∗, ∗)) = 3− 1 = 2 and G((a2, a6, ∗, ∗)) = 2.35× 2 = 4.70

7This requirement is employed to exclude the trivial pattern (∗, ∗, . . . , ∗) from being considered.
8Given two sequences D and D′, D is a subsequence of D′ if D can be obtained by removing some events in D′.

7

in Figure 2.

Similar to the support model, an information gain threshold, min gain, is specified by the user to define the minimum

information gain to qualify a surprising pattern. Given an event sequence and an information gain threshold, the goal is to

discover all patterns whose information gains in the event sequence exceed the threshold. Obviously, the proper value of

this threshold is application dependent and may be specified by a domain expert. A user may use the following heuristic to

choose the value of min gain. If a pattern with probability p is regarded as a surprising pattern when it repeats itself by at

least n times in the sequence. Then the min gain can be set to (− log |E| p) × n where − log|E| p is the information of the

pattern. Alternatively, the user also has the opportunity to specify the number of (most) surprising patterns needed. We will

show later that our proposed algorithm can efficiently produce desired results under both specifications.

It is conceivable that the information model can also be applied to define both surprising itemsets from transaction

database and surprising sequential patterns from sequence database. Without loss of generality, we focus our discussion to

the domain of mining periodic patterns in a sequence in this paper. To facilitate the explanation in the rest of the paper, we

refer to a pattern, say P , as a subpattern of another pattern, say P ′, if P can be generated by replacing some event(s) in

P ′ by the eternal event *. P ′ is called a superpattern of P . For example, (a2, a6, ∗, ∗) and (∗, a6, ∗, ∗) are subpatterns of

(a2, a6, ∗, a2). The pattern-subpattern relationship essentially defines a partial order among patterns of the same length.

4 Projection-based Algorithm

Previous work on pattern discovery usually utilizes the Apriori property that can be stated as “if a pattern P is significant,

then any subpattern of P is also significant”. This property holds for the support model but is not true in the information

model. For example, in Figure 2, the information gain G((a 2, ∗, ∗, ∗)) = 0.90×3 = 2.70 which is less than the information

gain of pattern (a2, a6, ∗, ∗) (i.e., 4.70). If the threshold is set to be 4.5, then (a2, a6, ∗, ∗) qualifies while (a2, ∗, ∗, ∗)
does not. (Note that a6 is an infrequent event which occurs only three times in the event sequence.) This implies that the

algorithms developed for the support model are not applicable. The pruning power of the support model essentially comes

from the fact that if we know a pattern is not valid, we do not need to examine its superpatterns. Can we achieve a similar

pruning power under the information model? To answer this question, we first introduce a concept called extensible prefix.

Definition 4.1 For a pattern P = (p1, p2, . . . , pl), the tuple (p1, p2, . . . , pi) is called a prefix of P where 1 ≤ i ≤ l.

A prefix is part of a pattern. A pattern can be generated by appending more events to the prefix. For instance, (a 1, ∗, a4) is

a prefix of patterns (a1, ∗, a4, a3) (a1, ∗, a4, a2), (a1, ∗, a4, a4), and (a1, ∗, a4, ∗), etc.

Definition 4.2 Given an information gain threshold min gain, a prefix is extensible if at least one pattern with this prefix

is surprising (i.e., whose information gain meets min gain), and is inextensible otherwise.

It follows from the definition that, all prefixes of a surprising pattern are extensible, and any pattern with an inextensible

prefix cannot be a surprising pattern. In order to find all surprising patterns, we only need to examine extensible prefixes.

The challenge lies on how to recognize inextensible prefixes as early as possible so that they can be excluded from fur-

ther investigation. However, if all patterns with a certain prefix have to be examined exhaustively before we are able to

determine whether the prefix is inextensible, then we will not be able to save any computation. Fortunately, the assessment

of extensibility can be done efficiently due to a so-called bounded information gain property discussed in the following

context.

Lemma 4.1 Let P = (p1, p2, . . . , pl) be a pattern and Pi = (p1, p2, . . . , pi) be a prefix of P . Given an event sequence,

G(P) ≤ I(P) × Repetition(Pi), where I(P) =
∑l

k=1 I(pk) is the information of the pattern P .

8

Proof. Since Pi is a prefix of P , Repetition(P) ≤ Repetition(Pi) due to the Apriori property. Thus G(P) = I(P) ×
Repetition(P) ≤ I(P) × Repetition(Pi). �

Consider the pattern P = (a1, a3, a4, a5) and its prefix P2 = (a1, a3) in the sequence in Figure 2. Clearly, we have

G(P) = I(P)×Repetition(P) = 4.34× 2 = 8.68 which is less than the value of I(P)×Repetition(P2) = 4.34× 3 =

13.02. This suggests that we may take advantage of this “bounding” effect when we assess the extensibility of a prefix. For

a given prefix Pi, consider the set (denoted by Λ(Pi)) of patterns of period length l with the same prefix P i and let Pmax be

the pattern with the highest information in Λ(P i). Then, for any pattern P with prefix Pi (i.e., P ∈ Λ(Pi)), the inequality

G(P) ≤ I(Pmax) × Repetition(Pi) holds by Lemma 4.1. Therefore, we can determine whether P i is extensible by

estimating the maximum information I(Pmax) that may be carried by any pattern with prefix P i. The value of I(Pmax) can

be computed by, first, for each unspecified position (following the prefix P i), identifying the highest information possessed

by any potential event for that position; and then aggregating them together with the information possessed by P i. It is

conceivable that the prefix Pi can not be extensible if I(Pmax) × Repetition(Pi) is below the information gain threshold

min gain. This leads to the following theorem.

Theorem 4.2 (Bounded information gain) Given an information gain threshold min gain and a period length l, a prefix

Pi = (p1, p2, . . . , pi), is not extensible iff Repetition(Pi) < min gain
max info where max info = I(Pi) +

∑l
k=i+1 fk is the

maximum information that can be carried by any pattern with prefix P i and fk is the highest information that can be

carried by any potential event at the (unspecified) position k.

Once a prefix is deemed to be inextensible, we will immediately eliminate it from any further examination. Only

extensible prefixes will be used to extend to longer (extensible) prefixes and to construct candidate patterns. Furthermore,

given a period length l, for any prefix P i = (p1, p2, . . . , pi), consider an unspecified position k where i < k ≤ l. Not every

event can potentially be at position k in a surprising pattern with prefix P i. An event e ∈ E can possibly be a candidate for

position k only if e recurs on position k for a sufficient number of times. In particular, the minimum required number of

repetitions is min rep = min gain

I(Pi)+
∑

l

j=i+1
fj

. This indicates that only a (small) subset of events may serve as the candidates

for each unspecified position and we can limit our search to these candidate events, and also leads to the following remark.

Remark 4.3 (Candidate refinement) For any two prefixes Pi1 = (p1, p2, . . . , pi1) and Pi2 = (p1, p2, . . . , pi2) where

i1 < i2, any candidate event e on position k (i2 < k ≤ l) for prefix P i2 must also be a candidate on position k for prefix

Pi1, where l is the period length.

Proof. With prefix Pi2, an event has to recur at least min rep2 = min gain

I(Pi2)+
∑l

j=i2+1
fj

times on position k to qualify

as a candidate while the minimum required number of repetition with prefix P i1 is min rep1 = min gain

I(Pi1)+
∑

l

j=i1+1
fj

=

min gain

I(Pi1)+
∑i2

j=i1+1
fj+

∑l

j=i2+1
fj

≤ min gain

I(Pi1)+
∑i2

j=i1+1
pj+

∑l

j=i2+1
fj

= min gain

I(Pi2)+
∑l

j=i2+1
fj

= min rep2. Therefore, any can-

didate on position k for prefix Pi2 must be a candidate on position k for prefix P i1. �

Remark 4.3 states that, as the prefix grows longer by filling some unspecified positions, the candidate set of each

remaining unspecified position will only shrink monotonically. This provides us with the opportunity to mine surprising

patterns by only proceeding with candidate event for each position. Powered by this pruning technique, we develop a

progressive approach by starting from extensible prefixes that contain only one filled position (the remaining positions are

unspecified) and then proceeding to extensible prefixes with more filled positions gradually to achieve the maximum pruning

effect. A candidate event list for each open (i.e., unspecified) position is maintained and continuously refined when more

positions are filled. This process continues until all surprising patterns have been identified by examining and extending

extensible prefixes. A depth first algorithm is then developed to generate all qualified patterns in a recursive manner.

Another observation we made is that a segment shall not support a pattern P , if it does not support one of P ’s prefixes. To

expedite the process, when we examine a prefix Q, we may screen out those segments that do not support Q and only retain

9

the projected subsequence of Q so that the evaluation of any prefix containing Q would not have to resort to the original

sequence. Note that the projected subsequence will also be further refined every time the algorithm proceeds to a prefix with

more specified positions. For a given period l, starting with a pattern frame of l slots (without any specific event assigned),

potential patterns (or prefixes of potential patterns) are generated progressively by subsequently assigning a candidate

event to a yet-unspecified position one at a time. Such assignment may lead to both a refinement of event candidates for

the remaining position(s) by applying the above property and a further projection of the projected subsequence onto the

remaining open positions. There certainly exist many different orders according to which the open positions are examined.

For brevity, we assume the left-to-right order if not specified otherwise in the following discussion. Some heuristic on

determining the optimal order is discussed in Section 6 and its effect is shown in Section 7.2.2.

4.1 Main Routine

As shown in Algorithm 4.1, the main procedure of mining patterns for a given pattern period is described in the procedure

InfoMiner. InfoMiner is a recursive function. At the kth level of recursion, the patterns with k non-eternal events are

examined. For example, all singular patterns (e.g., (a1, ∗, ∗, ∗)) are examined at the initial invocation of InfoMiner; at

the second level of invocations of InfoMiner, all candidate patterns with two non-eternal events (e.g., (a 1, ∗, ∗, a5)) are

evaluated; an so on. This is achieved by extending the extensible prefixes to include an additional event during each

invocation of InfoMiner (Line 5-6) and passing the new prefixes to the next level of recursion (Line 8-10). Notice that at

most l levels of recursion may be invoked to mine patterns of period l.

Being more specific, at each level of the recursion, we evaluate patterns with certain prefixes in a projected subsequence

S. Starting from a null prefix and the sequence in Figure 2, a step-by-step example is shown in Figures 3(i), 3(ii), 4(i), and

4(ii) for prefix null, (a1), (a1, a3), and (a1, a3, a4), respectively. First, in the procedure Repetition Calculation(l, S)

(Line 1), the number of repetitions for each candidate event of each open position is collected from the projected subse-

quence S. Then the bounded information gain property is employed to refine the candidate list for each remaining open

position (Line 2). Finally, for each open position i and each event e in the refined candidate list, a new prefix is created by

extending the original one to include the event e on position i (Line 5). Note that this newly created prefix is guaranteed to

be extensible and would have the same number of repetitions as the event e at position i (i.e., repetition[i][e]). A candidate

pattern P = (prefix,

l−i︷ ︸︸ ︷∗ . . . ∗) is constructed by filling all remaining open positions following the new prefix with the

eternal event * (Line 6). A subroutine Pattern V alidation (Line 7) is then invoked to verify whether P has sufficient

information gain. The projected subsequence on each new prefix is also generated (Line 8).

10

Algorithm 4.1 InfoMiner

/* Generate qualified patterns prefixed by prefix and having

l other undecided positions from the projected subsequence S

where min gain is the required minimum information gain of a

qualified pattern. */

InfoMiner(min gain, l, S, prefix)

{
1:Repetition Calculation(l, S)

2:Bounded Information Pruning(min gain, l, S, prefix)

3:for i ← 1 to l do

4: for each candidate event e at the ith open position do

5: new prefix ← (prefix,

i−1︷ ︸︸ ︷∗ . . . ∗, e)

6: P ← (newprefix,

l−i︷ ︸︸ ︷∗ . . . ∗)
7: Pattern Validation(min gain,P, repetition[i][e])

8: S′ ← Projected Subsequence(S, new prefix)

9: if S′ �= ∅
10: then InfoMiner(min gain, l − i, S′, new prefix)

}

Algorithm 4.2 Repetition Calculation

/* For each of these l undecided positions, compute the number

of repetitions for each candidate event for this position from the

projected subsequence S. */

Repetition Calculation(l, S)

{
1:for i ← 1 to l do

2: for each candidate event e of the ith position do

3: calculate repetition[i][e] from S

}

On the initial call of InfoMiner, the entire event sequence and null are taken as the input sequence S and the pattern pre-

fix, respectively. In addition, the candidate list of each position consists of all events initially (Figure 3(i)(a)). For each

successive invocation of InfoMiner, a non-empty prefix and its corresponding projected subsequence are passed in as input

arguments, and for each remaining open position, those retained events after Bounded Information Pruning in the

previous invocation are taken as the candidates for Repetition Calculation. Consider Figure 3(ii), where InfoMiner is

invoked with min gain = 4.5, a prefix (a1), and the projected subsequence given in Figure 3(ii)(a). The retained events

for positions 2, 3, and 4 in Figure 3(i)(b) are taken as the candidates in Figure 3(ii)(b) to calculate the repetition in the

projected subsequence of prefix (a1). After the Repetition Calculation subroutine, a further pruning of these candidates

is carried out in the Bounded Information Pruning subroutine. The refined candidate lists are given in Figure 3(ii)(c).

It is obvious that the candidate list of each open position shrinks after each pruning. This observation can also be made

by comparing Figures 3(i)(b), 3(ii)(c), 4(i)(c), and 4(ii)(c), and is demonstrated in Section 7.2. From the candidates in

Figure 3(ii)(c), four new prefixes are generated by extending the previous prefix (a 1): (a1, a3), (a1, ∗, a3), (a1, ∗, a4), and

(a1, ∗, ∗, a5) in Figure 3(ii)(d). The same procedure (i.e., InfoMiner), if applicable, is performed recursively on the newly

generated prefixes and their corresponding projected subsequences. In the following subsections, we will discuss each

subroutine separately.

11

Algorithm 4.3 Bounded Information Gain Pruning

/* For each of these l undecided positions, generate a refined list

of candidate events. */

Bounded Information Pruning(min gain, l, S, prefix)

{
1:max info ← information of prefix

2:for i ← 1 to l do {
3: max[i] ← the maximum value of I(e)

4: for all candidate event e of the ith position

5: max info ← max info + max[i] }
6:min rep ← � min gain

max info
�

7:for i ← 1 to l do

8: remove all events e whose repetition[i][e] < min rep

9: from the candidates list

}

Algorithm 4.4 Pattern Validation

/* Verify whether a given candidate pattern has sufficient infor-

mation gain. If so, add it to the Result. */

Pattern Validation(min gain,P, repetition)

{
1:info ← information of P

2:G(P) = repetition × info

3:if G(P) ≥ min gain

4:then Result ← Result ∪{〈P, G(P)〉}
}

4.2 Repetition Calculation

This subroutine in Algorithm 4.2 is responsible for collecting the number of repetitions for each candidate event of each

position. At the first time this subroutine is invoked, the prefix is specified as null and every event is considered as a

candidate for every position as illustrated in Figure 3(i)(a). The entire sequence is scanned to collect the repetition for

each event-position combination. The repetitions shown in Figure 3(i)(a) is computed from the event sequence in Figure 2.

During each subsequent invocation, a newly generated non-empty prefix is specified and only the projected subsequence on

this prefix is passed in as shown in Figure 3(ii)(a), 4(i)(a), and 4(ii)(a). Only the repetition of each retained candidate event

(after pruning in preceding recursions) of each open position in the projected subsequence is collected (e.g., Figure 3(ii)(b),

4(i)(b), and 4(ii)(b)).

Algorithm 4.5 Projected Subsequence Construction

/* Construct the projected subsequence of a data sequence S for

a given prefix. */

Projected Subsequence(S, prefix)

{
1:S′ ← ∅
2:for each segment s in S do

3: if s supports (prefix, ∗ . . . ∗)
4: then append s to the end of S′

5:return S′

}

12

4.3 Bounded Information Gain Pruning

Arming with the bounded information gain property, the procedure Bounded Information Pruning aims to refine the can-

didate list for each open position (Algorithm 4.3). The general idea is that, by calculating the maximum information

(denoted by max info) that may be carried by a candidate pattern 9 (with a certain prefix) (Line1-4), we can obtain the

minimum repetitions (denoted by min rep) that is necessary to accumulate enough information gain (Line 5). Those

events that do not have sufficient repetitions are then removed from the candidate list (Line 6-7). To calculate the value

of max info, for each open position, the event of the maximum information among all candidates for that position

is identified (Line 3). The aggregation is taken on the information of each identified event and the information car-

ried by the prefix (Line 1, 4). The value of this aggregation serves as max info, and min rep can be calculated

by min rep = � min gain
max info�. For example, events a1, a6, a4, and a5 are the events that have the maximum informa-

tion among the candidates for position 1, 2, 3, and 4 in Figure 3(i)(a), respectively. (The information associated with

each event is shown in Table 2.) Then the maximum information that a qualified pattern may carry can be computed as

max info = I(a1)+I(a6)+I(a4)+I(a5) = 1.06+1.45+1.16+1.06 = 4.73. In turn, the required minimum repetition

is min rep = � 4.5
4.73� = 1 if min gain = 4.5. Finally, after removing all events whose repetition is less than min rep, the

refined candidate list for each position is shown in Figure 3(i)(b).

In the case that the prefix contains some non-eternal event (e.g., prefix = (a 1) in Figure 3(ii)), the information of the

prefix (a1) is aggregated together with the maximum information from each open position (i.e., the information of a 4, a4,

and a5, respectively). We have max info = I(a1) + I(a4) + I(a4) + I(a5) = 1.06 + 1.16 + 1.16 + 1.06 = 4.44 and

min rep = � 4.5
4.44� = 2 if min gain = 4.5. Figure 3(ii)(c) shows the refined candidate lists.

The bounded information gain pruning serves as the core of the entire algorithm in the sense that it plays a dominant

role in the overall efficiency of the scheme. For each open position, only events that may generate extensible prefixes are

retained. Even though the number of candidate events for each position is O(|E|) theoretically, the bounded information

gain pruning can substantially reduce the candidate scope in practice via successive candidate refinements. This can be

easily seen through the above example and is further verified by the experimental results in Section 7.2. This unique

pruning technique distinguishes our proposed method from any existing algorithm designed for mining frequent patterns.

4.4 Pattern Validation

This subroutine (Algorithm 4.4) is used to validate a candidate pattern P . The information of P can be easily obtained by

aggregating the information of the event on each position. A decision is then made on whether the information gain (i.e.,

repetition× I(P)) meets the requirement. In the case that P carries sufficient information gain, P is inserted into Result.

In Figure 3(ii)(e), (a1, a3, ∗, ∗) and (a1, ∗, ∗, a5) are added into Result.

We note that, even if the pattern P generated from some newprefix (Line 5-6) in Algorithm 4.1 does not carry suffi-

cient information gain, the newprefix may still be extended to a pattern that satisfies the information gain threshold (i.e.,

newprefix is extensible). For example, the pattern (a1, ∗, a4, ∗) (generated from prefix (a1, ∗, a4) in Figure 3(ii)(d)) has

information gain 4.44 (which is less than min gain). However, the prefix (a 1, ∗, a4) can be extended to (a1, ∗, a4, a5)

whose information gain is greater than min gain. This illustrates the essential difference between the Apriori property and

the bounded information gain property.

9A candidate pattern is a pattern that can be constructed by assigning each open position an event from the corresponding candidate list of that position.

13

1

a2

a3

a4

a1

a2

a3

a4

(, , ,)

a1

a2

a3

a4

a1

a2

a3

a4

a5

a6 a6

a5a5

a6a6

a5

(, , ,)

a1

a2

a6

a3

a4

a3

a4

a2

a3

a5

a1)(a3)(,* a3,)(,* * a2(, , ,)* * *
a4
a6

a4 a3
a5

a2)(
)(,*
)(,* ,)(,* *

(, , ,)* * *
(, , ,)* * *

(c) generated new prefixes

(, , ,)a1

Information GainPattern

5.30* * *

(d) qualified patterns with min_gain = 4.5

Repetition

0

Event Repetition

0

0

Event

0

0

4

2

0

0

2

4

1

(a) initial candidates for each position and their repetitions

Repetition

5

3

0

0

0

0

Event

a

Repetition

(i) The Initial Invocation of InfoMiner

0

Event

0

0

4

1

2

RepetitionEvent RepetitionEventRepetition

5

3

Event RepetitionEvent

2

4

1

4

2

2

1

4

(b) refined candidates after subadditivity pruning where required min_rep = 1

a1 a3a1 a3 a4 a5 a3a4 a1 a3 a3 a1 a3 a5 a1 a3 a4 a5a4 a3 a1 a3 a4 a5

(, , ,)

a6

a3

a4

a3

a4

a2

a3

a5

a1

(, , ,)

a3 a3

a4

a1

a5

a3a1 a1 a5
a1

a1 a3(, ,)*
a4

(, , ,)a1 a3

(, , ,)a1 a5* * 6.36

RepetitionEvent RepetitionEventRepetitionEvent

1 2 1

3

0

2

3

0

RepetitionEvent RepetitionEventRepetitionEvent

2

3 2 3

(c) refined candidates by subadditivity property where min_rep = 2

(, (, , ,)) * *
(, ,)*

(d) generated new prefixes

Pattern Information Gain

* * 5.19

(e) qualified pattern with min_gain = 4.5

(a) projected subsequence of prefix (a)1

(b) repetitions of each candidte in the projected subsequence

(ii) Level 2 Invocation of Info Miner for Prefix (a)1

Figure 3: Initial Invocation of InfoMiner and Level 2 Invocation of InfoMiner for prefix (a 1)

4.5 Projected Subsequence Construction

This subroutine (Algorithm 4.5) is very straightforward. Given a prefix, the input sequence S is scanned and the segments

are selected to form the projected subsequence. Note that all segments in this projected subsequence share a common

prefix. For example, the projected subsequence for prefix (a 1) is given in Figure 3(ii)(a) and that for prefix (a1, a3) is given

in Figure 4(i)(a).

5 Discussion: Finding the K Most Surprising Patterns

In the previous section, we presented an algorithm to find patterns whose information gain is greater than a threshold

min gain. In some applications, users may want to specify the number of most surprising patterns to be returned instead.

In this section, we investigate the problem of mining the K most surprising patterns. In fact, this can be achieved with the

following minor modification to the algorithm presented in the previous section. The set Result is maintained throughout

the entire process to hold the set of K most surprising patterns discovered so far, and is initialized to be null. The threshold

min gain is always equal to the minimal information gain carried by any pattern in Result and is set to zero at the

beginning. Each time after discovering a new pattern P whose information gain G(P) is above the current threshold

min gain, P is added to Result and, in the case where Result already contains K patterns, the pattern with the smallest

information gain in Result will be replaced. The value of min gain is then adjusted to the minimal information gain of

14

, ,)

a3

a4

a1

a5

a3

a1 a3 a5 a1 a3 a4 a5a3 a1 a3 a4 a5a1 a3 a4 a5

(, , ,)a1

a5

a3

a4

RepetitionEvent RepetitionEvent

32

(, , ,)a1 a3 a4 a1 a3 a5

(, , ,)a4a3a1 *
(, , ,)a1 a3 a5*

Information GainPattern

5.78

8.37

(e) qualified patterns with min_gain = 4.5

(, , ,)a1

a

(,

5

(ii) Level 4 Invocation of InfoMiner for Prefix (a , a , a)

a3 a4

(, , ,)a1

a5

a3 a4

(, , ,)a1 a3 a4 a5

(, , ,)a4a3a1 a5

a1 a3 a4 a5 a1 a3 a4 a5a1 a3 a4 a5

(i) Level 3 Invocation of InfoMiner for Prefix (a , a)

RepetitionEvent RepetitionEvent

3

2

0

(c) refined candidates by subadditivity property where min_rep = 2

(a) projected subsequence of prefix (a , a)

(b) repetitions of each candidte in the projected subsequence

1 3

(, ,) *

(d) generated new prefixes

RepetitionEvent

2

(c) refined candidates by subadditivity property where min_rep = 2

RepetitionEvent

2

(d) generated new prefixes

Information GainPattern

7.90

(e) qualified patterns with min_gain = 4.5

(b) repetitions of each candidte in the projected subsequence

1 3 4(a) projected subsequence of prefix (a , a , a)

1 3 431

Figure 4: Level 3 and Level 4 Invocations of InfoMiner for prefixes (a 1, a3) and (a1, a3, a4) respectively

any pattern in Result. Clearly, with the algorithm proceeds, min gain increases, thus, min rep (used in the algorithm)

also increases, and less candidates remain. At the end, the set Result contains the K most surprising patterns (i.e., highest

information gain).

In Section 7.2.3, we show the performance of finding the K most surprising patterns with comparison to finding these

K patterns when the appropriate information gain threshold is given. When K is relatively small (e.g., 10), finding the K

most surprising patterns may take twice as much time as finding patterns with given information gain threshold. On the

other hand, when K is large (e.g., 1000), the disadvantage diminishes (e.g., less than 5%). We will discuss it in more detail

in Section 7.2.3. Since the absolute response time of finding a small number of patterns that meet a very high information

gain threshold is relatively short, the prolonged response time is still tolerable in most cases.

6 Optimization Issue

In this section, we explore some further optimization technique that may be used to improve the performance of InfoMiner.

It is obvious that, as the algorithm proceeds from patterns with single filled position to more complex ones, we may examine

open positions in different orders. Certainly, the imposed order would affect the performance of InfoMiner in the sense that,

at a given level of the recursion, both the length of projected subsequence and the number of candidate events for an open

position would be different. We now explore this issue in detail and propose some heuristic on how to choose an optimal

order.

Given a pattern prefix p, let Sp be the projected subsequence of p. In order to generate qualified patterns with prefix p,

InfoMiner scans Sp to collect the repetition of each candidate event at each open position and simultaneously compute the

15

projected subsequences of some newly constructed prefixes. Therefore, the length of S p is an important factor towards the

performance of InfoMiner. In general, the length of a projected subsequence is a function of the length of the corresponding

prefix, which decreases as the prefix includes more filled positions. This can be easily observed by examining the projected

subsequences of (a1), (a1, a3), and (a1, a3, a4) in Figure 3(ii)(a), 4(i)(a), and 4(ii)(a), respectively. It would be desirable

if we can minimize the length of the projected subsequence for any given prefix length. To achieve this goal, we propose

a heuristic, namely shortest projection first (SPF), to determine the order to examine the open positions. The basic idea is

that, the length of a projected subsequence that is going to be constructed for a newly generated prefix (in an invocation of

InfoMiner) can be estimated from the repetition of the corresponding candidate event. For instance, the repetition of a 1 at

the first position is 5 in Figure 3(i) and the length of the projected subsequence for (a 1) is going to contain (5+1)×4 = 24

events. Let o1, o2, . . . , ol be the set of open positions and lengthi be the total length of projected subsequences for the

prefix generated by filling position oi with some candidate event. Then, all open positions can be ordered in ascending

order of lengthi. Let’s consider the example in Figure 3(i). If the first position is specified, the total length of all projected

subsequences is (5+1)×4+(3+1)×4 = 40. On the other hand, if we consider the third position first, then the total length

of all resulting projected subsequences is (4+1)×4+(2+1)×4 = 32. Thus the third position should be examined before

the first position according to this order. As a result, the total length of projected subsequences is minimized. This step can

be performed after the Bounded Information Pruning() to provide an order among all open positions. We will show

in Section 7.2.2 that this optimization can produce as much as 40% reduction towards the length of projected subsequences.

7 Experimental Results

We implemented InfoMiner in C programming language on an IBM RS-6000 (300 MHz CPU) with 128MB running AIX

operating system. To analyze the benefits of the information model and the performance of the InfoMiner algorithm, we

employ two real traces and four synthetic traces.

7.1 IBM Intranet and Scour Traces

The IBM Intranet traces consist of 160 critical nodes, e.g., file servers, routers, etc., in the IBM T. J. Watson Intranet. Each

node issues a message in response of certain situation, e.g., CPU saturation, router interface down, etc. There are total 20

types of messages. We treat a certain message from a particular node as a distinct event, thus there are total 500 distinct

events in the trace because a certain type of node may only send out 4 or 5 types of messages. The IBM Intranet trace

consists of 10,000 occurrences of the events. With the support threshold, the 100 most frequent patterns all contain the

“I am alive” message which is a control message that a network node sends out periodically, e.g., every minute. Despite

its high frequency, it is not particularly useful. On the other hand, by applying InfoMiner on this trace, we found some

surprising patterns that are also interesting. For example, the pattern (node a fail, ∗, nodeb saturated, ∗) has the eighth

highest information gain. This pattern means that, shortly after a router (node a) fails, the CPU on another node (nodeb) is

saturated. Under a thorough investigation, we found that node b is a file server and after nodea fails, all requests to some

files are sent to nodeb, which cause the bottleneck. This particular pattern is not even ranked within the top 1000 most

frequent patterns under the support model.

Scour is a web search engine that is specialized for multimedia contents. The web URL of the Scour search engine is

“http://www.scour.net”. The scour servers consist of a cluster of machines. Every five minutes, a distributed sensor records

the CPU utilization of every node and the average is taken as the global CPU utilization level. We discretize the global

CPU utilization level into events: event A stands for the utilization level between 0 and 0.05, B stands for the utilization

level between 0.05 and 0.1, and so on. The scour trace consists of 28800 occurrences of 19 events (100 days). The event

16

corresponding to the utilization between 0.95 and 1 does not occur in the trace.

Since the utilization level of a node is typically around 0.3, most of the frequent patterns consists of symbol F or G,

such as (F, G, ∗) or (G, ∗, F), and so on. However, these patterns are not interesting nor useful. On the other hand, with

the information gain measure, we are able to find some interesting and useful patterns, such as a pattern that S (utilization

[0.9, 0.95]) followed by Q (utilization [0.8, 0.85]), which, in turn, is followed by P (utilization [0.75, 0.8]). This pattern

means that if the nodes are saturated and the response time increases significantly, then many users may stop access the site

shortly after, thus the workload decreases immediately. Although the support of this pattern is low, the information of this

pattern is quite high (ranked as the 8th highest) due to the rare occurrences of S and Q. In the support model, this pattern

is ranked beyond 10,000th. This means that we have to examine more than 10,000 other patterns before discovering this

pattern in the support model. (The complete comparison of the number of patterns found in the information model and the

support model for both IBM trace and Scour trace are shown in Table 1 in Section 1.)

Table 3 shows the number of discovered patterns and the response time under the information model and support model

in the scour trace. In this table, the minimum support threshold (min sup) is set based on the min gain value so that the

patterns found in the support model would include all patterns found in the information model. In addition to the set of

patterns returned by the information model, the support model also discovers a huge number of non-surprising patterns.

This not only creates an encumbrance to the user but also leads to a slower response time. It is easy to see that the response

time of the support model is an order of magnitude slower than that of the information model. In addition, we find that

the bounded information gain pruning is very effective in the sense that more than 95% of the patterns are pruned in this

experiment.

Table 3: Number of Discovered Patterns and Response Time for the Scour Trace

Information Model Support Model

min gain Num. of Patterns Response Time min sup Num. of Patterns Response Time

− log19 0.00001 = 3.91 8 1.5 min 0.000212 16,953 25.2 min

− log19 0.00003 = 3.54 21 2.7 min 0.000208 17,021 27.1 min

− log19 0.0001 = 3.13 53 4.2 min 0.000201 17,605 28.7 min

To further compare the surprising patterns and frequent patterns, we train two classifiers, one based on top 1000 fre-

quent patterns and the other based on top 1000 surprising patterns, to predict whether the system operates normally at any

given time. Each pattern is treated as a feature. The true status of the system (normal versus abnormal) is given by the

administrator. The support vector machine (SVM) is adopted as the classification model. We found that SVM trained on

frequent patterns yields 34.8% adjusted accuracy10 whereas the classifier build upon surprising pattern achieve an adjusted

accuracy of 77.3%. This further demonstrates the superiority of surprising patterns.

7.2 Synthetic Sequences

To analyze the performance of the InfoMiner Algorithm, four sequences are synthetically generated. Each sequence consists

of 1024 distinct events and 20M occurrences of events. The synthetic sequence is generated as follows. First, at the

beginning of the sequence, the period length l of the next pattern is determined, which is geometrical distributed with mean

µl. The number of events in a pattern is randomly chosen between 1 and l. The number of repetitions m of this pattern is

geometrical distributed with mean µm. The events in the pattern are chosen according to a normal distribution. (This means

10The adjusted accuracy is often used when the class distribution is very skewed. Given two classes normal and abnormal, the adjusted accuracy

is defined as
P red(normal)∩Act(normal)

Act(normal) +
P red(abnormal)∩Act(abnormal)

Act(abnormal)
2

where Pred(X) is the percentage of time the classifier predict X and

Act(X) is the percentage of time the class is X.

17

that some events occurs more frequently than other.) However, the pattern may not perfectly repeat itself for m times. To

simulate the imperfectness of the subsequence, we employ a parameter δ to control the noise. δ is uniformly distributed

between 0.5 and 1. With probability δ, the next l events match the pattern. Otherwise, the next l events do not support the

pattern. The replacement events are chosen from the event set with the same normal distribution. This subsequence ends

when there are m matches, and a new subsequence for a new pattern starts. This process repeats until it reaches the end of

the sequence. Four sequences are generated based on values of µ l and µm in Table 4.

Table 4: Parameters of Synthetic Data Sets

Data Set µl µm Distinct events Total Events

l3m20 3 20 1024 20M

l100m20 100 20 1024 20M

l3m1000 3 1000 1024 20M

l100m1000 100 1000 1024 20M

7.2.1 Standard InfoMiner

In this subsection, we analyze the InfoMiner algorithm without the optimization technique presented in Section 6. The

main pruning power of the InfoMiner algorithm is provided by the bounded information gain pruning technique. In our

InfoMiner algorithm, for each prefix, we prune the candidate events on each remaining open position. Although the number

of candidate events on each open position can be |E| theoretically, in practice the average number of candidates in each

open position decreases dramatically with the increase of the number of specified positions (i.e., the length of the prefix).

This is due to the fact that the value of max info is estimated from the candidate event with the highest information on

each open position. Thus, with more positions specified, the max info value decreases. In turn, the min rep threshold

(min rep = � min gain
max info�) increases and more candidate events are pruned. We conduct experiments with our InfoMiner

algorithm on the four synthetic sequences. Figure 5(a) shows the average number of remaining candidate events on each

open position as a function of the number of specified positions (i.e., the length of the prefix). The number of candidate

events decreases dramatically with the number of specified positions. With data set l3m20 and l3m1000, since the average

pattern length is 3, there is no candidate after 5 or 6 positions are specified. In addition, with all four data sets, when the

number of specified positions is greater than 3, the average number of events on each open position is very small (i.e., less

than 0.4). This leads to the overall efficiency of the InfoMiner algorithm.

The overall response time of the InfoMiner algorithm largely depends on the min gain threshold. We ran several tests

on the above data sets with different min gain thresholds. Figure 5(b) shows the response time for each data set. Our

bounded information gain pruning can reduce a large number of patterns. More than 99% of the patterns are pruned. When

the min gain threshold increases, the pruning effect becomes more dominant because more patterns can be eliminated by

the bounded information gain pruning. Thus, the response time improves with increasing min gain threshold on all four

data sets. (Note that the Y-axis is in log scale in Figure 5(a) and (b).) To explore the scalability of the InfoMiner algorithm,

we also experiment with event sequences of different lengths, from 1 million to 100 million. We found that the response

time of InfoMiner is linear with respect to both the length of the event sequence and the period length.

7.2.2 Optimization Technique

In this subsection, we analyze the improvement rendered by the optimization techniques presented in Section 6. The

shortest projection first (SPF) technique reduces the average length of a projected subsequence. Figure 6(a) shows the

18

0 1 2 3 4 5 6 7 8
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of Specified Positions

A
ve

ra
ge

 N
um

. o
f C

an
d.

 E
ve

nt
s

on
 a

 O
pe

n
P

os
iti

on

l3m20
l100m20
l3m100
l100m1000

(a)
5 10 15 20

10
1

10
2

10
3

10
4

min_gain

R
es

po
ns

e
T

im
e

(s
ec

.)

l100m20
l100m1000
l3m20
l3m1000

(b)

Figure 5: Pruning Effects and Response Time

improvement provided by the SPF technique on the synthetic sequences. Since all four synthetic sequences show a similar

rate of improvement, we use the l100m20 sequence as the representative in Figure 6(a). The improvement is measured

as L−Lspf

L where L and Lspf are the average length of a projected subsequence with the standard InfoMiner and with

the SPF technique, respectively. It is evident that the most (accumulative) improvement is achieved when the number of

specified positions is 3. This is due to the fact that when the projected subsequence is substantially long and the candidate

event list of each open position is comparatively large, there exists a relatively large room for further improvement, while

such potential diminishes as the number of specified positions in the prefix increases. Figure 6(b) illustrates the response

time of the InfoMiner algorithm with and without the SPF heuristic. It is obvious that the SPF technique can achieve 20%

improvement on the overall response time of our InfoMiner algorithm.

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Specified Positions

Im
pr

ov
em

en
t

(a)

5 10 15 20
0

500

1000

1500

2000

2500

3000

min_gain

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

.)

without SPF
with SPF

(b)

Figure 6: Improvements of the SPF heuristic

7.2.3 The K Most Surprising Patterns

Let info gain(K) be the Kth highest information gain among all patterns. More specifically, info gain(K) is a mono-

tonic decreasing function of K . Figure 7(a) shows the ratio of the response time of finding the K most surprising patterns

(without knowing the value of info gain(K) in advance) and finding patterns above the given threshold info gain(K).

Obviously, these two settings would produce exactly the same result. The x-axis shows the number of desired patterns, K .

19

The higher the value of K , the less the overhead. (The overhead is less than 5% when K = 1000.) When K is small,

finding the K most surprising patterns is about twice as long as that of find these K patterns when info gain(K) is given.

This is due to the fact that the threshold info gain(K) is relatively high when K is small. Consequently, the overhead

is higher since the mining process takes a relatively longer time to raise min gain (from zero) to the proper threshold

info gain(K).

0 100 200 300 400 500 600 700 800 900 1000
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Number of Qualified Patterns (k)

R
at

io

(a)

0 100 200 300 400 500 600 700 800 900 1000
100

200

300

400

500

600

700

800

900

1000

1100

Number of Qualified Patterns
A

ve
ra

ge
 R

es
po

ns
e

T
im

e
(s

ec
.)

k most surprising patterns
satisfied a threshold

(b)

Figure 7: Performance of mining the K most surprising patterns

Figure 7 (b) illustrates the absolute response time of these two settings. The smaller the value of K , the shorter the

overall response time. This is largely due to the effect of rapid adjustment of the threshold min gain towards the value of

info gain(K) so that a large amount of patterns can be quickly pruned at early stage of the mining process.

8 Conclusions

In this paper, we study the problem of surprising periodic pattern discovery in a data sequence that consists of events with

vastly different occurrence frequencies. Our goal is not to find the patterns that occur often, but rather to discover patterns

that are surprising. Instead of using the support metric, we propose a new metric: information gain. Although the new

metric does not possess the Apriori property as the support metric does, we identify the bounded information gain property

in the information model. Based on the bounded information gain property, we devise a recursive algorithm for mining

surprising periodic patterns by only exploring extensible prefixes. Furthermore, the user has a choice of either specifying a

minimum information gain threshold or specifying the number of most surprising patterns wanted. Last but not least, the

information model can be extended to define both surprising itemsets from transaction database and surprising sequential

patterns from sequence database.

References

[1] R. Agarwal, C. Aggarwal, and V. Prasad. Depth first generation of long patterns. Proc. 6th Intern. Conf. on Knowledge Discovery
and Data Mining (SIGKDD), 108-118, 2000.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. Proc. 20th Int. Conf. on Very Large Data Bases, 487-499,
1994.

[3] R. Agrawal and R. Srikant. Mining Sequential Patterns. Proc. Int. Conf. on Data Engineering (ICDE), Taipei, Taiwan, 3-14, March
1995.

20

[4] G. Berger and A. Tuzhilin. Discovering unexpected patterns in temporal data using temporal logic. Temporal Databases - Research
and Practice, Lecture Notes on Computer Sciences, (1399) 281-309, 1998.

[5] D. Berndt and J. Clifford. Finding patterns in time series: a dynamic programming approach. Advances in Knowledge Discovery and
Data Mining, 229-248, 1996.

[6] C. Bettini, X. S. Wang, S. Jajodia, and Jia-Ling Lin. Discovering frequent event patterns with multiple granularities in time sequences.
IEEE Transaction on Knowledge and Data Engineering, 10(2), 222-237, 1998.

[7] R. Blahut. Principles and Practice of Information Theory, Addison-Wesley Publishing Company, 1987.

[8] S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic Itemset counting and implication rules for market basket data. Proc. ACM
SIGMOD Conf. on Management of Data, 255-264, 1997.

[9] S. Brin, R. Motwani, C. Silverstein. Beyond market baskets: generalizing association rules to correlations. Proc. ACM SIGMOD
Conf. on Management of Data, 265-276, 1997.

[10] A. Califano, G. Stolovitzky, and Y. Tu. Analysis of gene expression microarrays: a combinatorial multivariate approach, IBM T. J.
Watson Research Report, 1999.

[11] S. Chakrabarti, S. Sarawagi, and B. Dom. Mining surprising patterns using temporal description length. Proc. Int. Conf. on Very
Large Data Bases, 606-617, 1998.

[12] E. Cohen, M. Datar, S. Fuijiwara, A. Cionis, P. Indyk, R. Motwani, J. Ullman, and C. Yang. Finding interesting associations without
support pruning. Proc. 16th Int. Conf. on Data Engineering (ICDE), 489-499, 2000.

[13] G. Das, D. Gunopulos, and H. Mannila. Finding similar time series. Proc. European Conf. on Principles of Data Mining and
Knowledge Discovery, 88-100, 1997.

[14] G. Das, K.-I. Lin, H. Mannila, Gopal Renganathan, and Padhraic Smyth. Rule discovery from time series. Proc. Int. Conf. on
Knowledge Discovery and Datamining, 16-22, 1998.

[15] R. Feldman, Y. Aumann, A. Amir, and H. Mannila. Efficient algorithms for discovering frequent sets in incremental databases. Proc.
ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD), 59-66, 1997.

[16] S. Fujiwara, J. Ullman, and R. Motwani. Dynamic miss-counting algorithms: finding implication and similarity rules with confi-
dence pruning. Proc. 16th Int. Conf. on Data Engineering (ICDE), 501-511, 2000.

[17] M. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: sequential pattern mining with regular expression constraints. Proc. Int. Conf. on
Very Large Data Bases (VLDB), 223-234, 1999.

[18] X. Ge and P. Smyth. Deformable Markov model templates for time-series pattern matching. Proc. ACM SIGKDD, 81-90, 2000.

[19] G. Gunopulos, H. Mannila, and S. Saluja. Discovering all most specific sentences by randomized algorithms. Proc. 6th Int. Conf.
on Database Theory, 215-229, 1997.

[20] V. Guralnik, D. Wijesekera, and J. Srivastava. Pattern directed mining of sequence data. Proc. ACM SIGKDD, 51-57, 1998.

[21] V. Guralnik and J. Srivastava. Event detection from time series data. Proc. ACM SIGKDD, 33-42, 1999.

[22] J. Han, W. Gong, and Y. Yin. Mining segment-wise periodic patterns in time-related databases. Proc. Int. Conf. on Knowledge
Discovery and Data Mining, 214-218, 1998.

[23] J. Han, G. Dong, and Y. Yin. Efficient mining partial periodic patterns in time series database. Proc. Int. Conf. on Data Engineering,
106-115, 1999.

[24] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. Proc. ACM SIGMOD Int. Conf. on Management
of Data (SIGMOD), 1-12, 2000.

[25] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. Hsu. FreeSpan: frequent pattern-projected sequential pattern mining.
Proc. Int. Conf. on Knowledge Discovery and Data Mining, 2000.

[26] Y. Huhtala, J. Krkkinen, P. Porkka, and H. Toivonen. TANE: an efficient algorithm for discovering functional and approximate
dependencies. The Computer Journal, 42(2) 100-111, 1999.

[27] E. J. Keogh and P. Smyth. A probabilistic approach to fast pattern matching in time series databases. Proc. Int. Conf. on Knowledge
Discovery and Datamining, 24-30, 1997.

21

[28] M. Klemetinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. Verkamo. Finding interesting rules from large sets of discovered
association rules. Proc. CIKM, 1994.

[29] B. Liu, W. Hsu, and Y. Ma. Mining association Rules with multiple minimum supports. Proc. ACM SIGKDD, 337-341, 1999.

[30] B. Liu, W. Hsu, and Y. Ma. Pruning and summarizing discovered associations. Proc. ACM SIGKDD, 125-134, 1999.

[31] B. Liu, M. Hu, and W. Hsu. Multi-level organization and summarization of the discovered rules. Proc. ACM SIGKDD, 208-217,
2000.

[32] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences. Data Mining and Knowledge
Discovery, vol. 1, no. 3, 259-289, 1997.

[33] H. Mannila, D. Pavlov, and P. Smyth. Prediction with local patterns using cross-entropy. Proc. ACM SIGKDD, 357-361, 1999.

[34] H. Mannila and C. Meek. Global partial orders from sequential data. Proc. ACM SIGKDD, 161-168, 2000.

[35] T. Oates. Identifying distinctive subsequences in multivariate time series by clustering. Proc. ACM SIGKDD, 322-326, 1999.

[36] T. Oates, M. D. Schmill, P. R. Cohen. Efficient mining of statistical dependencies. Proc. 16th Int. Joint Conf. on Artificial Intelli-
gence, 794-799, 1999.

[37] B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. Proc. 14th Int. Conf. on Data Engineering, 412-421, 1998.

[38] B. Padmanabhan and A. Tuzhilin. Pattern discovery in temporal databases: a temporal logic approach. Proc. ACM KDD, 351-354,
1996.

[39] B. Padmanabhan and A. Tuzhilin. A belief-driven method for discovering unexpected patterns. Proc. ACM KDD, 94-100, 1998.

[40] B. Padmanabhan and A. Tuzhilin. Small is beautiful: discovering the minimal set of unexpected patterns. Proc. ACM KDD, 54-63,
2000.

[41] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association rules. Proc. Int. Conf. on
Database Theory, 398-416, 1999.

[42] J. Pei, J. Han, and R. Mao. CLOSET: an efficient algorithm for mining frequent closed itemsets. Proc. ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery, 21-30, 2000.

[43] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and M. Hsu. PrefixSpan: mining sequential patterns by prefix-
projected growth. Proc. IEEE Conf. Data Engineering, 215-224, 2001.

[44] G. Piateski-Shapiro and C. Matheus. The interestingness of deviations. Proc. AAAI Workshop Knowledge Discovery in Databases,
25-36, 1994.

[45] Y. Qu, C. Wang, and X. S. Wang. Supporting fast search in time series for movement patterns in multiple scales. Proc. 7th ACM Int.
Conf. on Information and Knowledge Management, 251-258, 1998.

[46] D. Rafiei. On similarity-based queries for time series data. Proc. 15th Int. Conf. on Data Engineering, 410-417, 1999.

[47] S. Ramaswamy, S. Mahajan, and A. Silberschatz. On the discovery of interesting patterns in association rules. Proc. 24th Intl. Conf.
on Very Large Data Bases (VLDB), 368-379, 1998.

[48] S. Sahar. Interestingness via what is not interesting. Proc. 5th ACM Int. Conf. on Knowledge Discovery and Data Mining (SIGKDD),
pp. 332-336, 1999.

[49] D. Shah, L. Lakshmanan, K. Ramamritham, and S. Sudarshan. Interestingness and pruning of mined patterns. Proc. ACM SIGMOD
Workshop on Research Issues in Datamining and Knowledge Discovery, 1999.

[50] A. Silberschatz and A. Tuzhilin. What makes patterns interesting in knowledge discover systems. IEEE Transactions on Knowledge
and Data Engineering (TKDE) vol. 8 no. 6, pp. 970-974, 1996.

[51] Myra Spiliopoulou. Managing interesting rules in sequence mining. Proc. European Conf. on Principles and Practice of Knowledge
Discovery in Databases, 554-560, 1999.

[52] R. Srikant and R. Agrawal. Mining sequential patterns: generalizations and performance improvements. Proc. 5th Int. Conf. on
Extending Database Technology (EDBT), 3-17, 1996.

[53] S. Thomas and S. Sarawagi. Mining generalized association rules and sequential patterns using SQL queries. Prof. of 4th Intl. Conf.
on Knowledge Discovery and Data Mining (KDD98), pp. 344-348.

22

[54] J. Wang, G. Chirn, T. Marr, B. Shapiro, D. Shasha, and K. Zhang. Combinatorial pattern discovery for scientific data: some
preliminary results. Proc. ACM SIGMOD Conf. on Management of Data, 115-125, 1994.

[55] K. Wang, Y. He, and J. Han. Mining frequent itemsets using support constraints. Proc. Int. Conf. on on Very Large Data Bases,
2000.

[56] J. Yang, W. Wang, and P. Yu. Mining asynchronous periodic patterns in time series data. Proc. ACM SIGKDD Int. Conf. on Knowl-
edge Discovery and Data Mining (SIGKDD), pp. 275-279, 2000.

[57] B. Yi, H.V. Jagadish, and C. Faloutsos. Efficient retrieval of similar time sequences under time warping. Proc. Int. Conf. on Data
Engineering,201-208, 1998.

[58] M. Zaki. Sequence mining in categorical domains: incorporating constraints. Proc. 9th Int. Conf. on Information and Knowledge
Management, 422-429, 2000.

[59] M. J. Zaki. Generating non-redundant association rules. Proc. ACM SIGKDD, 34-43, 2000.

[60] M. Zaki. SPADE: an efficiant algorithm for mining frequent sequences. Machine Learning Journal, special issue on Unsupervised

Learning, 42(1/2), 31-60, 2001.

23

