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Abstract 
 

We introduce a novel method of indexing graph 

databases in order to facilitate subgraph isomorphism 

and similarity queries.  The index is comprised of two 

major data structures.  The primary structure is a 

directed acyclic graph which contains a node for each of 

the unique, induced subgraphs of the database graphs.  

The secondary structure is a hash table which cross-

indexes each subgraph for fast isomorphic lookup.  In 

order to create a hash key independent of isomorphism, 

we utilize a code-based canonical representation of 

adjacency matrices, which we have further refined to 

improve computation speed.  We validate the concept by 

demonstrating its effectiveness in answering queries for 

two practical datasets.  Our experiments show that for 

subgraph isomorphism queries, our method outperforms 

existing methods by more than an order of magnitude. 

 

1. Introduction 
 

A graph describes relationships over a set of entities.  

With node and edge labels, a graph can describe the 

attributes of both the entity set and the relation.  Labeled 

graphs appear in many research domains such as drug 

design [1], protein structure comparison [2], video 

indexing [3], and web information [4].  

Only recently have graph data management and mining 

techniques attracted significant research attention in the 

database community.  For example, more than 10 

algorithms for mining recurring patterns in graph 

databases [5] were developed in the past 5 years. In 

addition, a growing body of research focuses on graph 

database queries, which can be roughly divided into two 

classes: pattern matching and similarity search.  

In pattern matching, one determines the set of graphs in 

a graph database which match a query pattern P.  The 

term match is made specific by using a matching condition 

to decide if a pattern subgraph occurs in a graph.  The 

most commonly used matching condition is the subgraph 

isomorphism test, which determines that a pattern P 

matches a graph G if and only if P is a subgraph of G [6].  

In similarity search, one looks for graphs in a database 

which are similar to a query graph.  Here, the term 

similarity is defined by a specific procedure.  Graph edit 

distance [7] is a common way to measure the 

(dis)similarity between two graphs, though other measures 

exist [8]. 

Graph similarity search can be divided into two 

subgroups.  A K-NN query reports the K graphs in a graph 

database that are most similar to the query, while a range 

query determines all graphs in the database whose 

similarity score is within a user-specified tolerance.   

In this paper, we focus on deriving efficient index 

structure for graphs with limited sizes. The applications of 

small graphs include: 

• Protein structure motifs. A structural motif is a 

recurring geometric arrangement of amino acid 

residues in proteins. In general, structural motifs 

have 4 to 6 residues. Recent work has discovered 

millions of such motifs. Therefore, automated 

structural motif recognition within protein 

structures is important for a number of applications, 

including protein function prediction [9].  

• Chemical structures. Most of the chemical 

structures, such as those from the NCI/NIH AIDS 

antiviral screen test [10], have only a handful of 

nodes and edges. As studied in [5], most of these 

chemical graphs are sparse and the majority of 

recurring components are tree or tree-like patterns. 

Pattern matching and similarity search in chemical 

databases are important for drug design.  

 

 

 

 



1.1. Challenges 
 

Though studied previously, the search for efficient 

methods of answering graph queries remains open. 

Essential problems include: (1) how to store graph 

databases efficiently, (2) how to define similarity between 

graphs, and (3) how to create efficient index structure to 

accelerate pattern matching and graph similarity search. 

A primary challenge in pattern matching is that pair-

wise comparisons of graphs are usually hard problems. 

Subgraph isomorphism is known to be NP-complete [11].  

As a result, most meaningful definitions of similarity will 

result in NP-hard problems.  Even a relatively simple 

comparison, graph isomorphism, defies a polynomial 

bound for the general case [12].  These costly pair-wise 

comparisons, when combined with the increasing size of 

modern graph databases, makes finding efficient search 

techniques difficult.  Even more complications arise from 

the many classifications of graphs and the fact that some 

techniques apply only for a specific class. 

Furthermore, the application of graphs to a wide 

variety fields implies that graphs themselves have a wide 

variety of interpretations.  This poses a challenge when 

defining useful similarity measures, even when restricted 

to a single domain, such as chemical structures [13].  As 

mentioned earlier, edit distance is a commonly used 

metric, but other metrics, such as one based upon maximal 

common subgraphs, may be more meaningful [8]. 

   

1.2. Our Solution 
 

This paper presents the use of a novel graph 

decomposition procedure which facilitates the processing 

of subgraph isomorphism and similarity queries for graph 

databases.  Graph decomposition is the process of 

deriving component parts from a graph by utilizing a 

given set of operations.  Several graph decomposition 

schemes have been developed, including clique 

decomposition, modular decomposition, and NLC 

decomposition [14].  

Previous work has typically demonstrated its 

effectiveness on sparse graphs or planar graphs with 

unlabeled edges.  The techniques we present in this paper, 

although applicable to any small graph, are notably 

effective for processing dense graphs with labeled edges.  

The algorithms presented herein quickly identify sub-

isomorphic relationships between the database graphs, 

allowing for more compact indexes when the graphs have 

a high degree of similarity.  Moreover, our indexing 

scheme is particularly well-suited to answer subgraph 

isomorphism queries using far less computation time than 

other methods. 

 

1.3. Related Work 
 

Several recent research efforts have focused on 

preprocessing graph databases with the goal of improving 

query times. 

B.T. Messmer et al. proposed a decision-tree approach 

for indexing models for isomorphism and subgraph 

isomorphism [3].  This method generates answers in 

polynomial time, at the cost of an index which is 

exponential in size with respect to database size. 

GraphGrep, developed by Shasha et al., indexes graphs 

by enumerating paths through each graph in a database 

[15].  GraphGrep has a notable advantage in that its index 

is not exponential with respect to graph size.  However, it 

is exponential with respect to path length, which is a 

primary factor in the power of the index. 

Yan et al. introduced a method for indexing subgraph 

isomorphism queries based on selectively using frequently 

occurring subgraphs as features [16].  By enumerating 

subgraphs instead of paths, their filtering methods are 

more selective.  When compared with GraphGrep, their 

search engine, gIndex, achieves significant improvements 

in both index size and query time.  Recently, they have 

extended the concept to produce an engine named Grafil, 

which processes similarity queries [17]. 

He et al. indexed graphs using a novel data structure, a 

closure tree, also referred to as a C-tree [7].  C-trees use 

graph closures, which is a form of bounding box for 

graphs.  The usage of C-trees closely parallels that of R-

trees. 

Another approach, used by Srinivasa et al., uses 

multiple reference techniques, including an allowance for 

user-defined schema [18,19].  The result is a flexible 

database system, GRACE, which enables users to limit 

query search spaces to achieve faster results. 

In addition to the more generalized work on graph 

indexing, graph decomposition has been directly applied 

to answering questions of isomorphism and subgraph 

isomorphism.  Graph decomposition into trees has been 

used for these problems, notably for planar graphs 

[20,21].  In the case of database indexing, Wang et al. 

have detailed methods for matching three-dimensional 

graphs with model graphs, via decomposition to rigid 

structures [22]. 

 

1.4. Organization 
 

This paper is organized as follows. In Section 2, we 

present the preliminary concepts of labeled graphs, 

subgraph isomorphism, graph canonical representations, 

and subgraph mismatch scores. Readers familiar with 

these concepts may skip the section. Section 3 presents 

our graph index. Section 4 and Section 5 apply our graph 

index for subgraph query and similarity search, 



respectively.  In Section 6, we outline our experimental 

results with a real-world graph database and a synthetic 

database.  Section 7 concludes our paper.  

 

2. Preliminary Concepts 
 

This section presents the key concepts, notations, and 

terminology used in this paper, which include: labeled 

graphs, subgraph isomorphism, graph canonical 

representation, and subgraph mismatch score.  

 

2.1 Labeled Graphs 
 

A labeled graph is a four-element tuple G = (V, E, Σ, 

λ) where V is a set of vertices and E ⊆ V × V is a set of 

undirected edges joining two distinct vertices. Σ is the set 

of vertex and edge labels and λ : V ∪ E →  Σ maps 

vertices and edges to their labels. The size of a graph is 

the number of its vertices. A graph database is a 

collection of labeled graphs.  Figure 1 provides an 

example of a graph database composed of four graphs, 

{G1, G2, G3, G4}. 
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Figure 1.  A graph database. 

 

2.2.  Subgraph Isomorphism  
 

Given two graphs G, G’ we define that the graph G=(V, 

E, Σ,λ)  is subgraph isomorphic to G’=(V’, E’, Σ’, λ’), 

denoted by G ⊆ G’,  if there exists a 1-1 mapping f : V [G] 

→ V [G’] such that: 

• for all v in V, λ(u) = λ’(f(u)), 

• for all (u, v) in V × V, (u, v) ∈ E implies  (f(u), 

f(v)) ∈ E’, and  

• for all (u, v) in E, λ(u, v) = λ’(f(u), f(v)) 

where V and E are the vertex and edge sets of the graph G, 

respectively. E’ is the edge set of G’. The mapping f is 

defined as a subgraph isomorphism from G to G’. A 

graph G is an induced subgraph of G’ if G ⊆ G’ and G 

preserves all edges in G’, i.e. E[G] = V[G] × V[G] ∩ 

E[G’]. 

In Figure 1, G3 and G4 are subgraph isomorphic to G1, 

but G2 is not subgraph isomorphic to G1.  Further, G3 is an 

induced subgraph of G1, while G4 is not. 

 

2.3. Graph Canonical Form  
 

We represent a graph G by an adjacency matrix M.  

Slightly different from an unlabeled graph, a diagonal 

entry of M in our representation is the label of the 

corresponding vertex in G and every off-diagonal entry is 

the label of the corresponding edge in G, or zero if there is 

no edge.  For graphs with unlabeled edges, a one denotes 

that the edge exists, while a zero indicates it does not. 

Given an n × n adjacency matrix M of a graph with n 

vertices, we define the code of M, denoted by code(M), as 

the sequence of lower triangular entries of M (including 

the diagonal line) in the order:  

M1,1, M2,1, M2,2, …, Mk,1, Mk,2, …, Mk,k, ... , Mn,n 

where 1 ≤ k ≤ n and Mi,j is the entry at the ith row and jth 

column in M.  We assume the rows (columns) in M are 

numbered 1 through n from top to bottom (from left to 

right). For a graph G, the canonical code of G, denoted by 

φ(G), is the maximal code among all of its possible codes, 

when the codes are compared lexicographically. This 

canonical representation is used in [23]. 

Assuming a lexicographical ordering B > C > 1 > 0, 

the possible codes for G4 in Figure 1 are B1C01B, 

B0B11C, and C1B10B.  Of these, B1C01B is the 

canonical code. 

 

2.4. Subgraph Mismatch Score  
 

Given two simple graphs g and g’, we can construct 

two equivalent complete graphs G,G’ in which we use 

edges with null labels to represent missing edges in g and 

g’..  Given G, G’,, and an injective mapping f : V [G] → V 

[G’], we define the mapping-induced subgraph mismatch 

score from G to G’ as: 

 

df(G, G’) =  Σ[λ(u) ≠ λ’(f(u))] + Σ[λ(u,v) ≠ λ’(f(u,v))], 

∀ (u ∈ V[G], v ∈ E[G]). 

 

That is, the mapping-induced subgraph mismatch score 

is the number of mismatched vertex and edge labels under 

a mapping.  The subgraph mismatch score from G to G’, 

denoted as d(G, G’) is the minimal mapping-induced 

subgraph mismatch score for all possible mappings.  Note 

that, if the size of G is larger than the size of G’, no 

injective mapping exists.  In this case, the subgraph 

mismatch score from G to G’ is infinite. 

In Figure 1, d(G2, G1) = 1, d(G3, G2) = 1, d(G4, G3) = 

1, and d(G3, G1) = 0. 

 

 

 

 

 



3. Graph Decomposition 
 

For the remainder of this paper, we use the term graph 

decomposition to denote the enumeration of all connected, 

induced subgraphs of a given graph.  Each enumerated 

subgraph is unique with respect to isomorphism; only the 

canonical instance is enumerated for each automorphism 

group.  Note that any graph decomposition will contain 

both the original graph, as well as a null graph with no 

vertices or edges. 

A graph of size n decomposes into at most 2
n
 

subgraphs. This occurs in the case of a complete graph in 

which each of the vertices has a unique label.  Due to 

isomorphism, a complete graph with multiple occurrences 

of the same label may decompose into fewer subgraphs.  

If all labels are identical, a complete graph of size n 

decomposes into just n+1 subgraphs (one for each size, 

size = 0 to n). 

 

3.1. Notations 

 
G A graph database 

P, Q, G Single graphs 

φ(G) The canonical code of G 

d(P, Q) Subgraph mismatch score between P and Q 

GDI Graph decomposition index 

H The hash table in GDI 

DAG Directed acyclic graph 

 

3.2. Graph Decomposition DAG 
 

We construct a Directed Acyclic Graph (DAG) to 

describe the results of a graph decomposition of a graph G 

in the following way.  

• Each node is a subgraph P of G 

• For two nodes P and Q, there is a directed link 

from P to Q if  

o P ⊂ Q and   

o There exists no graph P’ such that P ⊂ P’  

⊂ Q. 

We call such constructed DAG the graph 

decomposition DAG.  In the graph decomposition DAG of 

a graph G, there is always one node that represents G, and 

one node that represents the null graph.  The children of a 

node P are all graphs Q for which (P, Q) is a directed link 

in the DAG.  The descendents of a node P are all nodes 

that are reachable from P in the DAG. 

For brevity, we use the term node to refer to a node 

within a DAG, and the term vertex to refer to a component 

of a graph that is being decomposed.  Similarly, we use 

the term link to denote a connection between nodes in a 

DAG, and the term edge to denote a connection between 

vertices.  Further, nodes have the properties of their 

represented graphs.  Namely, nodes have a size which is 

equivalent to the size of their represented graph.  In 

addition, a node is considered a subgraph of any node for 

which the relation holds with respect to their represented 

graphs.  

Figure 2 provides an example of the graph 

decomposition DAG of a graph.  For purposes of 

illustration, we use a complete graph without edge labels. 

Each node in the graph decomposition DAG is labeled 

with a shorthand notation which denotes the vertex labels 

of its represented graph. 

A C

B B

A C

B B

A B C

AB AC BB BC

ABB ABC

ABBC

BBC

 
Figure 2.  Decomposition of a complete graph. 
 

A decomposition DAG of an n-sized graph is described 

as being composed of n+1 tiers.  The m
th
 tier is comprised 

of all nodes of size m.  The 0
th
 tier always contains one 

node, which is the null graph.  Similarly, the n
th
 tier also 

contains one node, which represents the entire original 

graph.  The combinatorial nature of the decomposition 

leads to the (n/2)
th
 tier being the largest, and organizing 

the DAG into horizontal rows based on tiers results in a 

roughly diamond pattern. 

 

3.3. Hashing Graph Decompositions 
 

We use a hash table to index the subgraphs enumerated 

during graph decomposition.  To hash a graph, we 

compute the canonical form of its adjacency matrix.  The 

hash key is then determined from the string given by the 

canonical code.  Using this method, all isomorphic graphs 

produce the same hash key.  All entries in the hash table 

are in canonical form, and only one entry is made for each 

unique canonical code. 

The hash table enables a lookup function to quickly 

locate a node in the decomposition DAG which is 

isomorphic to a query graph, if it exists.  Doing so is a 

two-step process.  First, we compute the hash key from the 

query’s canonical code.  From this, we obtain candidate 

matches and their canonical codes.  In the second step, we 

verify candidate canonical codes with the query’s 

canonical code.  If the codes match exactly, then this 

indicates that the candidate is an isomorphic match to the 

query graph. 

The validation step described above is necessary for 

two reasons.  First, hash keys are not guaranteed to be 

unique to a given canonical code; canonical codes are 



sequences of variable length and thus cannot be uniquely 

mapped to hash keys represented by far fewer bits.  

Second, the size of the hash table is limited to an a priori 

estimate of the number of entries it will contain.  

Therefore, mapping hash keys to the hash table may cause 

several graphs to be within a single table entry.  

Comparing canonical codes removes this ambiguity. 

 

3.4. Graph Decomposition Indexes 
 

While a graph decomposition DAG can represent the 

decomposition of a single graph, it can also be applied to 

a collection of graphs in order to provide an indexing 

structure.  A Graph Decomposition Index (GDI) contains 

two indexing structures.  The first structure is a graph 

database DAG (or simply a DAG) which is merged from 

the graph decomposition DAGs of all the database graphs.  

The second structure is a hash table that cross-references 

nodes in the database DAG.  Algorithm 1 outlines a 

method for constructing a GDI from a database of graphs. 

 

Algorithm 1.  GDI Construction 

Construct(G)       

   H  := ∅  

   DAG  := ∅           

   for each G ∈ G do 

        V[DAG] := V[DAG] ∪ {G} 

         H[φ(G)] = G 

        Decompose(G, GDI, H ) 

   end do 

return (GDI, H ) 

 

Decompose(G, DAG, H) 

   for each v ∈ V[G] do 

        G’ := G – v 

        V[DAG] := V[DAG] ∪ {G} 

         E[DAG] := E[DAG] ∪ {(G’, G)} 

         H[φ(G’)] = G’ 

         decompose(G’, DAG, H) 

     end do 

 

Here we use the notation G’ := G – v to denote an 

operation that creates a new graph G’ from G by deleting 

a node v and all the edges incident with v in G.    
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Figure 3.  A graph database DAG. 

 

Figure 3 illustrates the DAG index constructed for the 

graph database illustrated in Figure 1.  In the illustration, 

nodes that represent the four original database graphs are 

shaded.  The other nodes in the DAG are used to index 

those  graphs. 

The total number of nodes in the GDI is bounded by 

O(k2
n
), where n is the maximum size of any database 

graph and k is the number of graphs in the database.  Any 

given node of size m has at most m parents, each 

corresponding to the removal of a different vertex.  This 

limit bounds the maximum number of links in the GDI.  

Since any node in the GDI can be stored using a reference 

to database graph and the subset of the m vertices which it 

includes, a node can be stored in O(m) space.  Therefore, 

the space overhead of the DAG index is O(kn(2
n
)). 

Although the index requirement is exponential in the 

general case, a limit placed on the size of the database’s 

graphs results in a space requirement which is linear with 

respect to database size.  In addition, any subgraphs 

common to more than one database graph are instantiated 

only once, which can substantially reduce the size of the 

index.  Thus, a GDI can be used for any database 

containing a large number of relatively small graphs, 

especially when these graphs have substantial overlap. 

 

4. Subgraph Isomorphism Queries 
 

Algorithm 2 sketches a method to answer a subgraph 

isomorphism query quickly through the use of a pre-

computed GDI. From the definition of subgraph 

isomorphism, the query must be isomorphic to a subgraph 

of each graph in the answer set.  Therefore, it is sufficient 

to locate the node in the GDI which is isomorphic to the 

query, and report all descendents of the node which 

correspond to database graphs.  When there is no 

matching to the query, the answer set is empty. 

 

 

 

 

 

 



Algorithm 2.  Subgraph Isomorphism Query 

SubGraph Isomorphism Search(G) 

   ans := ∅ 

   visited := ∅ 

   v := H(φ(G)) 

   if v exists then Visit(v, ans, visited) 

   return ans 

 

Visit(v, ans, visited) 

   visited := visited ∪  {v} 

   if v represents a database graph G then 

      ans := ans ∪  {G} 

   endif 

 

   for each child u of v do 

     if u ∉ visited then Visit(u, ans) 

   end for 

 

5. Similarity Queries 
 

The answer set of a similarity range query is the set of 

all database graphs for which the subgraph mismatch 

score from the query graph to the database graph is less 

than or equal to the query’s range.  Based upon our 

definition of subgraph mismatch score in Section 2.4, 

vertex and edge substitutions are allowed at unit cost.  

Any number of vertices, along with their associated edges, 

may be added to the query at no cost.  However, no 

vertices may be deleted.  For this reason, similarity 

queries can be conceptualized as being determined by 

subgraph similarity; subgraph mismatch score is the 

minimum number of vertex and edge mismatches between 

the query graph and any identically-sized subgraph of a 

candidate graph, over all possible mappings. 

The algorithms presented herein process similarity 

queries using only comparisons of graphs of equal size.  

This is accomplished by decomposing the query itself and 

sequentially comparing its component subgraphs with 

subgraphs stored in the GDI.  The goal of the search is to 

identify the set of all nodes which are of the same size as 

the query graph and within the specified range.  Once the 

algorithm identifies this set of nodes, it visits the nodes 

sequentially and reports any database graphs that they or 

their descendents represent. 

Due to the inherent NP-hardness of the problem, it may 

be necessary to perform an exhaustive search in order to 

find an optimal graph mapping.  This exhaustive search 

can become computationally prohibitive. Approximate 

mapping techniques, such as the neighbor-based mapping 

algorithm [7], can alleviate this problem.  However, our 

work has been focused on guaranteeing complete answers. 

Fortunately, in the case of near-neighbor searches, 

where the query range is relatively small, exhaustive 

search for the optimal mapping is not required.  Thus, we 

present two algorithms that process similarity queries.  

The first is an efficient algorithm for near-neighbor 

searches.  The second algorithm processes similarity 

queries for any range.  Finally, we outline an additional 

approach for far-neighbor searches. . 

 

5.1. Near-Neighbor Queries 
 

Given a similarity query with range d and size s, we 

define it as a near-neighbor query if d is less than s.  When 

the relation d < s holds, any graph in the answer set must 

share a subgraph in common with the query.  Further, this 

common subgraph must be of at least size s-d. 

As an informal proof of this fact, observe that for any 

query graph P and answer graph G, there exists an optimal 

mapping for which the subgraph mismatch score from P 

to G is less than or equal to d.  From our definition of 

subgraph mismatch score, there exist at most d 

mismatched vertex/edge labels.  Any chosen mismatch 

can be eliminated by removing a single mapped pair of 

vertices from P and G.  Iteratively eliminating mismatches 

in this manner removes at most d mapped pairs of 

vertices, leaving subgraphs of P and G, which are 

isomorphic and of minimum size s-d. 

Algorithm 3 presents a “quick start” method that 

utilizes common subgraphs to quickly search for near-

neighbors.  First, it decomposes the query into a query 

DAG (and its related hash table).  It then locates matches 

for the query’s subgraphs of size s-d in the decomposition 

DAG, using any such matches and their known 

isomorphic mappings as a basis for the search. 

From each isomorphic node in the decomposition 

DAG, the algorithm performs a depth-first search by 

testing the mapping-induced subgraph mismatch score 

from all children to all of the children of the 

corresponding node in the query DAG.  When a pair-wise 

score is within the query’s range, the search continues by 

advancing to the next tier.  Any path that progresses past 

the s
th
 tier indicates that an answer has been found.  In this 

case, the algorithm records the GDI node for later 

visitation. 

Whenever the depth-first search reaches a pair of nodes 

on the s
th
 tier, or when there are no remaining pairs of 

children to compare, the search algorithm backtracks.  It 

returns to the previous tier and continues comparing that 

tier’s children were it had left off. 

When determining the subgraph mismatch score 

between two children, Algorithm 3 avoids an exhaustive 

search for the optimal mapping.  At each step, the 

mapping between the children is determined by using the 

mapping between their parents.   The new vertices, one of 



which belongs to each child, form a new mapped vertex 

pair that is added to the previous mapping.  Because the 

initial mapping is given from an isomorphic match, the 

result is that the mapping is always known. 

If graphs are decomposed without testing for 

connectivity (or in the case that database contains only 

complete graphs), the completeness of the answer is 

guaranteed, due to the redundancy present in the DAG.  

Observe that from any node to any of its descendents, 

there exists a path which represents the addition of 

vertices for any ordering of those vertices.  Hence, from a 

given node, Algorithm 3 considers all possible mappings 

for new vertices.  Further, since it uses every subgraph of 

the query of size s-d, it considers all mappings between 

each candidate answer and the query which are necessary 

to produce a complete answer. 

Algorithm 3.  Near-Neighbor Similarity Query 

nnSearch(G, d) 

   vis := ∅ 

   qDAG := ∅ 

   qH := ∅ 

    

   decompose(G, qDAG, qH) 

   for each Q in qDAG and |Q| = |G| – d do 

         P := H (φ(Q)) 

         if P exists and d(P, Q) <= d then  

              DFS(P, Q, G, d, vis)  

        end if 

    end for 

 

   ans := ∅ 

   for each v in vis do 

      visited := ∅ 

      Visit(v, visited, ans) 

   end do 

   return ans 

 

DFS(P, Q, G, d, vis) 

   if Q = G  then    

         vis := vis + {P} 

         return 

   else 

      for each (P’, Q’)∈  C[P] × C[Q] do 

            if d(P’, Q’) <= d then 

               DFS(P’, Q’, G, d, vis) 

            end if 

      end for 

   end if 

We use C[G] to denote the children of a node G in the  

DAG of the related GDI index. The function d computes 

the subgraph mismatch score of graphs, as defined in 

Section 2.4. 

5.2. Queries for Greater Ranges 
 

When query range exceeds the query size, then there is 

no guarantee that a graph in the answer set has an induced 

subgraph that is identical to a subgraph of the query.  

Thus, the information stored in the GDI is of less use for 

such queries.  This is an inherent difficulty when applying 

index structures to answer similarity queries.  In addition, 

the larger mismatch tolerances mean that branch-and-

bound techniques are able to prune fewer possibilities 

when searching for the optimal mapping between 

candidates and the query. 

Algorithm 4 shows a method to compute the complete 

answer set for queries of any range.  The basic approach is 

to compare the query to all nodes in the GDI that are of 

identical size.  A depth-first branch-and-bound search is 

used to find a mapping which meets the range 

requirement.  If such a mapping is found, then the GDI 

node is visited to expand the answer set.  Using this 

method, it is possible to report multiple answers from a 

single comparison of two small graphs.  

Algorithm 4.  General Similarity Query 

SimilaritySearch(G, d) 

   ans := ∅  

   visited := ∅ 

   for each G’ in DAG such that |G’| = |G| do 

      F := ∅  

      if  match(G, G’, F, d) then 

          Visit(G’, ans, visited) 

      end if 

   end do 

   return ans 

 

Match(G, G’ , F,  d)  

    If ( G := ∅) then  

        return true  

    end if 

    for each  (u, v) ∈ V[G] × V[G’] do 

          F := F ∪ {(u,v)} 

          if ( df(G, G’) ≤ d ) then 

            P := G – u 

            Q := G’ – v      

             if  ( Match(P, Q, F, d)  ) then  

                   return true 

             end if 

           end if 

          F := F - {(u,v)}  

      end do 

      return false    

We construct an injection f from F by letting f(u) = v for 

all (u, v)∈F. Here, dF is the mapping-induced subgraph 

mismatch score, defined in Section 2.4. 



5.3 Queries for Far-Neighbors 
 

It is possible to optimize searches for far-neighbor 

searches.  For example, a query might be interested in 

locating all database graphs which share no vertex labels 

in common with the query graph.  Such a query can be 

performed by processing all size 1 nodes in the DAG and 

marking each node that has a vertex matching any vertex 

of the query graph.  The descendents of these marked 

nodes contain all database graphs which have at least one 

vertex in common with the query graph.  Thus, the answer 

set for the query is the set of all database graphs minus 

these descendents.  This approach of computing an answer 

set and taking its compliment can be generalized to an 

algorithm for Far-neighbor searches. 

 

6. Experimental Results 
 

In order to evaluate the performance of the algorithms 

presented in Sections 3 through 5, we developed a search 

engine named GDIndex.  GDIndex was implemented in 

C++ and compiled using Microsoft Visual Studio 6.0. 

We used C-tree, which was developed and provided by 

He et al. [7], as a performance comparison.  C-tree was 

implemented in Java and compiled using Sun JDK 1.5.0. 

All experiments were made using a 3 GHz Pentium 4 

workstation with 1 GB of memory and Windows XP.   

Index construction times reported for both GDIndex and 

C-tree include time required to write the index to disk.  

The reported index space requirements are the size of the 

index files created by their respective applications. Time 

performance measurements for C-tree were reported by C-

tree itself.  Query times were measured while maintaining 

the index in main memory. 

 

6.1. Datasets 
 

Performance was measured using two datasets.  The 

first was a protein motif dataset, derived from protein 

structure information obtained from the Protein Data Bank 

[24].  The protein motif dataset is a collection of graphs 

constructed from mining protein graphs for frequent 

patterns [23].  Each graph encodes the structure of a 

reoccurring three-dimensional protein structure.  The 

vertices are used to represent amino acid residues, with 

discrete edge labels encoding all pair-wise distances 

between them.  The second dataset was a synthetic dataset 

generated using software developed by Kuramochi et al. 

[25]. 

The protein motif database represents a database of 

complete, edge-labeled graphs. It consists of 10000 

complete graphs with an average of 6.3 vertices.  The 

maximum graph size, a primary factor in the performance 

of GDIndex, is 11.  In contrast, the synthetic dataset 

represents a database of sparse graphs without edge labels.  

It consists of 10000 graphs with an average of 9.27 

vertices and 10.65 edges.  The maximum graph size for 

this data set is 21. 

For both datasets, we report the index size and index 

construction times for random subsets of the dataset.  Our 

results also show the average query times for various sizes 

of subgraph isomorphism queries.  In the case of 

similarity queries, we demonstrate the effects of varying 

range as well.  Query graphs were obtained randomly 

from the set of all canonical subgraphs that are 

represented in the dataset. 

 

6.2. Protein Motif Index Performance 
 

For the protein motif dataset, Figure 4 shows a 

comparison of the index size and index construction time 

for both GDIndex and C-tree.  The superior performance 

of GDIndex is primarily attributable to the ability of 

GDIndex to identify sub-isomorphic relationships between 

the database graphs. 
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 (a) (b) 

Figure 4.  Index Size(a) and 

Construction Time(b). 
 

In Figure 5, we show the performance of GDIndex as 

measured by average query time.  The subgraph 

isomorphism test was conducted using the set of all 

subgraphs of the database graphs.  For the similarity 

search, we tested performance using 100 random database 

subgraphs for each size, s = {3, 5, 7, 9}.  Note that as the 

range increases beyond a certain threshold, query times 

begin to decrease.  Since most of the graphs in the 

database are obviously within the search range, there are 

many mappings between the graph and the query which 

meet such lax criteria.  Once any such mapping is 

discovered, that graph is declared a match and no further 

mappings need to be explored. 
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Figure 5. Subgraph Isomorphism Query 

Time(a), Range Similarity Query (b). 
 

Because the implementation of C-tree does not handle 

edge labels, it was necessary to insert an additional vertex 

for each edge to encode this information.  Since the edge 

and vertex labels were drawn from disjoint sets, there 

could be no ambiguity between edges and vertices.  This 

enabled a performance comparison to be made in the case 

of subgraph isomorphism queries, where the computed 

answers were the same.  However, the translation is not 

valid for similarity queries, since they permit the insertion 

and deletion of edges.  Hence, we present only the 

performance of GDIndex with regard to similarity queries. 

 

6.3. Synthetic Dataset 
 

The synthetic dataset contains larger graphs than the 

graphs in the protein motif dataset.  It is primarily for this 

reason that GDIndex creates a larger index than C-tree, as 

shown in Figure 6. 
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Figure 6.  Index Size(a) and 

Construction Time(b). 

For the synthetic dataset, GDIndex computes answer 

sets which differ from the answer sets given by C-tree.  

This is because C-tree tests for subgraph isomorphism, 

while GDIndex tests for induced subgraph isomorphism, 

and because the queries are no longer complete graphs, as 

is the case with the protein motif dataset.  Thus, the 

subgraph isomorphism times for C-tree are not presented 

with the times for GDIndex in Figure 7.  Nevertheless, 

Figure 7 shows that query times average significantly less 

than a millisecond. 

Similarity query responses also differed in this test.  

GDIndex computes a complete answer for similarity 

queries, while C-tree computes an approximate answer.  

For this dataset, there were many cases for which C-tree 

failed to return a single graph which was within the range, 

although hundreds of valid answers existed.  Since it was 

observed that C-tree finds far fewer matches than 

GDIndex (albeit in much less time), it is inappropriate to 

compare query times.  Thus, Figure 1 shows the query 

times for GDIndex only. 
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Figure 7.  Subgraph Isomorphism Query 

Time(a), Range Similarity Query Time(b). 
 

7. Conclusions and Future Work 
 

Our graph indexing approach showed dramatic 

improvements in query times for subgraph isomorphism 

queries.  It was also able to generate complete answers for 

a meaningful range of similarity searches within 1 second.  

In addition, in the case of the protein motif database, it 

accomplished these times using a significantly smaller 

index than C-tree. 

In the future, we will attempt to improve query times 

for similarity queries with greater ranges.  Additionally, 

since our current approach is limited to databases 

containing only small graphs (less than ~20 nodes), we 

will explore methods intended to extend this technique to 

databases with larger graphs.  

Our method of graph decomposition appears well-

suited to answering questions concerning common 

subgraphs.  For this reason, we will investigate its use in 

other applications, such as pattern mining.  This may also 

lead to exploring the use of similarity metrics other than 

edit distance, such as the metric presented in [8]. 

Finally, we will investigate the use of yet more, 

domain-specific, similarity metrics.  In particular, we will 

work to develop similarity metrics useful for comparing 

protein structures. 
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