
Graph Database Indexing Using Structured Graph Decomposition

1
David W. Williams,

2
Jun Huan,

1
Wei Wang

1
Department of Computer Science

University of North Carolina, Chapel Hill
2
Department of Electrical Engineering and Computer Science

University of Kansas
1
{dwwill, weiwang}@cs.unc.edu,

2
jhuan@ittc.ku.edu

Abstract

We introduce a novel method of indexing graph

databases in order to facilitate subgraph isomorphism

and similarity queries. The index is comprised of two

major data structures. The primary structure is a

directed acyclic graph which contains a node for each of

the unique, induced subgraphs of the database graphs.

The secondary structure is a hash table which cross-

indexes each subgraph for fast isomorphic lookup. In

order to create a hash key independent of isomorphism,

we utilize a code-based canonical representation of

adjacency matrices, which we have further refined to

improve computation speed. We validate the concept by

demonstrating its effectiveness in answering queries for

two practical datasets. Our experiments show that for

subgraph isomorphism queries, our method outperforms

existing methods by more than an order of magnitude.

1. Introduction

A graph describes relationships over a set of entities.

With node and edge labels, a graph can describe the

attributes of both the entity set and the relation. Labeled

graphs appear in many research domains such as drug

design [1], protein structure comparison [2], video

indexing [3], and web information [4].

Only recently have graph data management and mining

techniques attracted significant research attention in the

database community. For example, more than 10

algorithms for mining recurring patterns in graph

databases [5] were developed in the past 5 years. In

addition, a growing body of research focuses on graph

database queries, which can be roughly divided into two

classes: pattern matching and similarity search.

In pattern matching, one determines the set of graphs in

a graph database which match a query pattern P. The

term match is made specific by using a matching condition

to decide if a pattern subgraph occurs in a graph. The

most commonly used matching condition is the subgraph

isomorphism test, which determines that a pattern P

matches a graph G if and only if P is a subgraph of G [6].

In similarity search, one looks for graphs in a database

which are similar to a query graph. Here, the term

similarity is defined by a specific procedure. Graph edit

distance [7] is a common way to measure the

(dis)similarity between two graphs, though other measures

exist [8].

Graph similarity search can be divided into two

subgroups. A K-NN query reports the K graphs in a graph

database that are most similar to the query, while a range

query determines all graphs in the database whose

similarity score is within a user-specified tolerance.

In this paper, we focus on deriving efficient index

structure for graphs with limited sizes. The applications of

small graphs include:

• Protein structure motifs. A structural motif is a

recurring geometric arrangement of amino acid

residues in proteins. In general, structural motifs

have 4 to 6 residues. Recent work has discovered

millions of such motifs. Therefore, automated

structural motif recognition within protein

structures is important for a number of applications,

including protein function prediction [9].

• Chemical structures. Most of the chemical

structures, such as those from the NCI/NIH AIDS

antiviral screen test [10], have only a handful of

nodes and edges. As studied in [5], most of these

chemical graphs are sparse and the majority of

recurring components are tree or tree-like patterns.

Pattern matching and similarity search in chemical

databases are important for drug design.

1.1. Challenges

Though studied previously, the search for efficient

methods of answering graph queries remains open.

Essential problems include: (1) how to store graph

databases efficiently, (2) how to define similarity between

graphs, and (3) how to create efficient index structure to

accelerate pattern matching and graph similarity search.

A primary challenge in pattern matching is that pair-

wise comparisons of graphs are usually hard problems.

Subgraph isomorphism is known to be NP-complete [11].

As a result, most meaningful definitions of similarity will

result in NP-hard problems. Even a relatively simple

comparison, graph isomorphism, defies a polynomial

bound for the general case [12]. These costly pair-wise

comparisons, when combined with the increasing size of

modern graph databases, makes finding efficient search

techniques difficult. Even more complications arise from

the many classifications of graphs and the fact that some

techniques apply only for a specific class.

Furthermore, the application of graphs to a wide

variety fields implies that graphs themselves have a wide

variety of interpretations. This poses a challenge when

defining useful similarity measures, even when restricted

to a single domain, such as chemical structures [13]. As

mentioned earlier, edit distance is a commonly used

metric, but other metrics, such as one based upon maximal

common subgraphs, may be more meaningful [8].

1.2. Our Solution

This paper presents the use of a novel graph

decomposition procedure which facilitates the processing

of subgraph isomorphism and similarity queries for graph

databases. Graph decomposition is the process of

deriving component parts from a graph by utilizing a

given set of operations. Several graph decomposition

schemes have been developed, including clique

decomposition, modular decomposition, and NLC

decomposition [14].

Previous work has typically demonstrated its

effectiveness on sparse graphs or planar graphs with

unlabeled edges. The techniques we present in this paper,

although applicable to any small graph, are notably

effective for processing dense graphs with labeled edges.

The algorithms presented herein quickly identify sub-

isomorphic relationships between the database graphs,

allowing for more compact indexes when the graphs have

a high degree of similarity. Moreover, our indexing

scheme is particularly well-suited to answer subgraph

isomorphism queries using far less computation time than

other methods.

1.3. Related Work

Several recent research efforts have focused on

preprocessing graph databases with the goal of improving

query times.

B.T. Messmer et al. proposed a decision-tree approach

for indexing models for isomorphism and subgraph

isomorphism [3]. This method generates answers in

polynomial time, at the cost of an index which is

exponential in size with respect to database size.

GraphGrep, developed by Shasha et al., indexes graphs

by enumerating paths through each graph in a database

[15]. GraphGrep has a notable advantage in that its index

is not exponential with respect to graph size. However, it

is exponential with respect to path length, which is a

primary factor in the power of the index.

Yan et al. introduced a method for indexing subgraph

isomorphism queries based on selectively using frequently

occurring subgraphs as features [16]. By enumerating

subgraphs instead of paths, their filtering methods are

more selective. When compared with GraphGrep, their

search engine, gIndex, achieves significant improvements

in both index size and query time. Recently, they have

extended the concept to produce an engine named Grafil,

which processes similarity queries [17].

He et al. indexed graphs using a novel data structure, a

closure tree, also referred to as a C-tree [7]. C-trees use

graph closures, which is a form of bounding box for

graphs. The usage of C-trees closely parallels that of R-

trees.

Another approach, used by Srinivasa et al., uses

multiple reference techniques, including an allowance for

user-defined schema [18,19]. The result is a flexible

database system, GRACE, which enables users to limit

query search spaces to achieve faster results.

In addition to the more generalized work on graph

indexing, graph decomposition has been directly applied

to answering questions of isomorphism and subgraph

isomorphism. Graph decomposition into trees has been

used for these problems, notably for planar graphs

[20,21]. In the case of database indexing, Wang et al.

have detailed methods for matching three-dimensional

graphs with model graphs, via decomposition to rigid

structures [22].

1.4. Organization

This paper is organized as follows. In Section 2, we

present the preliminary concepts of labeled graphs,

subgraph isomorphism, graph canonical representations,

and subgraph mismatch scores. Readers familiar with

these concepts may skip the section. Section 3 presents

our graph index. Section 4 and Section 5 apply our graph

index for subgraph query and similarity search,

respectively. In Section 6, we outline our experimental

results with a real-world graph database and a synthetic

database. Section 7 concludes our paper.

2. Preliminary Concepts

This section presents the key concepts, notations, and

terminology used in this paper, which include: labeled

graphs, subgraph isomorphism, graph canonical

representation, and subgraph mismatch score.

2.1 Labeled Graphs

A labeled graph is a four-element tuple G = (V, E, Σ,

λ) where V is a set of vertices and E ⊆ V × V is a set of

undirected edges joining two distinct vertices. Σ is the set

of vertex and edge labels and λ : V ∪ E → Σ maps

vertices and edges to their labels. The size of a graph is

the number of its vertices. A graph database is a

collection of labeled graphs. Figure 1 provides an

example of a graph database composed of four graphs,

{G1, G2, G3, G4}.

C

B B

D

B B

C

B B

A C

B B

G1 G2 G3 G4

Figure 1. A graph database.

2.2. Subgraph Isomorphism

Given two graphs G, G’ we define that the graph G=(V,

E, Σ,λ) is subgraph isomorphic to G’=(V’, E’, Σ’, λ’),

denoted by G ⊆ G’, if there exists a 1-1 mapping f : V [G]

→ V [G’] such that:

• for all v in V, λ(u) = λ’(f(u)),

• for all (u, v) in V × V, (u, v) ∈ E implies (f(u),

f(v)) ∈ E’, and

• for all (u, v) in E, λ(u, v) = λ’(f(u), f(v))

where V and E are the vertex and edge sets of the graph G,

respectively. E’ is the edge set of G’. The mapping f is

defined as a subgraph isomorphism from G to G’. A

graph G is an induced subgraph of G’ if G ⊆ G’ and G

preserves all edges in G’, i.e. E[G] = V[G] × V[G] ∩

E[G’].

In Figure 1, G3 and G4 are subgraph isomorphic to G1,

but G2 is not subgraph isomorphic to G1. Further, G3 is an

induced subgraph of G1, while G4 is not.

2.3. Graph Canonical Form

We represent a graph G by an adjacency matrix M.

Slightly different from an unlabeled graph, a diagonal

entry of M in our representation is the label of the

corresponding vertex in G and every off-diagonal entry is

the label of the corresponding edge in G, or zero if there is

no edge. For graphs with unlabeled edges, a one denotes

that the edge exists, while a zero indicates it does not.

Given an n × n adjacency matrix M of a graph with n

vertices, we define the code of M, denoted by code(M), as

the sequence of lower triangular entries of M (including

the diagonal line) in the order:

M1,1, M2,1, M2,2, …, Mk,1, Mk,2, …, Mk,k, ... , Mn,n

where 1 ≤ k ≤ n and Mi,j is the entry at the ith row and jth

column in M. We assume the rows (columns) in M are

numbered 1 through n from top to bottom (from left to

right). For a graph G, the canonical code of G, denoted by

φ(G), is the maximal code among all of its possible codes,

when the codes are compared lexicographically. This

canonical representation is used in [23].

Assuming a lexicographical ordering B > C > 1 > 0,

the possible codes for G4 in Figure 1 are B1C01B,

B0B11C, and C1B10B. Of these, B1C01B is the

canonical code.

2.4. Subgraph Mismatch Score

Given two simple graphs g and g’, we can construct

two equivalent complete graphs G,G’ in which we use

edges with null labels to represent missing edges in g and

g’.. Given G, G’,, and an injective mapping f : V [G] → V

[G’], we define the mapping-induced subgraph mismatch

score from G to G’ as:

df(G, G’) = Σ[λ(u) ≠ λ’(f(u))] + Σ[λ(u,v) ≠ λ’(f(u,v))],

∀ (u ∈ V[G], v ∈ E[G]).

That is, the mapping-induced subgraph mismatch score

is the number of mismatched vertex and edge labels under

a mapping. The subgraph mismatch score from G to G’,

denoted as d(G, G’) is the minimal mapping-induced

subgraph mismatch score for all possible mappings. Note

that, if the size of G is larger than the size of G’, no

injective mapping exists. In this case, the subgraph

mismatch score from G to G’ is infinite.

In Figure 1, d(G2, G1) = 1, d(G3, G2) = 1, d(G4, G3) =

1, and d(G3, G1) = 0.

3. Graph Decomposition

For the remainder of this paper, we use the term graph

decomposition to denote the enumeration of all connected,

induced subgraphs of a given graph. Each enumerated

subgraph is unique with respect to isomorphism; only the

canonical instance is enumerated for each automorphism

group. Note that any graph decomposition will contain

both the original graph, as well as a null graph with no

vertices or edges.

A graph of size n decomposes into at most 2
n

subgraphs. This occurs in the case of a complete graph in

which each of the vertices has a unique label. Due to

isomorphism, a complete graph with multiple occurrences

of the same label may decompose into fewer subgraphs.

If all labels are identical, a complete graph of size n

decomposes into just n+1 subgraphs (one for each size,

size = 0 to n).

3.1. Notations

G A graph database

P, Q, G Single graphs

φ(G) The canonical code of G

d(P, Q) Subgraph mismatch score between P and Q

GDI Graph decomposition index

H The hash table in GDI

DAG Directed acyclic graph

3.2. Graph Decomposition DAG

We construct a Directed Acyclic Graph (DAG) to

describe the results of a graph decomposition of a graph G

in the following way.

• Each node is a subgraph P of G

• For two nodes P and Q, there is a directed link

from P to Q if

o P ⊂ Q and

o There exists no graph P’ such that P ⊂ P’

⊂ Q.

We call such constructed DAG the graph

decomposition DAG. In the graph decomposition DAG of

a graph G, there is always one node that represents G, and

one node that represents the null graph. The children of a

node P are all graphs Q for which (P, Q) is a directed link

in the DAG. The descendents of a node P are all nodes

that are reachable from P in the DAG.

For brevity, we use the term node to refer to a node

within a DAG, and the term vertex to refer to a component

of a graph that is being decomposed. Similarly, we use

the term link to denote a connection between nodes in a

DAG, and the term edge to denote a connection between

vertices. Further, nodes have the properties of their

represented graphs. Namely, nodes have a size which is

equivalent to the size of their represented graph. In

addition, a node is considered a subgraph of any node for

which the relation holds with respect to their represented

graphs.

Figure 2 provides an example of the graph

decomposition DAG of a graph. For purposes of

illustration, we use a complete graph without edge labels.

Each node in the graph decomposition DAG is labeled

with a shorthand notation which denotes the vertex labels

of its represented graph.

A C

B B

A C

B B

A B C

AB AC BB BC

ABB ABC

ABBC

BBC

Figure 2. Decomposition of a complete graph.

A decomposition DAG of an n-sized graph is described

as being composed of n+1 tiers. The m
th
 tier is comprised

of all nodes of size m. The 0
th
 tier always contains one

node, which is the null graph. Similarly, the n
th
 tier also

contains one node, which represents the entire original

graph. The combinatorial nature of the decomposition

leads to the (n/2)
th
 tier being the largest, and organizing

the DAG into horizontal rows based on tiers results in a

roughly diamond pattern.

3.3. Hashing Graph Decompositions

We use a hash table to index the subgraphs enumerated

during graph decomposition. To hash a graph, we

compute the canonical form of its adjacency matrix. The

hash key is then determined from the string given by the

canonical code. Using this method, all isomorphic graphs

produce the same hash key. All entries in the hash table

are in canonical form, and only one entry is made for each

unique canonical code.

The hash table enables a lookup function to quickly

locate a node in the decomposition DAG which is

isomorphic to a query graph, if it exists. Doing so is a

two-step process. First, we compute the hash key from the

query’s canonical code. From this, we obtain candidate

matches and their canonical codes. In the second step, we

verify candidate canonical codes with the query’s

canonical code. If the codes match exactly, then this

indicates that the candidate is an isomorphic match to the

query graph.

The validation step described above is necessary for

two reasons. First, hash keys are not guaranteed to be

unique to a given canonical code; canonical codes are

sequences of variable length and thus cannot be uniquely

mapped to hash keys represented by far fewer bits.

Second, the size of the hash table is limited to an a priori

estimate of the number of entries it will contain.

Therefore, mapping hash keys to the hash table may cause

several graphs to be within a single table entry.

Comparing canonical codes removes this ambiguity.

3.4. Graph Decomposition Indexes

While a graph decomposition DAG can represent the

decomposition of a single graph, it can also be applied to

a collection of graphs in order to provide an indexing

structure. A Graph Decomposition Index (GDI) contains

two indexing structures. The first structure is a graph

database DAG (or simply a DAG) which is merged from

the graph decomposition DAGs of all the database graphs.

The second structure is a hash table that cross-references

nodes in the database DAG. Algorithm 1 outlines a

method for constructing a GDI from a database of graphs.

Algorithm 1. GDI Construction

Construct(G)

 H := ∅

 DAG := ∅

 for each G ∈ G do

 V[DAG] := V[DAG] ∪ {G}

 H[φ(G)] = G

 Decompose(G, GDI, H)

 end do

return (GDI, H)

Decompose(G, DAG, H)

 for each v ∈ V[G] do

 G’ := G – v

 V[DAG] := V[DAG] ∪ {G}

 E[DAG] := E[DAG] ∪ {(G’, G)}

 H[φ(G’)] = G’

 decompose(G’, DAG, H)

 end do

Here we use the notation G’ := G – v to denote an

operation that creates a new graph G’ from G by deleting

a node v and all the edges incident with v in G.

A B C D

AB AC BB BC BD

ABB ABC BBD

ABBC

BBC BBC

G1

G2G3 G4

Figure 3. A graph database DAG.

Figure 3 illustrates the DAG index constructed for the

graph database illustrated in Figure 1. In the illustration,

nodes that represent the four original database graphs are

shaded. The other nodes in the DAG are used to index

those graphs.

The total number of nodes in the GDI is bounded by

O(k2
n
), where n is the maximum size of any database

graph and k is the number of graphs in the database. Any

given node of size m has at most m parents, each

corresponding to the removal of a different vertex. This

limit bounds the maximum number of links in the GDI.

Since any node in the GDI can be stored using a reference

to database graph and the subset of the m vertices which it

includes, a node can be stored in O(m) space. Therefore,

the space overhead of the DAG index is O(kn(2
n
)).

Although the index requirement is exponential in the

general case, a limit placed on the size of the database’s

graphs results in a space requirement which is linear with

respect to database size. In addition, any subgraphs

common to more than one database graph are instantiated

only once, which can substantially reduce the size of the

index. Thus, a GDI can be used for any database

containing a large number of relatively small graphs,

especially when these graphs have substantial overlap.

4. Subgraph Isomorphism Queries

Algorithm 2 sketches a method to answer a subgraph

isomorphism query quickly through the use of a pre-

computed GDI. From the definition of subgraph

isomorphism, the query must be isomorphic to a subgraph

of each graph in the answer set. Therefore, it is sufficient

to locate the node in the GDI which is isomorphic to the

query, and report all descendents of the node which

correspond to database graphs. When there is no

matching to the query, the answer set is empty.

Algorithm 2. Subgraph Isomorphism Query

SubGraph Isomorphism Search(G)

 ans := ∅

 visited := ∅

 v := H(φ(G))

 if v exists then Visit(v, ans, visited)

 return ans

Visit(v, ans, visited)

 visited := visited ∪ {v}

 if v represents a database graph G then

 ans := ans ∪ {G}

 endif

 for each child u of v do

 if u ∉ visited then Visit(u, ans)

 end for

5. Similarity Queries

The answer set of a similarity range query is the set of

all database graphs for which the subgraph mismatch

score from the query graph to the database graph is less

than or equal to the query’s range. Based upon our

definition of subgraph mismatch score in Section 2.4,

vertex and edge substitutions are allowed at unit cost.

Any number of vertices, along with their associated edges,

may be added to the query at no cost. However, no

vertices may be deleted. For this reason, similarity

queries can be conceptualized as being determined by

subgraph similarity; subgraph mismatch score is the

minimum number of vertex and edge mismatches between

the query graph and any identically-sized subgraph of a

candidate graph, over all possible mappings.

The algorithms presented herein process similarity

queries using only comparisons of graphs of equal size.

This is accomplished by decomposing the query itself and

sequentially comparing its component subgraphs with

subgraphs stored in the GDI. The goal of the search is to

identify the set of all nodes which are of the same size as

the query graph and within the specified range. Once the

algorithm identifies this set of nodes, it visits the nodes

sequentially and reports any database graphs that they or

their descendents represent.

Due to the inherent NP-hardness of the problem, it may

be necessary to perform an exhaustive search in order to

find an optimal graph mapping. This exhaustive search

can become computationally prohibitive. Approximate

mapping techniques, such as the neighbor-based mapping

algorithm [7], can alleviate this problem. However, our

work has been focused on guaranteeing complete answers.

Fortunately, in the case of near-neighbor searches,

where the query range is relatively small, exhaustive

search for the optimal mapping is not required. Thus, we

present two algorithms that process similarity queries.

The first is an efficient algorithm for near-neighbor

searches. The second algorithm processes similarity

queries for any range. Finally, we outline an additional

approach for far-neighbor searches. .

5.1. Near-Neighbor Queries

Given a similarity query with range d and size s, we

define it as a near-neighbor query if d is less than s. When

the relation d < s holds, any graph in the answer set must

share a subgraph in common with the query. Further, this

common subgraph must be of at least size s-d.

As an informal proof of this fact, observe that for any

query graph P and answer graph G, there exists an optimal

mapping for which the subgraph mismatch score from P

to G is less than or equal to d. From our definition of

subgraph mismatch score, there exist at most d

mismatched vertex/edge labels. Any chosen mismatch

can be eliminated by removing a single mapped pair of

vertices from P and G. Iteratively eliminating mismatches

in this manner removes at most d mapped pairs of

vertices, leaving subgraphs of P and G, which are

isomorphic and of minimum size s-d.

Algorithm 3 presents a “quick start” method that

utilizes common subgraphs to quickly search for near-

neighbors. First, it decomposes the query into a query

DAG (and its related hash table). It then locates matches

for the query’s subgraphs of size s-d in the decomposition

DAG, using any such matches and their known

isomorphic mappings as a basis for the search.

From each isomorphic node in the decomposition

DAG, the algorithm performs a depth-first search by

testing the mapping-induced subgraph mismatch score

from all children to all of the children of the

corresponding node in the query DAG. When a pair-wise

score is within the query’s range, the search continues by

advancing to the next tier. Any path that progresses past

the s
th
 tier indicates that an answer has been found. In this

case, the algorithm records the GDI node for later

visitation.

Whenever the depth-first search reaches a pair of nodes

on the s
th
 tier, or when there are no remaining pairs of

children to compare, the search algorithm backtracks. It

returns to the previous tier and continues comparing that

tier’s children were it had left off.

When determining the subgraph mismatch score

between two children, Algorithm 3 avoids an exhaustive

search for the optimal mapping. At each step, the

mapping between the children is determined by using the

mapping between their parents. The new vertices, one of

which belongs to each child, form a new mapped vertex

pair that is added to the previous mapping. Because the

initial mapping is given from an isomorphic match, the

result is that the mapping is always known.

If graphs are decomposed without testing for

connectivity (or in the case that database contains only

complete graphs), the completeness of the answer is

guaranteed, due to the redundancy present in the DAG.

Observe that from any node to any of its descendents,

there exists a path which represents the addition of

vertices for any ordering of those vertices. Hence, from a

given node, Algorithm 3 considers all possible mappings

for new vertices. Further, since it uses every subgraph of

the query of size s-d, it considers all mappings between

each candidate answer and the query which are necessary

to produce a complete answer.

Algorithm 3. Near-Neighbor Similarity Query

nnSearch(G, d)

 vis := ∅

 qDAG := ∅

 qH := ∅

 decompose(G, qDAG, qH)

 for each Q in qDAG and |Q| = |G| – d do

 P := H (φ(Q))

 if P exists and d(P, Q) <= d then

 DFS(P, Q, G, d, vis)

 end if

 end for

 ans := ∅

 for each v in vis do

 visited := ∅

 Visit(v, visited, ans)

 end do

 return ans

DFS(P, Q, G, d, vis)

 if Q = G then

 vis := vis + {P}

 return

 else

 for each (P’, Q’)∈ C[P] × C[Q] do

 if d(P’, Q’) <= d then

 DFS(P’, Q’, G, d, vis)

 end if

 end for

 end if

We use C[G] to denote the children of a node G in the

DAG of the related GDI index. The function d computes

the subgraph mismatch score of graphs, as defined in

Section 2.4.

5.2. Queries for Greater Ranges

When query range exceeds the query size, then there is

no guarantee that a graph in the answer set has an induced

subgraph that is identical to a subgraph of the query.

Thus, the information stored in the GDI is of less use for

such queries. This is an inherent difficulty when applying

index structures to answer similarity queries. In addition,

the larger mismatch tolerances mean that branch-and-

bound techniques are able to prune fewer possibilities

when searching for the optimal mapping between

candidates and the query.

Algorithm 4 shows a method to compute the complete

answer set for queries of any range. The basic approach is

to compare the query to all nodes in the GDI that are of

identical size. A depth-first branch-and-bound search is

used to find a mapping which meets the range

requirement. If such a mapping is found, then the GDI

node is visited to expand the answer set. Using this

method, it is possible to report multiple answers from a

single comparison of two small graphs.

Algorithm 4. General Similarity Query

SimilaritySearch(G, d)

 ans := ∅

 visited := ∅

 for each G’ in DAG such that |G’| = |G| do

 F := ∅

 if match(G, G’, F, d) then

 Visit(G’, ans, visited)

 end if

 end do

 return ans

Match(G, G’ , F, d)

 If (G := ∅) then

 return true

 end if

 for each (u, v) ∈ V[G] × V[G’] do

 F := F ∪ {(u,v)}

 if (df(G, G’) ≤ d) then

 P := G – u

 Q := G’ – v

 if (Match(P, Q, F, d)) then

 return true

 end if

 end if

 F := F - {(u,v)}

 end do

 return false

We construct an injection f from F by letting f(u) = v for

all (u, v)∈F. Here, dF is the mapping-induced subgraph

mismatch score, defined in Section 2.4.

5.3 Queries for Far-Neighbors

It is possible to optimize searches for far-neighbor

searches. For example, a query might be interested in

locating all database graphs which share no vertex labels

in common with the query graph. Such a query can be

performed by processing all size 1 nodes in the DAG and

marking each node that has a vertex matching any vertex

of the query graph. The descendents of these marked

nodes contain all database graphs which have at least one

vertex in common with the query graph. Thus, the answer

set for the query is the set of all database graphs minus

these descendents. This approach of computing an answer

set and taking its compliment can be generalized to an

algorithm for Far-neighbor searches.

6. Experimental Results

In order to evaluate the performance of the algorithms

presented in Sections 3 through 5, we developed a search

engine named GDIndex. GDIndex was implemented in

C++ and compiled using Microsoft Visual Studio 6.0.

We used C-tree, which was developed and provided by

He et al. [7], as a performance comparison. C-tree was

implemented in Java and compiled using Sun JDK 1.5.0.

All experiments were made using a 3 GHz Pentium 4

workstation with 1 GB of memory and Windows XP.

Index construction times reported for both GDIndex and

C-tree include time required to write the index to disk.

The reported index space requirements are the size of the

index files created by their respective applications. Time

performance measurements for C-tree were reported by C-

tree itself. Query times were measured while maintaining

the index in main memory.

6.1. Datasets

Performance was measured using two datasets. The

first was a protein motif dataset, derived from protein

structure information obtained from the Protein Data Bank

[24]. The protein motif dataset is a collection of graphs

constructed from mining protein graphs for frequent

patterns [23]. Each graph encodes the structure of a

reoccurring three-dimensional protein structure. The

vertices are used to represent amino acid residues, with

discrete edge labels encoding all pair-wise distances

between them. The second dataset was a synthetic dataset

generated using software developed by Kuramochi et al.

[25].

The protein motif database represents a database of

complete, edge-labeled graphs. It consists of 10000

complete graphs with an average of 6.3 vertices. The

maximum graph size, a primary factor in the performance

of GDIndex, is 11. In contrast, the synthetic dataset

represents a database of sparse graphs without edge labels.

It consists of 10000 graphs with an average of 9.27

vertices and 10.65 edges. The maximum graph size for

this data set is 21.

For both datasets, we report the index size and index

construction times for random subsets of the dataset. Our

results also show the average query times for various sizes

of subgraph isomorphism queries. In the case of

similarity queries, we demonstrate the effects of varying

range as well. Query graphs were obtained randomly

from the set of all canonical subgraphs that are

represented in the dataset.

6.2. Protein Motif Index Performance

For the protein motif dataset, Figure 4 shows a

comparison of the index size and index construction time

for both GDIndex and C-tree. The superior performance

of GDIndex is primarily attributable to the ability of

GDIndex to identify sub-isomorphic relationships between

the database graphs.

0 2000 4000 6000 8000 10000
10

2

10
3

10
4

10
5

Database Size

In
d
e
x
 S

iz
e
 (
k
b
)

GDIndex

C-tree

0 2000 4000 6000 8000 10000
10

1

10
2

10
3

10
4

Database Size

C
o
n
s
tr
u
c
ti
o
n
 T

im
e
 (
m

s
)

GDIndex

C-tree

 (a) (b)

Figure 4. Index Size(a) and

Construction Time(b).

In Figure 5, we show the performance of GDIndex as

measured by average query time. The subgraph

isomorphism test was conducted using the set of all

subgraphs of the database graphs. For the similarity

search, we tested performance using 100 random database

subgraphs for each size, s = {3, 5, 7, 9}. Note that as the

range increases beyond a certain threshold, query times

begin to decrease. Since most of the graphs in the

database are obviously within the search range, there are

many mappings between the graph and the query which

meet such lax criteria. Once any such mapping is

discovered, that graph is declared a match and no further

mappings need to be explored.

2 4 6 8 10 12

10
0

10
-2

10
-4

10
2

Query Size (Vertices)

A
v
e
ra

g
e
 Q

u
e
ry

 T
im

e
 (
m

s
)

GDIIndex

C-tree

0 5 10 15 20
10

-2

10
0

10
2

10
4

Range (Max. Edit Distance)

A
v
e
ra

g
e
 Q

u
e
ry

 T
im

e
 (
m

s
)

Query size = 3

Query size = 5

Query size = 7

Query size = 9

 (a) (b)

Figure 5. Subgraph Isomorphism Query

Time(a), Range Similarity Query (b).

Because the implementation of C-tree does not handle

edge labels, it was necessary to insert an additional vertex

for each edge to encode this information. Since the edge

and vertex labels were drawn from disjoint sets, there

could be no ambiguity between edges and vertices. This

enabled a performance comparison to be made in the case

of subgraph isomorphism queries, where the computed

answers were the same. However, the translation is not

valid for similarity queries, since they permit the insertion

and deletion of edges. Hence, we present only the

performance of GDIndex with regard to similarity queries.

6.3. Synthetic Dataset

The synthetic dataset contains larger graphs than the

graphs in the protein motif dataset. It is primarily for this

reason that GDIndex creates a larger index than C-tree, as

shown in Figure 6.

0 2000 4000 6000 8000 10000
10

2

10
3

10
4

10
5

Database Size

In
d
e
x
 S

iz
e
 (
k
b
)

GDIndex

C-tree

0 2000 4000 6000 8000 10000
10

2

10
3

10
4

Database Size

C
o
n
s
tr
u
c
ti
o
n
 T

im
e
 (
m

s
)

GDIndex

C-tree

 (a) (b)

Figure 6. Index Size(a) and

Construction Time(b).

For the synthetic dataset, GDIndex computes answer

sets which differ from the answer sets given by C-tree.

This is because C-tree tests for subgraph isomorphism,

while GDIndex tests for induced subgraph isomorphism,

and because the queries are no longer complete graphs, as

is the case with the protein motif dataset. Thus, the

subgraph isomorphism times for C-tree are not presented

with the times for GDIndex in Figure 7. Nevertheless,

Figure 7 shows that query times average significantly less

than a millisecond.

Similarity query responses also differed in this test.

GDIndex computes a complete answer for similarity

queries, while C-tree computes an approximate answer.

For this dataset, there were many cases for which C-tree

failed to return a single graph which was within the range,

although hundreds of valid answers existed. Since it was

observed that C-tree finds far fewer matches than

GDIndex (albeit in much less time), it is inappropriate to

compare query times. Thus, Figure 1 shows the query

times for GDIndex only.

2 4 6 8 10 12
10

-3

10
-2

10
-1

10
0

Query Size (Vertices)

A
v
e
ra

g
e
 Q

u
e
ry

 T
im

e
 (
m

s
) GDIIndex

0 5 10 15 20

10
0

10
5

Range (Max. Edit Distance)

A
v
e
ra

g
e
 Q

u
e
ry

 T
im

e
 (
m

s
)

Query size = 3

Query size = 5

Query size = 7

Query size = 9

 (a) (b)

Figure 7. Subgraph Isomorphism Query

Time(a), Range Similarity Query Time(b).

7. Conclusions and Future Work

Our graph indexing approach showed dramatic

improvements in query times for subgraph isomorphism

queries. It was also able to generate complete answers for

a meaningful range of similarity searches within 1 second.

In addition, in the case of the protein motif database, it

accomplished these times using a significantly smaller

index than C-tree.

In the future, we will attempt to improve query times

for similarity queries with greater ranges. Additionally,

since our current approach is limited to databases

containing only small graphs (less than ~20 nodes), we

will explore methods intended to extend this technique to

databases with larger graphs.

Our method of graph decomposition appears well-

suited to answering questions concerning common

subgraphs. For this reason, we will investigate its use in

other applications, such as pattern mining. This may also

lead to exploring the use of similarity metrics other than

edit distance, such as the metric presented in [8].

Finally, we will investigate the use of yet more,

domain-specific, similarity metrics. In particular, we will

work to develop similarity metrics useful for comparing

protein structures.

8. Acknowledgements

This work is supported by NSF grants IIS-0513789 and

CCF-0523875, a Microsoft eScience Award, and a

Microsoft New Faculty Fellowship. We thank H. He and

A. K. Singh for providing the code of C-tree, and M.

Kuramochi and G. Karypis for providing the synthetic

graph generator.

9. References

[1] Christian Borgelt, and Michael R. Berthold. “Mining

Molecular Fragments: Finding Relevant Substructures of

Molecules”, ICDM, 2002, pp. 51-58.

[2] J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink, J. Prins,

and A. Tropsha, “Mining Protein Family Specific Residue

Packing Patterns from Protein Structure Graphs”, In

Proceedings of the 8th Annual International Conference on

Research in Computational Molecular Biology (RECOMB),

2004, pp. 308-315.

[3] B. T. Messmer, and H. Bunke, “A Decision Tree Approach

to Graph and Subgraph Isomorphism Detection”, Pattern

Recognition, December 1999, Vol. 32, No. 12, pp. 1979-1998.

[4] S. Raghavan and H. Garcia-Molina, “Representing Web

Graphs”, In Proceedings of the IEEE Intl. Conference on Data

Engineering, 2003.

[5] J. Huan, W. Wang, J. Prins, and J. Yang, “SPIN: Mining

Maximal Frequent Subgraphs from Graph Databases”, In

Proceedings of the 10th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2004,

pp 581-586.

[6] J. R. Ullman, “An Algorithm for Subgraph Isomorphism”,

Journal of the Association for Computing Machinery, 1976,

Vol. 23, pp. 31-42.

[7] H. He, and A. K. Singh, “Closure-Tree: An Index Structure

for Graph Queries”, ICDE’06, Atlanta, Georgia, 2006.

[8] H. Bunke, and K. Shearer, “A Graph Distance Metric Based

on the Maximal Common Subgraph”, Pattern Recognition

Letters, 1998, Vol. 19, No. 3-4, pp. 255-259.

[9] D. Banyopadhyay, J. Huan, J. Liu, J. Prins, J. Snoeyink, A.

Tropsha, and W. Wang, “Using Fast Subgraph Isomorphism

Checking for Protein Functional Annotation Using SCOP and

Gene Ontology”, UNC CS Technical Report, 2005.

[10] National Cancer Institute, http://www.nci.nih.gov/.

[11] M. R. Garey, and D. S. Johnson, Computers and

Intractability, W. H. Freeman and Company, New York, New

York, 1979.

[12] S. Fortin, “The Graph Isomorphism Problem”, Technical

Report, The University of Alberta, July 1996.

[13] P. Willett, J. Barnard, and G. Downs, “Chemical similarity

searching”, J. Chem. Inf. Comput. Sci., 1998, Vol. 38, No. 6,

pp. 983-996.

[14] O. Johansson, “Graph Decomposition Using Node Labels”,

Doctoral Dissertation, Royal Institute of Technology,

Stockholm, 2001.

[15] D. Shasha, J. T. L. Wang, and R. Giugno, “Algorithmics

and Applications of Tree and Graph Searching”, 2002.

[16] X. Yan, P. S. Yu, and J. Han, “Graph Indexing Based on

Discriminative Frequent Structure Analysis”, ACM Transactions

on Database Systems (TODS), December 2005.

[17] X. Yan, P. S. Yu, and J Han, “Substructure Similarity

Search in Graph Databases”, SIGMOD Conference, ACM Inc.,

Baltimore, Maryland, 2005.

[18] S. Srinivasa, M Maier, and M. Mutalikdesai, “LWI and

Safari: A New Index Structure and Query Model for Graph

Databases”, COMAD 2005, Goa, India, January 2005.

[19] S. Srinivasa, and M. Harjinder Singh, “GRACE: A Graph

Database System”, COMAD 2005b, Hyderabad, India,

December 2005.

[20] J. P. Kukluk, L. B. Holder, and D. J. Cook, “Algorithm and

Experiments in Testing Planar Graphs for Isomorphism”,

Journal of Graph Algorithms and Applications, 2004, Vol. 8,

No. 2, pp. 101-104.

[21] D. Eppstein, “Subgraph Isomorphism in Planar Graphs and

Related Problems”, Journal of Graph Algorithms and

Applications, 1999, Vol. 3, No. 3, pp. 1-27.

[22] X. Wang, J. T. L. Wang, D. Shasha, B. Shapiro, I.

Rigoutsos, and K. Zhang, “Finding Patterns in Three

Dimensional Graphs: Algorithms and Applications to Scientific

Data Mining”, IEEE Transactions on Knowedge and Data

Engineering, July/August 2002, Vol. 14, No. 4, pp. 731 – 749.

[23] J. Huan, W. Wang, and J. Prins, “Comparing Graph

Representations of Protein Structure for Mining Family-Specific

Residue-Based Packing Motifs”, Journal of Computational

Biology(JCB), Vol. 12, No. 6, pp.657-671, 2005.

[24] The Protein Data Bank, http://www.pdb.org/.

[25] M. Kuramochi and G. Karypis, “Frequent Subgraph

Discovery”, ICDM, 2001.

