
Accelerating Profile Queries in Elevation Maps

Feng Pan, Wei Wang, Leonard McMillan
University of North Carolina at Chapel Hill
{panfeng, weiwang, mcmillan}@cs.unc.edu

Abstract

Elevation maps are a widely used spatial data represen-
tation in geographical information systems (GIS). Paths on
elevation maps can be characterized by profiles, which de-
scribe relative elevation as a function of distance. In this
research, we address the inverse of this mapping — given
a profile, how to efficiently find paths that could have gen-
erated it. This is called the profile query problem. Profiles
have a wide variety of uses that include registering track-
ing information, or even other maps, to a given map. We
describe a probabilistic model to characterize the maximal
likelihood that a point lying on a path matches the query
profile. Propagation of such probabilities to neighboring
points can effectively prune the search space. This model
enables us to efficiently answer queries of arbitrary profiles
with user-specified error tolerances. When compared to ex-
isting spatial index methods, our approach supports more
flexible queries with orders of magnitude speedup.

1 Introduction
In geographical information systems (GIS) systems a

common problem is to align a given path to its proper po-
sition on a map. Paths can be specified in a variety of ways
ranging from full geospatial coordinates (longitude, latitude,
and reference to a geodetic model) to compass bearings with
odometry. While it is simple to generate paths from elevation
maps, the inverse problem of finding a compatible embed-
ding for a particular path, is more difficult. We address this
problem for a particular form of path specification called a
profile. A profile assumes only that the relative altitude and
distances along the path are known. The goal of a profile
query is to find a set of potential alignments on an elevation
map (paths) which are consistent with a given profile.

Profiles have a wide variety of uses including

• Hydrology studies
• Registering tracking information to a given map
• Estimating true distances travelled
• Road planning and transportation engineering
• Design of road race courses (e.g. marathons)

In a typical Digital Elevation Map (DEM), elevation data
is regularly sampled on a uniform grid. Our approach maps
a DEM to a graph consisting of segments between their 8

neighboring elevation measurements. In a DEM containing
n × m points, the total number of paths containing k seg-
ments would be O(n · m · 8k). Even for a small 100 × 100
map, there are O(1010) 8-segment paths. This huge search
space poses significant challenges for existing spatial index
structures and querying algorithms. Current spatial index
structures can store trajectories. However, the huge number
of paths in an elevation map prevents the spatial index struc-
ture from handling the profile-query problem efficiently. Al-
lowing for variable length queries makes the problem even
harder for typical spatial index structures.

In this paper, we develop a probabilistic model to solve
the profile query problem. Our model characterizes the prob-
ability that a given map point matches a query profile. The
propagation of joint probabilities to neighboring points ef-
fectively prunes the search space. This model enables us
to efficiently support queries of arbitrary profiles with user-
specified error tolerances.

Our query algorithm operates in two steps. In the first
step, the probabilistic model quickly locates possible end-
points of the query. Then, in the second step, the search-
ing focuses on the neighborhoods around these endpoints.
We also describe several optimizations to handle large ele-
vation maps efficiently. Experiments show that our approach
supports more flexible queries with orders of magnitude bet-
ter performance than approaches based on existing spatial-
indexing methods.

2 Preliminaries
In this section, we discuss the terminology, notation, and

assumptions of our approach. We define elevation maps,
paths, and elevation profiles, which we will henceforth refer
to as simply profiles. We will also give a formal specification
of the profile query problem.

A digital elevation map approximates a heightfield func-
tion, z = h(x, y). Each point is characterized by a tuple
(x, y, z). A common practice is to sample the elevation map
at regular intervals in both x and y. This leads to a sampling
lattice, given an elevation map of size n×m, its point set can
be represented as tuples {(i, j, h(i, j))|1 ≤ i ≤ n, 1 ≤ j ≤
m, i, j ∈ N}. Furthermore, an elevation map can be repre-
sented as a matrix M , where Mij = h(i, j). An example
elevation map matrix is shown in Figure 1.

For each point (i, j, h(i, j)) of a map, we define its neigh-
borhood points as the eight neighboring points around it.

1
2

3
4

5

1

2

3

4

5
0

500

1000

Figure 1. An elevation map of size 5 × 5

A path starts at a point in the elevation map. From each
point, the path can go to any of its eight neighbors. There-
fore, a path can be represented by a list of points

path = {(x1, y1, z1), ..., (xn, yn, zn)}
|xi − xi−1| ≤ 1, |yi − yi−1| ≤ 1, xi, yi ∈ N

For example, a path in Figure 1 can be

path1 = {(1, 2, 6.7), (2, 2, 135.3), (3, 2, 367.9), (3, 3, 1000)}
which is shown as the bold curve.

A profile describes relative elevation as a function of dis-
tance. A profile can also be represented as segments on a
path characterized by the slope and projected Euclidian dis-
tance on xy plane of each segment,

profile(path) = {(s1, l1), ...(sk, lk)}
li = dis((xi, yi), (xi+1, yi+1))
si = (zi − zi+1)/li

If the xy projected distance is unavailble it can be derived
from the geodesic distance, g, as follows:

li = sqrt(g2 − (zi − zi+1)
2)

A path consisting of n points generates a profile with n − 1
segments. We call a profile of size k if it has k segments.

Given a profile of size k, its profile prefixes are:

profile(i) = {(s1, l1), ...(si, li)}, 1 ≤ i ≤ k

Where profile(k) = profile.
In later discussions, we will denote the query profile as

Q = {(sq
1, l

q
1), ...(s

q
k, lqk)}

We also define two distance measurements between pro-
files of same size, Ds and Dl, for the slope and projected
distance respectively.

Ds(profileu, profilev) =

k∑

i=1

|su
i − sv

i |

Dl(profileu, profilev) =

k∑

i=1

|lui − lvi |

In order to enable a user-specified error tolerance, we de-
fine two error tolerance parameters, δs and δl, for the two
distance measurements respectively.

Problem Definition of Profile Query: Given a query
profile, Q, find all the paths in the elevation map that can
generate profiles satisfying (1) and (2).

Ds(profile, Q) ≤ δs (1)
Dl(profile, Q) ≤ δl (2)

A path matches the query profile if it satisfies (1) and (2).

3 Related Work
The profile query problem is closely related to other

spatial-indexing and spatial-query problems. Indeed, some
previously developed methods support profile queries. How-
ever, previous methods tend not to scale well as the map size
increases or as the length of the profile grows. Furthermore,
these methods do not, in general, enable the specification of
error bounds.

Spatial indexing structures like the R-tree [5, 10] or
MVR-tree [7, 11] can be used to index paths by mapping
them into points in a higher dimensional space. However,
the total number of possible paths is an exponential function
of the size of the map, even for paths of fixed length. There-
fore, directly indexing all possible paths is intractable.

To avoid the explosion in the number of paths, a tradi-
tional indexing structure like B+tree can be used to index
all the segments in the map according to their length and
slope. By querying the profile segment by segment, B+ tree
can find the best candidates for each segment, and the best
matching paths can be generated by concatenating those can-
didates. However, since profile query allows user-specified
error tolerance, B+tree can typically find thousands of can-
didates for each segment of the profile. During the concate-
nating procedure, the total number of candidate paths gen-
erated will be combinatorially larger. Since candidate paths
are pruned once they exceed the error tolerance, the proce-
dure has to test a huge number of candidate paths.

A related problem from the field of motion planning is
to estimate a robot’s position according to the world model
(map) based on sensor data. Markov Localization [3, 1, 8]
is a probability framework which estimates the possible po-
sition of a moving robot conditioned on the sensor data. By
considering the query profile as the sensor data, Markov Lo-
calization can estimate the end point of a matching path.
However, its probability model does not reflect the good-
ness of a matching path, for example, the end point of a best
matching path may not have the highest probability value in
Markov Localization. Therefore, it is unable to find match-
ing paths correctly.

Queries over moving object trajectories have been exten-
sively studied in [6, 2, 4]. In these projects, trajectories are
considered as spatial-temporal curves and the queries differ
from ours. Instead of searching trajectories of specific shape,
they want to find trajectories passing objective regions dur-
ing specific time intervals or following some temporal order.
Since the object trajectories are given, spatial index struc-
tures are employed and perform well. In contrast, only an
elevation map is given in our problem which implicitly con-
tains a huge number of possible paths, exponential to the size
of the map. It is infeasible to compute and index all possible
paths from an elevation map.

4 Probabilistic Model
In this section, we develop the probabilistic model used to

solve the profile query problem. The objective is to estimate
the probability that a point is at the end of a matching path.
The composition of high probability end points leads to a

list of path candidates. Let Lk be the corresponding random
variable given query profile Q of size k and let p be a point in
the map. Our model establishes a posterior distribution over
Lk conditioned on the query profile.

P (Lk = p|Q) = P (Lk = p|{(sq
1, l

q
1), ...(s

q
k, lqk)}) (3)

In our algorithm, the probabilistic model acts as a scoring
function model which measures the quality of path endpoints
according to their similarity with the query profile. Other
scoring functions (distance functions) can also be used in
place of our algorithm’s probabilistic model. We explain the
reasoning behind our model in Section 5.

First, we introduce an important model property neces-
sary to solve profile query problem.

Property 4.1 A point having higher P (Lk = p|Q) value
corresponds to a better path.

We will say pathu is better than pathv if their profiles,
profileu and profilev , satisfy the following relation:

Ds(profileu, Q)/bs + Dl(profileu, Q)/bl

≤ Ds(profilev, Q)/bs + Dl(profilev, Q)/bl (4)
bs and bl are normalizing factors used to weight the slope

and distance metrics, Ds and Dl. The values of bs and bl

are set to be proportional to the error tolerances δs and δl

respectively. In our implementation, we set bs = 10 · δs and
bl = 10 · δl.

Equation 4 is a necessary condition for Equations 1
and 2 to be satisfied if Ds(profilev, Q) = δs and
Dl(profilev, Q) = δl. The probabilistic model must sat-
isfy Property 4.1, in order to relate the probability values to
the two distance measurements Ds and Dl. By choosing an
appropriate function, we can convert the error tolerance of
Ds and Dl to an equivalent error tolerance of the probabil-
ity, which can then be used to prune points in the map.

In order to estimate the maximum likelihood path while
considering that paths can only be extended to neighboring
points, we use the following equation:
P (Lk = p|Qk)

= αk·maxp′{P (Lk = p|(sq
k, lqk), Lk−1 = p′)P (Lk−1 = p′|Q(k−1))}

(5)
where P (Lk−1 = p′|Q(k−1)) is the distribution conditioned
on the profile prefix Q(k−1). The constant αk is used as a
normalizing factor to make

∑
p P (Lk = p|Q) = 1.

Equation 5 illustrates the propagation of the probabilities.
Conditioned on the profile prefix Q(k−1), the model finds the
most probable point to extend the current profile, Q(k−1).
The profile is extended with the addition of segment (sq

k, lqk),
a choice that 1) is adjacent to the previous best endpoint, and
2) maximizes the probability of the profile-path match. We
show later in this section that Equation 5 satisfies Property
4.1.

The term P (Lk = p|(sq
k, lqk), Lk−1 = p′) in Equation

5 describes how the probability is propagated. In Equation
5, p′ represents all points in the map. They can be divided
into two parts, points that are neighbors of p and points that
are not neighbors of p. As we defined in Section 2, a path
can only be extended to the neighboring points of a current

endpoint. Therefore, for the points that are not neighbors of
p, we have

P (Lk = p|(sq
k, lqk), Lk−1 = p′) = 0,

|xp′ − xp| > 1 | |yp′ − yp| > 1 (6)
For those neighbors of p, we assume two independent

Laplacian distributions for P (Lk = p|(sq
k, lqk), Lk−1 = p′).

Let s be the slope of the segment between p and p′ and l be
its projected distance on xy plane.

P (Lk = p|(sq
k, lqk), Lk−1 = p′)

= (
1

2bs
)(

1

2bl
)e−|s−s

q

k
|/bse−|l−l

q

k
|/bl , |xp′−xp| ≤ 1&|yp′−yp| ≤ 1

(7)

Assuming a Laplacian distribution for P (Lk =
p|(sq

k, lqk), Lk−1 = p′) assigns higher values if (s, l) is closer
to (sq

k, lqk). As a simplification, we will set bl = bs = b in
the later parts. It is easy to see that the values of bl and bs do
not affect the key properties of the probabilistic model nor
the correctness of our algorithm.

Equation 5 suggests that the probability is propagated
through neighboring points, and the final probability of point
p corresponds to one of the paths ending at p which can be
found by linking p and the maximal p′ in each step of re-
cursion. According to Equation 5, we get the relationship
between the probability of p and its corresponding path.

P (Lk = p|Q)

= P0 · (
k∏

i=1

αi)(
1

2b
)2ke

−(
∑

k

i=1
|si−s

q

i
|+

∑
k

i=1
|li−l

q

i
|)/b

= P0 · (
k∏

i=1

αi)(
1

2b
)2ke−(Ds(profile,Q)+Dl(profile,Q))/b (8)

Theorem 1 The probabilistic model satisfies Property 4.1.

Proof : We know that the probability P (Lk = p|Q) of point
p corresponds to a path ending at p. The theorem can be
proven by applying Equation 8. Interested readers should
refer to [9] for a detailed proof.

In fact, the probability P (Lk = p|Q) of point p corre-
sponds to the best path among the paths ending at p.

Theorem 2 The probability P (Lk = p|Q) of point p corre-
sponds to the best path among those paths ending at p.

Proof : The theorem can be proven by induction based on
Equation 5. Refer to [9] for a detailed proof.

To demonstrate Theorems 1 and 2, suppose we are given
the map in Figure 1, and query profile

Q = {(−11.1, 1), (−81.7,
√

2)}
and δs = 10, δl = 0.5, bs = 100, bl = 5. According to

Equation 5, the probability P (L2 = (2, 2)|Q) = 0.0824.
And other variables calculated from Equation 5 is P0 =
0.04, α1 = 2491.7 and α2 = 3353.7. Suppose we have
two paths ending at point (2,2):

pathu = {(1, 4, 6.7), (1, 3, 18.3), (2, 2, 135.3)}
pathv = {(1, 1, 0.3), (1, 2, 6.7), (2, 2, 135.3)}

Comparing the paths with the query profile, we can
have Ds(pathu, Q) = 1.5, Dl(pathu, Q) = 0 and
Ds(pathv, Q) = 51.6, Dl(pathv, Q) = 0.414. According
to Equation 4, pathu is better than pathv. Also, from the
map we can know that pathu is the best matching path end-
ing at point (2,2).

If P (L2 = (2, 2)|Q) corresponds to pathv , we have

P (L2 = (2, 2)|Q) = P0 ·α0 ·α1 ·(1

200
)2 ·(1

10
)2 ·e− 51.6

100 ·e− 0.414
5

= 0.0459

While if probability P (L2 = (2, 2)|Q) corresponds to
pathu, we have

P (L2 = (2, 2)|Q) = P0 · α0 · α1 · (1

200
)2 · (1

10
)2 · e− 1.5

100 · e− 0
5

= 0.0824

As we can see, pathu has a higher probability value than
pathv . This matches the fact that pathu is better than pathv

as illustrated by the distance measurements. And the prob-
ability P (L2 = (2, 2)|Q) corresponds to pathu since the
value calculated from Equation 5 equals the value calculated
by pathu. This also matches the fact that pathu is the best
matching path ending at point (2,2).

Also, after the two recursions, point (2,2) has probabil-
ity 0.0824 and point (1,2) has probability 0.0352. We know
point (2,2) corresponds to path

pathu = {(1, 4, 6.7), (1, 3, 18.3), (2, 2, 135.3)}
And point (1,2) corresponds to path

pathv = {(1, 1, 0.3), (2, 1, 6.7), (1, 2, 6.7)}

Compared with the query profile, Ds(pathu, Q) = 1.5,
Dl(pathu, Q) = 0 and Ds(pathv, Q) = 88.2,
Dl(pathv, Q) = 0 . Obviously pathu is a better path than
pathv .

We have shown that our probabilistic model satisfies
Property 4.1 and that the probability of each point corre-
sponds to its appearance on the best path. In order to allow
user-specified error tolerances, we convert the error thresh-
olds δs and δl into a single probability threshold.

In the worst case, a path has exactly the distance mea-
surements equal to the error thresholds and it starts at a point
having the lowest initial probability value, P0min.

Ds(profile, Q) = δs, Dl(profile, Q) = δl

Assume that there is a point p in the map which corresponds
to this worst-case path, then its probability value should be

P (Lk = p|Q)

= P0min · (
k∏

i=1

αi)(
1

2b
)2ke−(Ds(profile,Q)+Dl(profile,Q))/b

= P0min · (
k∏

i=1

αi)(
1

2b
)2ke−(δs+δl)/b

Therefore, the probability threshold P
(k)
min should be

P
(k)
min = P0min · (

k∏

i=1

αi)(
1

2b
)2ke−(δs+δl)/b (9)

where P0min is the minimal value of the initial distribution.

Theorem 3 Any point that has probability P (Lk = p|Q)

lower than P
(k)
min cannot be an endpoint of any matching

path.

Proof : If a point p has P (Lk = p|Q) lower than P
(k)
min,

its corresponding path must have at least one of its dis-
tance measurements exceeding the threshold. Since the cor-
responding path is the best path ending at p, all the other
paths ending at p are worse, so at least one of the distance
measurements also exceeds the corresponding error thresh-
old and, therefore, cannot be matching paths. Thus, point p
is not an endpoint of any matching path.

On the other hand, according to Equation 9, a point hav-
ing probability higher than P

(k)
min also may not be a endpoint

of any matching path, because its corresponding path can
have Ds + Dl < δs + δl while either Ds > δs or Dl > δl.

And similarly, for each profile prefix Q(i), we can also get
its probability threshold P

(i)
min

P
(i)
min = P0 · (

i∏

j=1

αj)(
1

2b
)2ie−(δs+δl)/b (10)

Theorem 4 Any point that has probability P (Li = p|Q(i))

lower than P
(i)
min cannot be an endpoint of any matching path

of Q(i), which also means that the point cannot be the (i +
1)th point on a matching path of Q.
Proof : The proof is similar to the one of Theorem 3.

From Theorems 2 and 3, we can know that if point p

has probability larger than P
(k)
min, its corresponding best path

may be a matching path. However, Theorem 3 also illus-
trates that among all the other paths ending at point p, there
may also be matching paths as long as some other neighbor-
ing points of p can propagate a probability value no less than
P

(k)
min to p. Therefore, for each point p, we define its ancestor

point set.
Definition 4.1 The ancestor point set of p, A(p), is the set
of neighboring points of p that can propagate a probability
value no less than P

(k)
min to p.

A(p) = {p′|αk · f(p, p′) ≥ P
(k)
min},

f(p, p′) = P (Lk = p|(sq
k, lqk), Lk−1 = p′)P (Lk−1 = p′|Q(k−1))

For point p, each point in A(p) corresponds to a possible
matching path ending at p including the best one. It is trivial
to show that when point p has probability value lower than
P

(k)
min, the set A(p) will be empty.

5 Algorithm
In this section, we explain our query processing algorithm

based on the probabilistic model. Later, several optimiza-
tions are presented to improve the performance.

Our query algorithm is deterministic even though it em-
ploys a probabilistic model. As we discussed in Section 4,
the probabilistic model works as a scoring function. There
are several reasons for us to use this probabilistic model in-
stead of other score (distance) function models in the deter-
ministic form.

• The probabilistic model is well-established, i.e., all re-
sulting values are within the rage [0, 1] regardless of the
data. It scores the point and paths in a natural and easy-
to-understand way.

• The probabilistic model is more general than scoring
functions and could potentially support arbitrary paths
(instead of paths restricted to grid segments as assumed
here).

Also our algorithm uses dynamic programming to com-
pute probability propagation between neighbors in our prob-
abilistic model as discussed in Section 4.

5.1 Basic Algorithm

Our algorithm consists of two phases. The first phase
identifies endpoints of possible matching paths in the map.
This would allow us to constrain the search to regions sur-
rounding these end points. Then the second phase searches
for matching paths in reverse starting from these endpoints.

Given a query profile Q of size k, in the first phase,
the algorithm employs the probabilistic model to find all
points having probability value no less than P

(k)
min. Accord-

ing to Theorem 3, these points may be the endpoints of some
matching paths. We use I(0) to denote this set of points —
the initial candidate point set. By doing so, the algorithm
reduces the search space.

In the second phase, the query profile is reversed and the
algorithm starts from the points in set I(0) to search match-
ing paths. The probabilistic model is used again. In each
iteration, points having probability no less than P

(i)
min are

recorded in I(i) — the ith candidate point set. According to
Theorem 4, I(i) contains all points that may be the (i + 1)th

point of some matching path. After computing all candidate
point sets, I(1) to I(k), the algorithm concatenates the points
from each set to form a set of candidate paths, which will be
validated and returned. Note that since the query profile is
reversed in the second phase, the matching paths also need
to be reversed to match the original query profile. In both
the first and second phase, the calculation of probabilities
employs dynamic programming because of the propagation
feature of the model.

In fact, if in the first phase we record the intermediate
candidate point sets I(i) besides the last one, we can also
get the candidate path set at the end and do not need to run
the second phase. However, this only works for small maps.
For large maps, the intermediate candidate point sets I(i) in
phase 1 can become large, which makes the concatenation
intractable. The reason is that in the first phase, since we
do not have any idea about the endpoints of the matching
paths, we assume that all points have the same initial proba-
bility P0. Therefore, the intermediate candidate point sets in
the first phase will contain many false positives (i.e., points
on mismatching paths). While in the second phase, with the
information of possible endpoints of matching paths, only
points in I(0) can get a non-zero initial probability and all
other points have P0 = 0. Therefore, the candidate point
sets in the second phase tend to be much smaller and contain

Phase 1
Input:

• Elevation map M
• Query profile Q of size k
• error thresholds δs, δl

Output: Initial candidate set I(0)

Method:
1. for all p ∈ M , P (L0 = p|Q(0)) = P0 = 1/|M |.
2. bs = δs ∗ 10, bl = δl ∗ 10.
3. P

(0)
min = P0 · e−(δs/bs+δl/bl).

4. for i=1 to k

5. Propagate(i)
6. I(0) = {p|p ∈ M, P (Lk = p|Q) ≥ P

(k)
min}.

Phase 2
Input:

• Elevation map M
• Reversed query profile Q′ of size k
• error thresholds δs, δl

• Initial candidate point set I(0)

Output: Matching paths
Method:

1. for p ∈ I(0), P0 = 1/|I(0)|, otherwise P0 = 0.
2. bs = δs ∗ 10, bl = δl ∗ 10
3. P

(0)
min = 1

|I(0)|
· e−(δs/bs+δl/bl).

4. for i=1 to k

5. Propagate(i)
6. I(i) = {p|p ∈ M, P (Li = p|Q′(i)) ≥ P

(i)
min}.

7. Matching paths=Concatenate().

Propagate(i)

1. αi = 0.

2. for each point p ∈ M
3. Calculate P (Li = p|Q(i)) according to Equation 11
4. αi = αi + P (Li = p|Q(i)).
5. for each point p ∈ M
6. P (Li = p|Q(i)) = 1

αi
P (Li = p|Q(i)).

7. P
(i)
min = P

(i)
min · 1

2bs
· 1

2bl
· 1

αi

Figure 2. Basic Algorithm

fewer mismatches. By avoiding materializing the large inter-
mediate candidate point sets in the first phase, the algorithm
performs work efficiently on large maps.

In the algorithm, we use Equation 11 to calculate the
probability recursively. The calculation is implemented via
a dynamic programming approach. Equation 11 is modified
from Equation 5 by omitting αi. Because we can only cal-
culate the value of αi after we get the updated value for each
point, we calculate it at the end of each iteration.

P (Li = p|Q(i))

= maxp′{P (Li = p|(sq
i , l

q
i), Li−1 = p′)P (Li−1 = p′|Q(i−1))}

(11)

The details of the basic algorithm are shown in Figure 2.
In phase 1, the probability distribution is initialized to be

uniform in step 1. P
(0)
min is set according to the lowest ini-

tial probability and the error tolerance in step 3 in order to
estimate the worst case. Function Propagate(i) updates the
probability distribution and P

(i)
min recursively according to

each profile prefix. Note that Step 3 of Propagate(i) uses
dynamic programming. In step 6, the points of I(0) is se-
lected according to their probability value and P

(k)
min.

In phase 2, the main structure is similar with a few small
differences. In step 1, the initial probability is set accord-
ing to I(0), so that only points in I(0) get a non-zero initial
probability. In step 6, the candidate point set I(i) for each
iteration is recorded. In step 7, the function Concatenate()
concatenates all candidate points and returns the matching
paths.

In the algorithm, when candidate point sets are generated
in step 6 of phase 1 and 2, the ancestor point sets A(p) of all
candidates are also recorded. In step 7 of the second phase,
Concatenate() appends candidate points according to their
ancestor point sets and prunes mismatching paths. The de-
tails of Concatenate() are shown in Figure 3.

function Concatenate()
Input:

• Candidate point sets {I(0), ..., I(k)}
• Ancestor point set A(p) for each candidate point.
• δs,δl.

Output: Matching paths set MPath
Method:

1. MPath = ∅.
2. Insert all points p ∈ I(0) into MPath as the initial paths.
3. for i = 1 to k

4. for each point p in I(i)

5. for each path in MPath
6. if the last point of the path, pl, belongs to A(p)
7. Concatenate point p with the path.
8. Remove paths in MPath not extended in this turn.
9. Remove paths in MPath whose Ds, Dl exceed δs or δl

Figure 3. function Concatenate()

The complexity of the basic algorithm is O(|M | · k + R),
where R is the number of matching paths. Now we will
prove the correctness of our algorithm.

Theorem 5 Given a query profile Q, the error tolerance δs

and δl, all matching paths can be found by the algorithm.

Proof : For any matching path consisting of points
{p0, ..., pk}, since its profile satisfies Equation 1 and 2, we
know that

Ds(profile, Q) + Dl(profile, Q) ≤ δs + δl (12)

1. We prove that pk is included in set I(0). According to
Theorem 2, Equations 8 and 12, we know that
P (Lk = pk|Q)

≥ P0 · (
k∏

i=1

αi)(
1

2b
)2ke−(Ds(profile,Q)+Dl(profile,Q))/b

≥ P0 · (
k∏

i=1

αi)(
1

2b
)2ke−(δs+δl)/b = P

(k)
min

So that point pk has probability value no less than P
(k)
min

and is included in I(0).

2. We prove that each remaining point on the path is also
included in the corresponding candidate point set. Since
the query profile is reversed in the second phase of the

algorithm, we also reverse path {p0, ..., pk} for con-
venience. Let Q′ be the reversed query profile. Let
{p′0, ..., p′k} be the reversed path, p′i = pk−i, and
profile′ be its reversed profile. We have already proved
that p′0 is included in I(0). By the same token, for each
point p′i, we have

P (Li = p′
i|Q′(i))

≥ P0 · (
i∏

j=1

αj)(
1

2b
)2ie

−(
∑

i

j=1
|s′

j
−s

′q

j
|+

∑
i

j=1
|l′

j
−l

′q

j
|)/b

≥ P0 · (
i∏

j=1

αj)(
1

2b
)2ie−(Ds(profile′,Q′

)+Dl(profile′,Q′

))/b

≥ P0 · (
i∏

j=1

αj)(
1

2b
)2ie−(δs+δl)/b = P

(i)
min

So each point p′i has probability value no less than
P

(i)
min and is included in I(i).

3. We prove that each point p′i is included in the ancestor
point set of p′i+1.

αi+1 · P (Li+1 = p′
i+1|(s′qi+1, l

′q
i+1), Li = p′

i)P (Li = p′
i|Q′(i))

≥ αi+1 · (1

2b
)2 · e−(|s′

i+1−s
′q

i+1
|+|l′

i+1−l
′q

i+1
|)/b

·P0 · (
i∏

j=1

αj)(
1

2b
)2ie

−(
∑

i

j=1
|s′

j
−s

′q

j
|+

∑
i

j=1
|l′

j
−l

′q

j
|)/b

= P0 · (
i+1∏

j=1

αj)(
1

2b
)2(i+1)e

−(
∑

i+1

j=1
|s′

j
−s

′q

j
|+

∑
i+1

j=1
|l′

j
−l

′q

j
|)/b

≥ P0 · (
i+1∏

j=1

αj)(
1

2b
)2(i+1)e−(Ds(profile′,Q′

)+Dl(profile′,Q′

))/b

≥ P0 · (
i+1∏

j=1

αj)(
1

2b
)2(i+1)e−(δs+δl)/b = P

(i+1)
min

According to Definition 4.1, for each point p′i, 0 ≤ i <
k, we have p′i ∈ A(p′i+1).

Therefore, path {p0, ..., pk} must be able to be concate-
nated by the Concatenate() function and be returned as a
matching path.

5.2 Optimizations

In this section, we discuss several optimizations to the
basic algorithm.

5.2.1 Selective Calculation
In the basic algorithm, a major overhead is to calculate the

probability values for each point. For large elevation maps,
it takes a long time to do so for all points.

According to the propagation relationship between can-
didate points in the algorithm, a point in candidate point set
I(i) must be the neighboring point of a point in I(i−1). There-
fore, if we know that point p is a candidate point of I(i), we
only need to focus on the small area surrounding p to find
candidate points p′ in subsequent steps.

To expedite the computation, we can partition the map
into smaller regions and only for points in regions containing
candidate points, the algorithm will calculate their probabil-
ity value recursively. For example, in our experiments, we

partition a 2000 × 2000 map into a list of 50 × 50 regions.
In order to handle candidate points near boundary of regions,
we enlarge each region slightly according to the size of query
profile, thus including a small overlap.

The efficiency of this selective calculation depends on
the distribution and number of candidate points. If most
small regions contain candidate points, there will be little
improvement over the basic algorithm. Therefore, before us-
ing selective calculation, we check the number of candidate
points. If the number of candidate points is small, there is a
high chance that the number of regions containing candidate
points is also small and selective calculation would be likely
to be effective.

Selective calculation can be applied to both phases in dif-
ferent ways. In phase 1, a check step will be inserted after
step 5. If the number of points having probability no less
than P

(i)
min is small, the algorithm will turn to use selective

calculation. Note that the algorithm only needs to know the
number of points, the actual candidate sets are not materi-
alized. When the profile is long, the last several candidate
point sets will usually contain few points. In this case, selec-
tive calculation can show its efficiency in phase 1.

And in phase 2, a check step is inserted after step 3. If
the number of initial candidate points is small, the algorithm
turns to use selective calculation. When the user-specified
error tolerance is tight, the initial candidate set would con-
tain few points. In this case, it is efficient to use selective
calculation. We show the performance of selective calcula-
tion in the experiment section.

5.2.2 Reversed Concatenation
In Concatenate(), candidate points are concatenated

from I(0) to I(k). However, we observe that many candidate
points in early candidate set can not be extended to form a
complete matching path when the concatenation continues.
The reason is that an intermediate path ending at an early
candidate point may have already reached the maximal er-
ror tolerance to the query profile and any further step will
make it a mismatching path. While points in later candidate
sets have a higher chance to form a complete matching path.
Also the later candidate sets are usually of smaller size.

Therefore, instead of starting concatenation from I(0), we
reverse the concatenation and start from I(k), the last candi-
date set. By doing so, the number of candidate paths tested in
the intermediate steps decreases dramatically. We compare
the performance of reversed concatenation with the normal
concatenation in the experiments.

5.2.3 Pre-processing
In the algorithm, the slopes and distances of segments

between points and their neighboring points are frequently
used. It is inefficient to calculate these values each time
when a new query comes. Therefore, for each map, we con-
duct a pre-processing to calculate the slopes and distances
around each point and store them in matrix. Then in the al-
gorithm, these values can be quickly loaded from the matrix.
The computation time can be reduced to about 60% by pre-
processing according to experiment performance.

6 Experiments
In this section, we compare our algorithm with an alter-

native method based on a traditional indexing structure. We
demonstrate the efficiency and scalability of our algorithm
and the effectiveness of the proposed optimization methods.

Dataset

We used a 2000 × 2000 elevation map downloaded from
the North Carolina Floodplain Mapping Program 1. The xy
view of the map is shown in Figure 4(a). We also generate

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

(a) (b)

Figure 4. xy view of the elevation map (a) and the match-
ing paths (b) of the profile in Figure 5 Left

several smaller maps that are regions of the 2000 × 2000
map.

An example query profile of size k = 7 is shown in Figure
5. We set δs = 0.5, δl = 0.5. A total of 763 matching
paths are returned, and their spatial distribution is plotted in
Figure 4(b). The path in the circle is exactly the path used to
generate the query profile. The shapes of the the matching
paths are shown in Figure 5. As we can see, the matching
paths exhibit profiles similar to the query profile.

1 2 3 4 5 6 7 8
-8

-7

-6

-5

-4

-3

-2

-1

0

Distance

R
el

at
iv

e
E

le
va

tio
n

1 2 3 4 5 6 7 8
-8

-7

-6

-5

-4

-3

-2

-1

0

Distance

R
el

at
iv

e
E

le
va

tio
n

Figure 5. Left: shape of the query profile. Right: shape of
the matching paths

Alternative Method

We implemented an alternative method based on the tra-
ditional index structure B+ tree.

Each segment in the map (including horizontal, vertical
and diagonal segments) is indexed by a B+tree with its slope
value as the index key. The segment length is not used as
the key since it is either 1 (for horizontal and vertical seg-
ments) or

√
2 (for diagonal segments) in an grid format el-

evation map. A profile query with error tolerance δs is de-
composed into a set of k segment queries using their slope
values, where k is the profile size. δs/k is used as the error
tolerance in each segment query. The returned matching seg-
ments will then be assembled into matching paths. Note that

1http : //www.ncfloodmaps.com/default swf.asp

the alternative method can only find a subset of all matching
paths. It would entail much longer computation in order to
find all matching paths and are intractable for even short pro-
file and moderate error tolerance. Therefore, we only com-
pared the performance of the described algorithm with our
approach. In the following discussion, we refer to this alter-
native method as the B+segment method.

Other spatial index structures like R-tree can store each
possible paths in the map as a high dimensional point and
perform the query. However, this is only feasible when both
the map and the size of query profile are very small. With
a 2000 × 2000 map and a profile of size 7, the number of
possible paths in the map can be up to O(1012).

Parameters

We evaluated the performance of our algorithm with re-
spect to four parameters: map size m, query profile size k
and error tolerance δs, δl. The prototype was implemented in
MATLAB and all experiments were conducted on a PC with
P4 3GHz and 1G main memory. In Section 6.1, we com-
pare our method with the B+segment method on a smaller
map because, with reasonable running time, B+segment
can only answer queries on small maps with limited error
tolerance. In Section 6.2, we test the performance of our al-
gorithm with various parameters. In Section 6.3, we show
the efficiency of the optimization methods.

6.1 Comparison with alternative method

As we mentioned in the previous section, B+segment
can only handle error tolerance segment by segment, so we
evenly distribute δs among k segments. It is obvious that the
set of matching paths found by B+segment is a subset of
the matching paths. We use a map of size 500 × 500, since
B+segment is unable to handle large maps. We varied the
value of δs to compare the runtime performance and number
of paths found. We set δl = 0 and k = 7.

As shown in Figure 6, our approach is orders of magni-
tude faster except when δs = 0. The number of paths found
by the two methods is also provided in the figure. As we
expected, B+segment is not able to find all matching paths.

Figure 6. Runtime of our algorithm remains almost con-
stant while runtime of B+segment increases exponentially
when increasing δs, and k=7, δl=0.5,m=2.5 · 105. And
B+segment cannot find all the matching paths.

The reason for the poor performance of B+segment is
that data structures like B+tree only contain information
about the segment’s length and slope, while the connec-
tion (adjacency) information of the segments is not included.
Lots of mismatching segments can only be pruned during
concatenation, after they are returned by B+tree. This makes
the method very inefficient on large maps and with high error
tolerance.

6.2 Algorithm Performance

In this section, we vary the values of four parameters to
test our algorithm. Table 1 lists the parameters.

Table 1. Parameter range and default value
parameter range default value

k {7, 11, 15, 19, 23} 7
δs {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} 0.5
δl {0, 0.5} 0.5
m {2.5 · 105, 5 · 105, 1 · 106} 4 · 106

{2 · 106, 4 · 106}
We test two kinds of query profiles: profile generated

from an actual path in the map and profile randomly gen-
erated. Unless otherwise noted, we use a profile from the
map as the query profile.

6.2.1 Varying δs and δl

The values of m and k are set to their default values in
these experiments. Since a segment in the map is either of
length 1 or

√
2, we only set two values for δl: 0 and 0.5 and

vary δs from 0.1 to 0.6.
The runtime and number of matching paths for different

δs and δl settings are shown in Figure 7.

Figure 7. Runtime and number of matching paths of
sampled profiles increase exponentially when increasing δs,
δl={0, 0.5}, m=4 · 106, k=7.
As we can see in Figure 7, with larger δs and δl, more

paths may match the query profile and the query takes longer
time to run. In fact, the runtime is linear to the number of
paths returned as shown in Figure 8.

Figure 8. Runtime of our algorithm increases linearly with
the increase of number of matching paths of sampled profiles
by increasing δs, m = 4 · 106, k = 7

6.2.2 Varying m

We applied the probabilistic model to maps of different
size. Parameters k, δs and δl are set to their default values.

The runtime and number of matching paths on maps of
increasing sizes are shown in Figure 9. Both the runtime and
number of matching paths are linear to the map size.

6.2.3 Varying k

We next varied the query profile size and tested the per-
formance. We selected a path consisting of 24 points in the
map and use its profile as the query profile. The profiles of

Figure 9. Runtime and number of matching paths of sam-
pled profiles increase linearly when increasing map size m,
δs=δl=0.5, k=7.

smaller size are its corresponding profile prefixes. Parame-
ters m, δs and δl are set to their default values.

The runtime and number of matching paths for each query
profile are shown in Figure 10. Except when k = 7, the run-
time is linear to the size of query profile. The reason that the
algorithm takes much more time when k = 7 is that there are
many more matching paths, which takes longer time to pro-
cess. According to the complexity of our algorithm, when
the number of matching paths is relatively small, the map
size and profile size will play dominant roles in the runtime.
As we can see in Figure 10, when k = 11, 15, 19, 23, the
number of matching paths is less than 10, and the corre-
sponding runtime is linear to profile size k.

Figure 10. Runtime increases linearly when increasing
profile size k, and δs=δl=0.5, m=4 · 106, except when there
are large number of matching paths. Number of matching
paths decreases dramatically when increasing k.

Instead of using the profile generated from a path in the
map, we also tested it with random query profile, and var-
ied the parameter δs to evaluate the algorithm’s performance.
All other parameters were set to their default values.

The runtime and number of matching paths are shown in
Figure 11. As we increased δs, the number of matching paths
increased exponentially and so does the runtime. Compared
to samples queries, under the same parameter setting, ran-
dom profiles have similar runtime performance. As shown in
Figure 12, the runtime is also linear to the number of paths
returned.

Figure 11. Runtime and number of matching paths of
random profiles increase exponentially when increasing δs,
δl=0.5, m=4 · 106, k=7

6.3 Efficiency of Optimizations

In this section, we show the efficiency of the optimization
methods. Each of the optimization methods will be added to
the basic algorithm separately and their performance will be
compared with the basic algorithm.

Figure 12. Runtime of our algorithm increases linearly
with the increase of number of matching paths of random
profiles by increasing δs, δl = 0.5, m = 4 · 106, k=7

As discussed in Section 5, adding selective calculation
in phase 1 is most efficient when the query profile is large.
Therefore we varied the value of k and compared the runtime
of phase 1 only. For the other parameters, δs = 0.5, δl = 0,
and m = 106. As we can see in Figure 13(a), the optimiza-
tion can save about 50% runtime of phase 1 when the query
profile has k = 23. When the profile is of very small size,
the optimization does not improve the runtime performance
substantially.

Figure 13. Comparing the runtime of basic algorithm and
selective calculation

Adding selective calculation to phase 2 is efficient when
the error tolerance is relatively small. Therefore, we varied
δs to show the efficiency of selective calculation on phase
2. We set δl=0, k = 7, and m = 106. We only compared
the runtime of phase 2 as shown in Figure 13(b). The basic
algorithm always takes the same amount of time in phase 2
no matter what δs is given. With this optimization, phase 2 is
spedup by orders of magnitude, especially when δs is small.

Next, we added the reversed concatenation function to the
basic algorithm in place of normal concatenation. In order to
show the efficiency of reversed concatenation, we compare
the number of paths generated in each intermediate iteration
by normal and reversed concatenation. The parameters are
set as follows, δs = δl = 0.5, k = 7 and m = 2.5 · 105

and the query profile is random. The comparison of number
of paths is shown in Figure 14. As we can see, the number
of paths generated is dramatically reduced especially in the
early iterations.

Figure 14. Number of paths generated in intermediate it-
erations is dramatically reduced by using reserved concate-
nation compared to normal concatenation, k = 7, δs = δl =

0.5, m = 2.5 · 105

From the experiments shown in this section, we can see

that our probabilistic model and algorithm can handle profile
query efficiently and are much better than alternative meth-
ods based on traditional indexing structures.

7 Application of Profile Query
In this section, we use the algorithm to solve a Map Reg-

istration problem. Suppose we have two raster maps, one is
of size 1000×1000 and the other is of size 20×20 as shown
in Figure 15(a) and (b). The small map is a sub-region of the
big one, therefore we want to find the location of the small
map in the big map (the locations of its left-bottom and right-
up corners).

(a) a 1000x1000 map (b) a 20x20 sub-region of map in (a)

(c) many matching paths of
the bold path in (b)

(d) a longer path

(e) 3 matching paths of
the bold path in (d)

(f) 3 matching paths of
the bold path in (d)

Figure 15. Example of Map Registration
To solve this map registration problem by profile query

algorithm, we select a path in the small map, generate its pro-
file and then search the profile in the big map. If the selected
path is long enough, its profile will probably be unique and
the query algorithm can return the only corresponding path
which helps us to locate the sub-region.

A path consisting of 20 points, which is shown as the bold
curve in Figure 15(b), was selected. The query results are
shown in Figure 15(c). Since the selected path is not long
enough, several paths in the big map have the similar pro-
file so that we can not locate the small map. Therefore, we
select a longer path which consists of 40 points as shown in
Figure 15(d). This time, the query algorithm only returns
three paths in Figure 15(e) and (f). According to the re-
turned paths, the small maps is located at points (811, 201)
and (830, 220) or points (812, 202) and (831, 221) (the lo-
cations of its left-bottom and right-up corners). In fact, the
small map in 15(b) is located at points (811.5, 201.5) and
(830.5, 220.5). Since the query algorithm only returns paths
consisting of grid segments, it locates the sub-region at the
closest grid points.

We tested the algorithm with more sub-regions selected
randomly from the big map. For most of the sub-regions,

a path consisting of 40 points is enough to uniquely locate
them in the big map no matter the sizes of the sub-regions.

A brute-force search of the sub-region by comparing each
possible path (considering x-y shape) with the selected path
from the sub-region can have similar runtime performance
with our basic algorithm. However, with the optimization
methods in Section 5.2, our query algorithm can be orders of
magnitude faster.

8 Conclusion
In this paper, we introduce the problem of profile query

on elevation map. Given a query profile, the objective is to
find matching paths in the map within some error tolerance.
We developed a probabilistic model which has been demon-
strated to be very efficient via real experiments. Comparing
to alternative method based on traditional index structure,
our algorithm is orders of magnitude faster. Future work in-
cludes supporting query profile expressed in more general
format (than a list of segments of standard sizes), applying
the probabilistic model to other types of terrain maps like
Triangulated Irregular Network (TIN), and handling multi-
resolution maps in a hierarchical structure to further speedup
performance on huge maps.

Acknowledgement
This research was supported through NGA/DARPA grant

HM1582-05-2-0003.

References
[1] J. A. Castellanos, J. D. Tardss, and J. D. Tardos. Mobile Robot

Localization and Map Building: A Multisensor Fusion Ap-
proach. Kluwer Academic Publishers, Boston, 2000.

[2] C. du Mouza and P. Rigaux. Mobility patterns. In STDBM
’04 Conference Proceedings, pages 1–8, 2004.

[3] D. Fox, W. Burgard, and S. Thrum. Markov localization for
mobile robots in dynamic environments. Journal of Artificial
Intelligence Research.

[4] R. H. Guting, M. H. Bohlen, M. Erwig, C. S. Jensen, N. A.
Lorentzos, M. Schneider, and M. Vazirgiannis. A foundation
for representing and querying moving objects. ACM Trans.
Database Syst., 25(1):1–42, 2000.

[5] A. Guttman. R-trees: a dynamic index structure for spatial
searching. In SIGMOD ’84 Conference Proceedings, pages
47–57, 1984.

[6] M. Hadjieleftheriou, G. Kollios, P. Bakalov, and V. J. Tso-
tras. Complex spatio-temporal pattern queries. In 31st VLDB
Conference Proceedings, 2005.

[7] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunop-
ulos. Efficient indexing of spatiotemporal objects. In EDBT
’02 Conference Proceedings, pages 251–268, 2002.

[8] I. Nourbakhsh, R. Powers, and S. Birchfield. Dervish an
office-navigating robot. AI Magazine.

[9] F. Pan, W. Wang, and L. McMillan. Accelerating profile
queries in elevation maps. Technical Report: TR06-018,
2006.

[10] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel ap-
proaches in query processing for moving object trajectories.
In VLDB ’00 Conference Proceedings, pages 395–406, 2000.

[11] Y. Tao and D. Papadias. Mv3r-tree: A spatio-temporal access
method for timestamp and interval queries. In The VLDB
Journal, pages 431–440, 2001.

