
 1

Comparative Study of Sequential Pattern Mining Frameworks
Support Framework vs. Multiple Alignment Framework

Hye-Chung (Monica) Kum Susan Paulsen Wei Wang
Computer Science, Univ. of North Carolina at Chapel Hill (kum, paulsen, weiwang@cs.unc.edu)

Abstract

Knowledge discovery and datamining (KDD) is commonly
defined as the nontrivial process of finding interesting, novel and
useful patterns from data. In this paper, we examine closely the
problem of mining sequential patterns and propose a compre-
hensive evaluation method to assess the quality of the mined
results. We propose four evaluation criteria, namely (1) recove-
rability, (2) the number of spurious patterns (3) the number of
redundant patterns, and (4) the degree of extraneous items in the
patterns, to quantitatively assess the quality of the mined result
from a wide variety of synthetic datasets with varying random-
ness and noise levels. Recoverability, a new metric, measures
how much of the underlying trend has been detected. Such an
evaluation method provides a basis for comparing different
frameworks for sequential pattern mining, which is very essen-
tial in understanding the performance of approximate solutions.
In this paper, the method is employed to conduct a detailed
comparison of the traditional frequent sequential pattern frame-
work with an alternative approximate pattern framework based
on sequence alignment. We demonstrate that the alternative
approach is able to best recover the underlying patterns with
little confounding information under all circumstances including
those where the frequent sequential pattern framework fails.

1. Introduction
Knowledge discovery and datamining (KDD) is

commonly defined as the nontrivial process of finding
interesting, novel, and understandable patterns from data. In
any particular datamining problem, the first and most import-
ant task is to define patterns operationally. The definition
should ultimately lead to useful understandable patterns. Yet,
designing a good definition (framework) and evaluating what
patterns emerge from the framework is difficult.

In this paper, we focus on the problem of mining seq-
uential patterns. Sequential pattern mining finds interesting
patterns in sequence of sets. Mining sequential patterns has
become an important datamining task with broad applications.
For example, supermarkets often collect customer purchase
records in sequence databases in which a sequential pattern
would indicate a customer’s buying habit.

Sequential pattern mining is commonly defined as
finding the complete set of frequent subsequences in a set of
sequences [1]. Much research has been done to efficiently
find such patterns. But to the best of our knowledge, no
research has examined in detail what patterns are actually
generated from such a definition. In this paper, we examined
the results of the support framework closely to evaluate
whether it in fact generates interesting patterns.

To this end, we propose a comprehensive evaluation
method that can quantitatively assess how “useful” and
“understandable” the results are using the well known
synthetic data generator [1]. This synthetic data generator
has become a benchmark for evaluating performance. In this

paper, we propose to extend this benchmark to evaluate the
quality of the mined results. By mapping the mined patterns
back to the base patterns (reported by the data generator) that
generate the data, we are able to measure how well the
methods find the real underlying patterns and whether or not
it generates any confounding patterns under a variety of
situations with varying randomness and noise levels.

Such a method provides a basis for comparing the results
of different sequential pattern mining frameworks. In addi-
tion, the method is crucial in understanding the quality of the
mined results because often times the frameworks are too
complicated to analyze theoretically what patterns will emer-
ge. The evaluation method provides a comprehensive empiri-
cal understanding of the results. This is especially important
for understanding the performance of approximate solutions.

When the evaluation method was applied to the support
framework for sequential pattern mining, it revealed that the
framework generates huge number of redundant and spurious
patterns in long sequences, which bury the true patterns. Our
theoretical analysis of the expected support of short patterns
in long sequences confirm that many short patterns can occur
frequently simply by chance. Furthermore, in the presence of
noise in the data, the support framework cannot detect the
underlying patterns well because a sequence supports a
pattern if, and only if, the pattern is fully contained in the
sequence. Hence, noise in the data can cause the exact
matching approach to miss general trends in the sequence
database. Many customers may share similar buying habits,
but few of them follow exactly the same buying patterns.

Motivated by these observations, we examined an
entirely different framework for analyzing sequential data.
What would be the proper framework to find the major
groups of similar sequences in the database and then to
uncover the underlying trend in each group? As a simple
extension from association rule mining (mining patterns in
sets), the conventional framework does not efficiently detect
trends in sequences. However, detecting common underlying
patterns (called consensus strings or motifs) in simple
sequences (strings) has been well studied in computational
biology. The current research employs the multiple
alignment framework to detect consensus strings.

In the simple edit distance problem, one is trying to find
an alignment of two sequences such that the edit distance is
minimum. In multiple alignment, the purpose is to find an
alignment over N strings such that the total pairwise edit
distance for all N strings is minimal. A good alignment is
one in which similar characters are lined up in the same
column. In such an alignment, the concatenation of the
common characters in each column would represent the
underlying pattern. Table 1 shows an example of how the
original word “pattern” was recovered from five typos.

In this paper, we extend the multiple alignment
framework to sequences of sets and employ the evaluation

 2

method to understand what pattern are generated. In contrast
to the support framework, the study reveals that the
alignment framework, robust to both noise and random
sequences in the data, returns a succinct but accurate
summary of the base patterns with few spurious or redundant
patterns and very low level of extraneous items.

Table 1. Multiple alignment of the word “pattern”
seq1 P A T T T E R N
seq2 P A T E R M
seq3 P T T R N
seq4 O A T T E R B
seq5 P S Y Y R T N

Underlying pattern P A T T E R N

In summary, we make the following contributions: (1)
We design an evaluation method to assess the quality of the
mined results in sequential data. (2) We propose a novel
framework for sequential pattern mining, multiple alignment
sequential pattern mining. (3) We employ the evaluation
method for a comparative study of the support framework
and the alignment framework. (4) We derive the expected
support of patterns under the null hypothesis to better under-
stand the behavior and limitations of the parameter min_sup.

The remainder of the paper is organized as follows.
Sections 2 and 3 provide an overview of the two frameworks.
Section 4 demonstrates both frameworks through an example.
Section 5 details the evaluation method and the comparative
study. It also includes the analysis of the expected support in
random data. Section 6 provides an overview of related
works. Section 7 concludes with a summary.

2. Support Framework
Table 2. An example of a sequence

Items I Itemsets s13 Sequence seq1
{A, B, C, D} (C D) < (A) (B) (C D) >

Definitions : Let items be a finite set of literals I={i1, i2,
i3, …, ir}. Then an itemset is a set of items from I and a
sequence is an ordered list of itemsets. A database D is a set
of such sequences. We denote a sequence seqi as
<si1si2si3...sim> (concatenation of itemsets) and an itemset sij
as (ij1 ij2 ij3 … ijn) where items ijk are from I. (Table 2)

seq2 is a supersequence of seq1 and seq1 is a subseq-
uence of seq2, if and only if seq1 is derived by deleting some
items or whole itemsets from seq2. Given a sequence
database D, the support of a sequence seq, sup(seq), is the
number of supersequences of seq in the database.

Problem Statement: Given N sequences and a support
threshold, min_sup, find all patterns P s.t. sup(P) ≥ min_sup.

The bottleneck in applying the support framework
occurs when counting the support of all possible frequent
subsequences in D. Thus the two classes of algorithms differ
in how to efficiently count support of potential patterns. The
apriori based breadth-first algorithms [1, 11] pursue level-by-
level candidate-generation-and-test pruning following the
Apriori property: any super-pattern of an infrequent pattern
cannot be frequent. In contrast, the projection based depth-
first algorithms [2, 9, 13] avoid costly candidate-generation-
and-test by growing long patterns from short ones. The depth
first methods generally do better than the breadth first
methods when the data can fit in memory. The advantage
becomes more evident when the patterns are long [12].

3. Multiple Alignment Framework
In this section, we present a new framework for finding

useful patterns in sequence of sets. The probability that two

long sequences are similar is negligible. Thus, if some num-
ber of long sequences can be aligned such that certain items
occur in certain positions frequently we are able to implicitly
find sequential patterns that are statistically significant.

Definitions: The example in section 4 will help you
understand the definitions better. The database, D, are
defined in the same way as in the support framework.

The global multiple alignment of a set of sequences is
obtained by inserting a null itemset, (), either into or at the
ends of the sequences such that each itemset in a sequence is
lined up against a unique itemset or () in all other sequences.
In the rest of the paper, alignment will always refer to a
global multiple alignment (Tables 6 and 7).

Given two aligned sequences and a distance function for
itemsets, the pairwise score between the two sequences is the
sum over all positions of the distance between an itemset in
one sequence and the corresponding itemset in the other
sequence. Given a multiple alignment of N sequences, the
multiple alignment score is the sum of all pairwise scores.
Then the optimum multiple alignment is one in which the
multiple alignment score is minimal [6].

PS (seqi, seqj) = ∑distance(sik, sjk) (for all k)

MS (N)= ∑PS(seqi, seqj) (over all 1 ≤ i ≤ N and 1≤ j ≤ N)

Weighted sequences are an effective method to compress
a set of aligned sequences into one sequence. A weighted
itemset, denoted as wsj=(ij1:wj1, …, ijm:wjm):vj, is defined as an
itemset that has a weight associated with each item in the
itemset as well as the itemset itself. Then a weighted sequ-
ence, denoted as wseqi=<(i11:w11, …, i1s:w1s):v1 … (il1:wl1, …,
ilt:wlt):vl>:n, is a sequence of weighted itemsets paired with a
separate weight for the whole sequence. The weight asso-
ciated with the weighted sequence, n, is the total number of
sequences in the set. The weight associated with the itemset
sj, vj, represents how many sequences have a nonempty item-
set in position j. And the weight associated with each item ijk
in itemset sj, wjk , represents the total number of the item ijk
present in all itemsets in the aligned position j (Tables 6 & 7).

The strength of an item, ijk, in an alignment is defined as
the percentage of sequences in the alignment that have item
ijk present in the aligned position j. strength(ijk) = wjk/n *
100%. Clearly, larger strength value indicates that more
sequences share the item in the same aligned position.

Given a threshold, θ, and a multiple alignment of N
sequences, the consensus itemset for position j in the
alignment is an itemset of all items that occur in at least θ
sequences in position j. Then a consensus sequence is simply
a concatenation of the consensus itemsets for all positions
excluding any null consensus itemsets. When weights are
included it is called a weighted consensus sequence.

Consensus itemset (j)= { ik | ∀ ik ∈I and strength(ik) ≥ θ }

Based on item strengths, items in an alignment are
divided into three groups: rare items, non-frequent items, and
frequent items. The rare items may represent noise and are
in most cases not of any interest to the user. The frequent
items occur in enough of the sequences to constitute the
underlying pattern in the group. The non-frequent items do
not occur frequently enough to be part of the underlying
pattern but occur in enough sequences to be of interest. The
non-frequent items constitute variations on the general pat-
tern. That is, they are the items most likely to occur regularly
in a subgroup of the sequences. Using this categorization we
make the final results more understandable by defining two
types of consensus sequences corresponding to two thres-
holds: (1) The pattern consensus sequence, which is compos-
ed solely of frequent items and (2) the variation consensus

 3

sequence, an expansion of the pattern consensus sequence to
include non-frequent items (Table 8). This method presents
both the frequent underlying patterns and their variations
while ignoring the noise. It is an effective method to
summarize the alignment because the user can clearly
understand what information is being dropped. Furthermore,
the user can control the level of summarization by defining
the two thresholds for frequent and rare items as desired.

Problem Statement: Given N sequences, a distance
function for itemsets, and strength thresholds for consensus
sequences (users can specify different thresholds for each set),
the problem of multiple alignment sequential pattern mining
is (1) to partition the N sequences into K sets of sequences
such that the sum of the K multiple alignment scores is
minimum, (2) to find the optimal multiple alignment for each
partition, and (3) to find the pattern consensus sequence and
the variation consensus sequence for each partition.

Table 3 : Inter itemset distance metric replace
Replace (A, B) = [size(A)+size(B) – 2*size(A∩B)]

[size(A) + size(B)]
INDELR(A) = Replace (A,∅) = 1 0 ≤ Replace ≤ 1

The exact solution to multiple alignment pattern mining
is NP-hard, and therefore too expensive to be practical. An
efficient approximation algorithm, ApproxMAP (APPROX-
imate Multiple Alignment Pattern mining), has three steps.
First, k nearest neighbor clustering is used to approximately
partition the database. Second, for each partition, the optimal
multiple alignment is approximated by the following greedy
approach: in each partition, two sequences are aligned first,
and then a sequence is added incrementally to the current
alignment of k-1 sequences until all sequences have been
aligned. At each step, the goal is to find the best alignment of
the added sequence to the existing alignment of k-1 sequen-
ces. Third, based on user-defined thresholds the weighted
sequence of each partition is used to generate two consensus
sequences per partition, the pattern and the variation
consensus sequences. To further reduce the data presented to
the user, a simple gamma-corrected color-coding scheme is
used to represent the item strengths in the patterns [7].

ApproxMAP defines the distance function, Replace(),
for itemsets (Table 3). Replace() is mathematically equival-
ent to the Sørensen coefficient, an index similar to the
Jaccard coefficient except that it gives more weight to the
common elements [7]. Thus, it is more appropriate if the
commonalities are more important than the differences.

Multiple alignment pattern mining has many practical
applications. It is a versatile exploratory data analysis tool
for sequential data, because it organizes and summarizes the
high dimensional data into something that is viewable by
people. Multiple alignment pattern mining summarizes
interesting aspects of the data as follows: (1) The partitioning
through k nearest neighbor clustering and subsequent
multiple alignment within a cluster organizes the sequences,
(2) the weighted sequences provide a compressed expression
of the full database, and (3) the weighted consensus
sequences provides a summary of each cluster’s pattern at a
user specified level. In addition, given the appropriate
threshold, consensus sequences are patterns that are
approximately similar to many sequences in the database.
That is they are approximate sequential patterns based on
approximate support, defined as asup(seq) =|{seq’| seq’∈ D
& dist(seq,seq’) ≤ min_dist}| [7]. Note that once users have
found interesting patterns, they can use the more efficient
pattern search methods to do confirmatory data analysis.

Multiple alignment pattern mining is also an effective
method for clustering similar sequences. This has the follow-

Table 4. Sequence database
ID Sequences

seq1 < (A) (B C Y) (D) >
seq2 < (A) (X) (B C) (A E) (Z) >
seq3 < (A I) (Z) (K) (L M) >
seq4 < (A L) (D E) >
seq5 < (I J) (B) (K) (L) >
seq6 < (I J) (L M) >
seq7 < (I J) (K) (J K) (L) (M) >
seq8 < (I M) (K) (K M) (L M) >
seq9 < (J) (K) (L M) >
seq10 < (V) (K W) (Z) >

Table 5. support=20%
id pattern sup id pattern sup
1 (A) 4 24 (I) (L,M) 3
2 (B) 3 25 (J) (K) 3
3 (C) 2 26 (J) (L) 4
4 (D) 2 27 (J) (M) 3
5 (E) 2 28 (J) (L,M) 2
6 (I) 5 29 (K) (K) 2
7 (J) 4 30 (K) (L) 5
8 (K) 6 31 (K) (M) 4
9 (L) 7 32 (K) (L,M) 3
10 (M) 5 33 (I,J) (K) 2
11 (Z) 3 34 (I,J) (L) 3
12 (B,C) 2 35 (I,J) (M) 2
13 (I,J) 2 36 (I) (K) (K) 2
14 (L,M) 2 37 (I) (K) (L) 2
15 (A) (B) 2 38 (I) (K) (M) 2
16 (A) (C) 2 39 (I) (K) (L,M) 2
17 (A) (D) 2 40 (J) (K) (L) 2
18 (A) (E) 2 41 (J) (K) (M) 2
19 (A) (Z) 2 42 (K) (K) (L) 2
20 (A) (B,C) 2 43 (K) (K) (M) 2
21 (I) (K) 4 44 (I,J) (K) (L) 2
22 (I) (L) 5 45 (I) (K) (K) (L) 2
23 (I) (M) 4 46 (I) (K) (K) (M) 2

Table 6. Cluster 1 (min_strength = 40% = 1.2 < 2 sequences)
seq1 (A) () (B, C, Y) (D) ()
seq4 (A, L) () () (D, E) ()
seq2 (A) (X) (B, C) (A, E) (Z)

Weighted sequence (A:3, L:1):3 (X:1):1 (B:2, C:2, Y:1):2 (A:1, D:2, E:2):3 (Z:1):1 3
Consensus seq (w≥ 2) (A) (B, C) (D, E)

Wgt Consensus seq (w≥ 2) (A:3):3 (B:2, C:2):2 (D:2, E:2):3 3

Table 7. Cluster 2 (min_strength = 40% = 2.8 < 3 sequences)
seq9 (J) () (K) (L, M) ()
seq5 (I, J) (B) (K) (L) ()
seq3 (A,I) (Z) (K) (L, M) ()
seq7 (I, J) (K) (J, K) (L) (M)
seq8 (I, M) (K) (K, M) (L, M) ()
seq6 (I, J) () () (L, M) ()
seq10 () (V) (K, W) () (Z)

Weighted seq (A:1,I:5,J:4,M:1):6 (B:1,K:2,V:1,Z:1):5 (J:1,K:6,M:1,W:1):6 (L:6,M:4):6 (M:1,Z:1):2 7
Con. seq(w≥3) (I, J) (K) (L, M)
Wgt Con. seq (I:5, J:4):6 (K:6):6 (L:6, M:4):6 7

Table 8. Consensus sequences (100%: 85%: 70%: 50%: 35%: 20%)
Pattern Consensus Seq 1 support = 40% = 1.2 < 2 sequences (A) (B, C) (D, E)

Variation Consensus Seq 1 Not appropriate in this small set
Pattern Consensus Seq 2 support = 40% = 2.8 < 3 sequences (I, J) (K) (L, M)

Variation Consensus Seq 2 support = 20% = 1.4 < 2 sequences (I, J) (K) (K) (L, M)

 4

ing benefits. First, it enables multiple alignment on a group
of necessarily similar sequences to find the underlying
pattern (consensus sequence). Second, once sequences are
grouped the user can specify the threshold, min_strength,
specific to each group. This is in contrast to the support
framework in which min_sup is specified against the whole
database. Frequent uninteresting patterns, which are usually
grouped into large partitions, will have a higher threshold
than infrequent interesting patterns, which tend to be grouped
into small partitions. Thus, frequent uninteresting patterns
will not flood the results as they do in the support framework.

4. Example
Table 4 is a sequence database D. Although the data is

lexically sorted it is difficult to gather much information from
the raw data even in this tiny example.

Table 5 is the result from the support framework. For
better readability, we show the maximal sequential patterns
in bolded Helvetica font. Note that finding the maximal
patterns automatically in sequential data is a non-trivial task.

The ability to view Table 4 is immensely improved by
using the alignment framework – grouping similar sequences
then lining them up and coloring the consensus sequences as
in Tables 6 through 8. Note that the patterns <(A)(BC)(DE)>
and <(IJ)(K)(LM)> do not match any sequence exactly.

Given the input data shown in Table 4 (N=10 sequences),
ApproxMAP (1) calculates the N*N sequence to sequence
distance matrix from the data, (2) partitions the data into two
clusters (k=2), (3) aligns the sequences in each cluster
(Tables 6 and 7) – the alignment compresses all the
sequences in each cluster into one weighted sequence per
cluster, and (4) summarizes the weighted sequences (Tables
6 and 7) into weighted consensus sequences (Table 8).

5. Evaluation
We present a method that objectively evaluates the qua-

ilty of the results produced by any sequential pattern mining
method when applied to the output of a well-known synthetic
data generator [1]. The evaluation method is a matrix of four
experiments – (1) random data, (2) pattern data, and pattern
data with (3) varying degree of noise, and (4) varying number
of random sequences – assessed on four criteria: (1)
recoverability, (2) the number of spurious patterns, (3) the
number of redundant patterns, and (4) the level of extraneous
items in the result. Recoverability, defined in section 5.2,
provides a good estimate of how well the underlying trends
in the data are detected. This evaluation method will enable
researchers not only to use the data generator to benchmark
performance but also to quantify the quality of the results.
Such benchmarking will become increasingly important as
more datamining methods focus on approximate solutions.

Using this method, we compare the quality of the results
from the support framework and the alignment framework.
Note that all methods generate the same results for the sup-
port framework. In contrast, the exact solution to the multi-
ple alignment pattern mining is NP-hard, and in practice all
solutions are approximate. Consequently the results of the
alignment framework are method dependent. We use the
results of ApproxMAP to represent the alignment framework.

5.1. Synthetic Data
Given several parameters (Table 9), the data generator

given in [1] produces the database and reports the base

patterns used to generate it. The data is generated in two
steps. First, it generates Npat potentially frequent sequential
patterns, called base patterns, according to Lpat and Ipat.
Second, each sequence in the database is built by combining
base patterns until the size required, determined by Lseq and
Iseq, is met. Along with each base pattern, the data generator
reports the expected frequency, E(FB), and the expected
length (total number of items), E(LB), of the base pattern in
the database. The E(FB) is given as a percentage of the size
of the database and the E(LB) is given as a percentage of the
number of items in the base pattern.

Random data is generated by assuming independence
between items both within and across itemsets. The
probability of an item occurring is uniformly distributed.

Table 9. Parameters of the synthetic database
Nseq 1000 total # of sequences in the DB
Lseq 10 avg # of itemsets per sequence in the DB
Iseq 2.5 avg # of items per itemset in the DB
Npat 10 total # of base patterns embedded in the DB
Lpat 7 avg # of itemsets per base pattern
Ipat 2 avg # of items per itemset in the pattern

Nitems 500 total # of unique items in the DB

5.2. Evaluation Criteria
The effectiveness of a framework can be evaluated in

terms of how well it finds the real underlying patterns in the
database (the base patterns), and whether or not it generates
any confounding information. To the best of our knowledge,
no previous study has measured how well the various
methods recover the known base patterns in the data
generator in [1]. In this section, we propose a new measure,
recoverability, to evaluate the match between the base
patterns and the result patterns. Expanding it, we propose a
vector of four criteria – (1) recoverability, (2) the number of
spurious patterns, (3) the number of redundant patterns, and
(4) the level of extraneous items in the result patterns – which
can comprehensively depict the quality of the result patterns.

In order to measure these four criteria, we match the
resulting patterns from each method to the most similar base
pattern. In the multiple alignment framework, only the
pattern consensus sequences are considered. That is, the
result pattern, P, is matched with the base pattern, B, if the
longest common subsequence between P and B, denoted as
B⊗P, is the maximum over all base patterns. The items
shared by P and B, B⊗P, are defined as pattern items. The
remaining items in P are defined as extraneous items. The
overall level of extraneous items in the set of result patterns is
the total number of extraneous items over the total number of
all items in the full set of result patterns.

Depending on the mix of pattern and extraneous items,
the result patterns are categorized into spurious, max, or
redundant patterns. Spurious patterns are result patterns with
more extraneous items than pattern items. Of the remaining,
max patterns are result patterns whose ||B⊗P|| is the longest
over all result patterns for a given base pattern. Note that the
number of max patterns is equal to the number of base
patterns detected. The rest of the result patterns, P1, are
redundant patterns as there exists a max pattern, P2, that
match with the same base pattern but better. For the
alignment framework, we include the number of clusters that
generated no patterns as null patterns.

Next we measure how well a framework detects the
underlying base pattern by evaluating the quality of the max
patterns. The number of base patterns found or missed is not

 5

alone an accurate measure of how well the base patterns were
detected because it can not take into account which items in
the base pattern were detected or how strong (frequent) the
patterns are in the data. The base patterns are only potentially
frequent sequential patterns. The actual occurrence of a base
pattern in the data, which is controlled by E(FB) and E(LB),
varies widely. E(FB) is exponentially distributed then normal-
ized to sum to 1. Thus, some base patterns with tiny E(FB)
will not exist in the data or occur very rarely. Recovering
these patterns are not as crucial as recovering the more
frequent base patterns. E(LB) controls how many items in the
base patterns, on average, are injected into one occurrence of
the base pattern in a sequence. E(LB) is normally distributed.

We designed a weighted measure, recoverability, which
can more accurately evaluate how well the base patterns have
been recovered. Specifically, given a set of base patterns, B,
and a set of result patterns, P, we define the recoverability as,

max{||B⊗P||} is the number of items in the max pattern
shared with the base pattern B. Since E(LB) is an expected
value, sometimes the actual observed value, max{||B⊗P||} is
greater than E(LB). In such cases, we truncate the value of
max{||B⊗P||}/E(LB) to one so that recoverability stays
between 0 and 1. When recoverability of the mining is high,
major portions of the base patterns have been found.

In summary, a good framework would produce high
recoverability with small numbers of spurious and redundant
patterns and a low level of extraneous items.

5.3. Spurious patterns in random datasets
5.3.1. Analysis of expected support on random data

Implicit in the use of a minimum support for identifying
frequent sequential patterns is the desire to distinguish true
patterns from those that appear by chance. Yet many
subsequences will occur frequently by chance, particularly if
the subsequence is short, the data sequence is long, and the
items appear frequently in the database. When min_sup is
low, the support of these sequences can exceed min_sup
simply by chance. Conversely, an arbitrarily large min_sup
may miss rare but statistically significant patterns.

We can derive the expected support, E{sup(seq)}, for a
subsequence under the statistical null hypothesis that the
probability of an item appearing at a particular position in the
sequence is independent of both its position in the sequence
and the appearance of other items in the sequence. The
expected support (measured as a percentage) for a
subsequence under our null hypothesis is Pr{seqi appears at
least once}=1-Pr{seqi never appears}.

First let’s consider simple sequences, strings. Then the
probability that A will appear at least one time in a string of
length L, where p(A) is the probability of item A appearing in
the sequence at any particular position, is

E(sup (A)) = 1– Pr{A never appears} = 1– [1– p(A)]L (1)

Now consider the Pr{A..B} where A and B arbitrarily
represent two items, which need not be distinct. To calculate
Pr{~(A..B)}, i.e. the probability of never seeing an A
followed by a B, divide all possible outcomes into L+1
mutually exclusive sets: A first appears in position j, denoted
as first(A, j), for j=1..L and A never appears. Then,

Pr{first(A, j)}=Pr{A first appears in pos j}=[1– p(A)]j-1p(A) (2)

Next, we condition the probability of ~(A..B) as follows:

Pr{~(A..B)}=∑Pr{~(A..B)| first(A, j)} . Pr{first(A, j)} +
Pr{~(A..B)| A never appears}. Pr{A never appears} (3)

for j=1..L. Where in general,

Pr{~(A..B)| first(A, j)} = Pr{~(A..B)| A first appears in pos j} (4)
=Pr{B never appears in a sequence of length L-j} = [1-p(B)]L-j

By substituting the proper equations into (3) and recognizing
that Pr{~(A..B)| A never appears}= 1 we have

{ }∑
=

−− −+−−=
L

j

LjjL ApApBpApBA
1

1)](1[)](1[)](1[)()}..(Pr{~

Then, E(sup (AB)) = 1-Pr{~(A..B)}.
Due to space limitations, the extensions are discussed

briefly. First, the expected support of longer subsequences
can be calculated recursively. Second, the expected support
of sequences of sets can be calculated by noting that the prob-
ability of seeing a set of n arbitrary items in the same itemset
is p(i1)*p(i2)…*p(in). Then we can derive the expected
support by substituting the probability of an arbitrary element,
p(A), with p(i1)*p(i2)…*p(in), in any of the equations above.

The quantities p(A), p(B), etc., are not known, however it
is beyond the scope of this paper to evaluate its distribution.
We merely propose as a first step that the choice of min_sup
as well as the interpretation of the results should be guided by
E(sup(seqi)). In Frigure 1, we calculate the expected support
of <(A)(B)> with respect to L. The expected support grows
linearly with respect to L.

0%

10%

20%

30%

40%

50%

0 50 100 150 200

L

E(
Su

p)
p(A)=0.01
p(B)=0.01

p(A)=0.01
p(B)=0.001

p(A)=0.001
p(B)=0.001

Figure 1. E(sup) w.r.t. L

Figure 2. # of spurious patterns in random data

5.3.2. Empirical analysis
We generated random data sets with parameters Nseq, Iseq,

Nitems as given in Table 9 and varied Lseq to test empirically
how many spurious patterns are generated from random data.

The support framework has no mechanism to eliminate
patterns that occur simply by chance. As seen in the
theoretical analysis, when sequences are long, short patterns
can occur frequently simply by chance. Consequently,
support alone cannot distinguish between significant patterns
and random sequences. To combat this problem in
association rule mining, [4] has used correlation to find
statistically significant associations. Unfortunately, the
concept of correlation does not extend easily to sequences.

Consistent with the theoretical analysis, the support fra-
mework generates many spurious patterns given random data
(Figure 2). The number of spurious patterns increases ex-
ponentially with respect to Lseq. This follows naturally from
Figure 1 which shows that E(sup) of length 2 sequences incr-
ease linearly with respect to L. Thus, the total of all patterns,
1≤Lpat≤maxL, should grow exponentially. When min_sup=

s u p p o r t f r a m e w o r k

0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0

4 0 0 0 0
5 0 0 0 0
6 0 0 0 0

0 2 0 4 0 6 0

o f i t e m s e t s

of

 s
pu

rio
us

 p
at

te
rn

s

m i n _ s u p = 1 0 %
m i n _ s u p = 5 %

a l i g n m e n t f r a m e w o r k

0

5

1 0

1 5

2 0

0 2 0 4 0 6 0

o f i t e m s e t s

of

 s
pu

rio
us

 p
at

te
rn

s
m i n _ s t r e n g t h = 5 0 %
m i n _ s t r e n g t h = 4 0 %

 6

5% and Lseq=30, there are already 53,571 spurious patterns.
In real applications, since min_sup<<5%, and Nseq> 30, there
will be many spurious patterns mixed in with true patterns.

In contrast, the probability of a group of random sequen-
ces aligning well enough to generate a consensus sequence is
negligible. Thus, using default values, the multiple align-
ment framework found few spurious patterns – from 0 to 3
(Figure 2). Furthermore, all the patterns found have only one
item, which can easily be dismissed. Although the algorithm
generated many clusters (80 to 100), all the clusters were
either very small, or not enough sequences in the cluster
could be aligned to generate meaningful consensus itemsets.

5.4. Baseline study of patterned database
Table 10. Pattern data

 parameters recover noise max spur redundant
Sup framework Min_sup=5% 91.6% 5.2% 10 6,648 247,266
Align framework k=6&Min_strgh=30% 92.5% 0% 8 0 2

This experiment serves several purposes. First, it
evaluates how well the frameworks detect the underlying
patterns in a simple patterned dataset. Second, it illustrates

how readily the results may be understood. Third, it
establishes a baseline for the remaining experiments. We
generate 1000 sequences from 10 base patterns (Table 9).
We tuned both frameworks to the optimal parameters.

The recoverability for both frameworks was good at
over 90% (Table 10). However, in the support framework it
is difficult to extract the 10 base patterns from results that
include 247,266 redundant patterns and 6,648 spurious pat-
terns. Furthermore, there were 93,043 extraneous items in
total, which constituted 5.2% of all items in the result patterns.

In comparison, the alignment framework returned a very
succinct but accurate summary of the base patterns. There
were only two redundant patterns, no spurious patterns, and
no extraneous items. Table 11 shows all the pattern consen-
sus sequences, PatConSeqi, the variation consensus sequen-
ces, VarConSeqi, with the matching base patterns, BasePi.
The two weak base patterns missed are at the bottom. In this
small dataset, manual inspection clearly shows how well the
consensus sequences match the base patterns used to generate
the data. Each consensus pattern found was a subsequence of
considerable length of a base pattern. The 20 consensus seq-
uences provide a good overview of the 1000 data sequences.

Table 11. Patterns detected when k=6; PatSup=30%, VarSup=20%, 5 seq ≤ DB support ≤ 100 seq
BasePi (E(freq):E(len)) LEN Pattern <100: 85: 70: 50: 35: 20>

PatConSeq1 13 < (15 16 17 66) (15) (58 99) (2 74) (31 76) (66) (62) >
VarConSeq1 18 < (15 16 17 66) (15 22) (58 99) (2 74) (24 31 76) (24 66) (50 62) (93) >

BaseP1 (0.21:0.66) 14 [15,16,17,66] [15] [58,99] [2,74] [31,76] [66] [62] [93]
PatConSeq2 9 < (16) (99) (94) (45 67) (50) (96) (51) (66) >
VarConSeq2 13 < (16 22) (29 99) (94) (22) (45 67) (50) (96) (51) (66) (15) >
PatConSeq3 13 < (22 50 66) (16) (29 99) (94) (45 67) (12 28 36) (50) >
VarConSeq3 13 < (22 50 66) (16) (29 99) (94) (45 67) (12 28 36) (50) >
PatConSeq4 19 <(22 50 66)(16)(29 99)(94)(45 67)(12 28 36)(50)(96)(51)(66)(2 22 58) >
VarConSeq4 21 <(22 50 66)(16)(29 99)(58 94)(2 45 67)(12 28 36)(50)(96)(51)(66)(2 22 58)>

BaseP2 (0.161:0.83) 22 [22,50,66][16][29,99][94][45,67][12,28,36][50][96][51][66][2,22,58][63,74,99]
PatConSeq5 11 < (22) (22) (58) (2 16 24 63) (24 65 93) (6) >
VarConSeq5 15 < (22) (22) (22) (58) (2 16 24 63) (24 65 93) (6) (11 15 74) >

BaseP3 (0.141:0.82) 14 [22] [22] [58] [2,16,24,63] [24,65,93] [6] [11,15,74]
PatConSeq6 11 < (31 76) (58 66) (16 22 30) (16) (50 62 66) >
VarConSeq6 11 < (31 76) (58 66) (16 22 30) (16) (50 62 66) >

BaseP4 (0.131:0.90) 15 [31,76] [58,66] [16,22,30] [16] [50,62,66] [2,16,24,63]
PatConSeq7 13 < (43) (2 28 73) (96) (95) (2 74) (5) (2) (24 63) (20) >
VarConSeq7 16 < (22 43) (2 28 73) (58 96) (95) (2 74) (5) (2 66) (24 63) (20) >

BaseP5 (0.123:0.81) 14 [43] [2,28,73] [96] [95] [2,74] [5] [2] [24,63] [20] [93]
PatConSeq8 8 < (63) (16) (2 22) (24) (22 50 66) >
VarConSeq8 9 < (63) (16) (2 22) (24) (22 50 66) (50) >

BaseP6 (0.121:0.77) 9 [63] [16] [2,22] [24] [22,50,66] [50]
PatConSeq9 11 < (70) (58 66) (22) (74) (22 41) (2 74) (31 76) >
VarConSeq9 16 < (70) (58 66) (22) (22 58) (74) (22 41) (2 66 74) (31 76) (2 74) >

BaseP7 (0.054:0.60) 13 [70][58,66][22][74][22,41][2,74][31,76][2,74]
PatConSeq10 15 < (20 22 23 96) (50) (51 63) (58) (16) (2 22) (50) (23 26 36) >
VarConSeq10 8 < (20 22 23 31 76 96) (50 66) (51 63) (58) (16) (2 22) (50) (23 26 36) >

BaseP8 (0.014:0.91) 17 [20,22,23,96][50][51,63][58][16][2,22][50][23,26,36][10,74]
BaseP9 (0.038:0.78) 7 [88][24,58,78][22][58][96]
BaseP10 (0.008:0.66) 17 [16][2,23,74,88][24,63][20,96][91][40,62][15][40][29,40,99]

Table 12. Consensus pattern detected from the systematic interaction of two base patterns
BaseP1 (15 16 17 66) (15) (58 99) (2 74) (31 76) (66) (62) (93)
ConSeq (15 16 17 22 66) (2 15 22) (22 58 99) (2 58 74) (2 16 24 31 63 74 76) (24 65 66 93) (6 62)
BaseP3 (22) (22) (58) (2 16 24 63) (24 65 93) (6) (11 15 74)

 7

Many of the redundant patterns in the support frame-
work are either subsequences of a longer pattern or a small
variation on it. They hold no additional information and inst-
ead bury the real patterns. Although, finding max or closed
frequent itemset has been researched [3, 8], these methods to
not extend easily to sequences.

In contrast, the two redundant patterns in the alignment
framework have useful information. Sequences in the parti-
tion that generated PatConSeq3 (Table 11) were separated out
from the partition that generated PatConSeq4 because they
were missing most of the six items at the end of PatConSeq4.
Similar information can be gathered from the pattern consen-
sus sequence PatConSeq2. Thus, when the redundant pat-
terns in the alignment framework are subsequences of a long-
er pattern, it alerts the user that there is a significant group of
sequences that do not contain the items in the longer pattern.

5.5. Robustness with respect to noise
We evaluate the robustness of the frameworks with

respect to varying degrees of noise in the data. Noise is
introduced into the patterned data (section 5.4) using a
corruption probability α. Items in the database are randomly
changed into another item or deleted with probability α. This
implies that 1-α is the probability of any item remaining
constant. Hence, when α=0 no items are changed, and higher
values of α imply a higher level of noise [12].

Table 13. Effect of noise
parameters 1-a recover noise max spurious redundant null

5% 88.50% 10.10% 10 12,733 257,792 na
15% 71.50% 18.00% 10 3,250 50,320 na
25% 55.80% 20.50% 10 970 15,375 na

Min_sup
=

3%
(30 seqs) 35% 43.30% 24.60% 10 512 7,425 na

5% 92.40% 10.10% 8 1 7 18
15% 88.30% 9.50% 8 0 6 14
25% 81.30% 3.60% 7 0 8 31

k=2
Min

strgth
=30% 35% 77.30% 4.60% 8 0 10 44

Figure 3. Effect of noise
The results show that the support framework is

vulnerable to random noise injected into the data. As seen in
Table 13 and Figure 3, as the corruption factor, α, increases,
the support framework detects less of the base patterns and
incorporates more extraneous items in the patterns. When
the corruption factor is 35%, the recoverability degrades
significantly to 43% even when min_sup has been reduced to
3%=30 sequences. Such results are expected since the
framework is based on exact match. Note that even with
recoverability at 43%, the framework returns 7,947 patterns
that have 24.6% extraneous items in them.
In comparison, the alignment framework is robust to noise in
the data. Despite the presence of noise, it is still able to
detect a considerable number of the base patterns (i.e.
recoverability is 77.3% when corruption factor is 35%). Fur-
thermore, although the number of extraneous items in the
consensus sequence has increased relative to the data without
noise, the number of extraneous items is not directly related

to the level of noise injected (Table 13 and Figure 3). This is
because the random noise injected into the data does not
correspond to the extraneous items in the consensus sequen-
ces. Rather, the extraneous items in the consensus sequences
tend to be segments of a second base pattern. In the presence
of noise, a smaller cluster is more likely to form around seq-
uences that were constructed from a systematic interaction
between two base patterns. In such cases, a new base pattern
highly shared by a small group of sequences emerges and
ApproxMAP detects it. The experiment with 1-α = 5% had
20 extraneous items in total of which 14 came from the con-
sensus pattern, mapped to BaseP1, given in Table 12. A
closer examination reveals that when the extraneous items (in
gray) are put together, the new pattern is highly similar to a
second base pattern, BaseP3. In fact, of the 14 extraneous
items, only three are true extraneous items and 11 are from
BaseP3 (darker gray). Thus, the true level of extraneous
items in the result is 9/198=4.5%. The simple model of
matching a consensus pattern to only one base pattern results
in items that belong to the second base pattern being
categorized as extraneous items, when in fact they are not.
5.6. Robustness w.r.t. random sequences

This experiment is designed to test the effect of random
sequence added to patterned data. We generated random data
as in the first experiment with the same parameters as the
patterned data in the second experiment and added them
together. The main effect of the random sequences are the
weakening of the patterns as a percentage of the database.

Consequently, in the support framework the recover-
ability and the number of spurious and redundant patterns are
reduced when min_sup is maintained at 5%. Level of extra-
neous items in the patterns increase as we add more random
sequences. On the other hand, if we maintain min_sup=50
sequences, obviously the recoverability can be maintained.
The tradeoff is that spurious patterns, redundant patterns, and
extraneous items all increase slightly (Table 14 and Figure 4).

In ApproxMAP, the parameter that controls which
patterns are detected is k in the kNN clustering step. The user
input parameter k, can be adjusted to control the resolution of
clustering. Since k defines the neighbor space, larger k
values will tend to merge more points (resulting in a smaller
number of large clusters) while smaller values of k will tend
to break up clusters. Thus, k controls at what level of detail
the data is partitioned. The benefit of using a small k is that
ApproxMAP can detect patterns that occur rarely. The cost
is that it will break up clusters representing frequent patterns
to generate multiple consensus sequences that are similar.

In this experiment, when k is maintained at 6, the added
random sequences had no effect on the clusters formed or
how the patterned sequence were aligned. Each cluster just
picks up various amounts of the random sequences which are
aligned after all the patterned sequences are aligned. In effect,
the random sequences are ignored when it cannot be aligned
with the patterned sequences in the cluster. The rest of the
random sequences formed separate clusters that generated no
patterns, as in the first experiment. Nonetheless, the consen-
sus sequences were shorter, reducing recoverability, since the
random sequences increased the cluster size, and thus
weakened the signature in the cluster (Figure 4).

However, as seen in Table 15 and Figure 4, we can
easily find the longer underlying patterns by adjusting either
min_strength or k to compensate for the random sequences in
the data. The min_strength can be lowered to pick up more
patterned items. The tradeoff would be that more extraneous

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

0 % 1 0 % 2 0 % 3 0 % 4 0 %

n o is e (1 - α)

re
co

ve
ra

bi
lit

y

a l ig n m e n t
s u p p o rt 0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

0 % 1 0 % 2 0 % 3 0 % 4 0 %

n o is e (1 -α)

%
 e

xt
ra

ne
ou

s
ite

m
s

a l ig n m e n t
s u p p o rt

 8

items could be picked up as well. A better adjustment would
be to use a smaller k value to pick up the less frequent pat-
terns. In this experiment, the small adjustment in k from 6 to
3 does not breakup any of the existing clusters. Instead, it
just creates many more small clusters of no patterns. The
increase in number of spurious and redundant patterns and
the percentage of extraneous items are negligible.

Table 14. Support framework results
Rand Seq Min_sup Recover Noise Max Spurious Redundant

250 63 seq (5%) 86.20% 4.10% 10 2,615 113,375
500 75 seq (5%) 80.30% 3.90% 10 1,387 61,123
750 88 seq (5%) 74.90% 4.70% 10 861 30,572

1000 100 seq (5%) 68.20% 6.30% 10 699 16,893
250 50 seq (4%) 91.59% 5.22% 10 6,653 247,167
500 50 seq (3.30%) 91.59% 5.22% 10 6,658 247,222
750 50 seq (2.90%) 91.59% 5.23% 10 6,670 247,313

1000 50 seq (2.50%) 91.59% 5.24% 10 6,691 247,765

Table 15. Mulitple alignment framework results
Rand Seq k Min_stgth Recover Noise Max Spur Redundant Null

250 6 20% 81.90% 1/98 8 0 1 1
500 6 20% 82.00% 3/101 8 0 1 6
750 6 20% 79.60% 0/96 8 0 1 7

1000 6 20% 79.60% 0/93 7 0 1 12
250 3 30% 92.03% 1/127 8 0 3 3
500 3 30% 91.94% 1/125 8 0 3 15
750 3 30% 91.94% 2/127 9 1 2 29

1000 3 30% 90.61% 2/126 9 1 2 70

Figure 4. Effect of random sequences

5.7. Scalability
Methods based on the support framework has to build

patterns one at a time. Thus, the lower bound on the time
complexity with respect to the patterns is exponential. In
contrast, the methods based on the alignment framework find
the patterns directly through multiple alignment. Thus, the
time complexity does not depend on the number of patterns.
Instead, computation time is dominated by the clustering step,
which has to calculate the distance matrix and build the k
nearest neighbor list. This inherently makes the time
complexity O(Nseq

2Lseq
2). However, unlike the support

framework there is potential for improving on the time
complexity by using a sampling based clustering algorithm
and stopping the sequence to sequence distance calculation as
soon as it is clear that the two sequences are not neighbors.
Thus, not surprisingly when the patterns are relatively long,
the multiple alignment algorithms tend to be faster than
support based algorithms that are exponential in nature to the
size of the pattern.

6. Related Work
Many papers have proposed methods for finding freq-

uent subsequences [1, 2, 9, 11, 13]. There are two works in

particular, that extend the support framework to find more
useful patterns. [10] extends the framework to find rules of
the form “if A then B” using the confidence framework. [12]
presents a probabilistic model to handle noise in mining
strings. However, it cannot be easily generalized to sequence
of sets, and it does not address the issue of generating huge
number of patterns that share significant redundancy.

There is a rich body of literature on string analysis in
computer science as well as computational biology that can
be extended to this problem domain. In particular, multiple
alignment has been studied extensively in computational
biology [5, 6] to find common patterns in a group of strings
(ordered lists of characters). In this paper, we have
generalized string multiple alignment to find patterns in
ordered lists of sets.

7. Conclusion
Designing good operational definitions for patterns is the

first step in mining useful and interesting patterns. Sequential
patterns are commonly defined as frequent subsequences
based on exact match. Noting some inherent problems in the
framework, we present an entirely different framework,
multiple alignment sequential pattern mining. We do a
comparative study of the two frameworks using a novel
evaluation method on the well-known synthetic data
generator [1]. The method can comprehensively depict the
quality of the result patterns that emerge from certain
definitions empirically. The results demonstrate that the
alignment framework is able to best recover the underlying
patterns with little confounding information under all
circumstances including those where the support framework fails.

8. Reference
[1] R. Agrawal and R. Srikant. “Mining Sequential Patterns”. In

Proc. IEEE ICDE, pp 3-14, March 1995.
[2] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. “Sequential pattern

mining using a bitmap representation.”. In Proc. ACM SIGKDD,
pp. 429-435, July 2002.

[3] R. Bayardo. “Efficiently Mining Long Patterns from Databases”. In
Proc. ACM SIGMOD, pp 85-93, May 1998.

[4] S. Brin, R. Motwani, and C. Silverstein. “Beyond market baskets:
generalizing association rules to correlations.” In Proc. ACM
SIGMOD, pp265-276, 1997.

[5] Osamu Gotoh. Multiple sequence alignment: Algorithms and
applications. In Adv. Biophys., V36, pp159-206. 1999.

[6] Dan Gusfield. Algorithms on strings, trees, and sequences:
Computer Science and Computational Biology. Cambridge
University Press, Cambridge, England. 1997.

[7] H.C. Kum, J. Pei, W. Wang, and D. Duncan. ApproxMAP:
Approximate Mining of Consensus Sequential Patterns. Technical
Report TR02-031. UNC-CH. Oct 2002.

[8] D. Lin and Z. Kedem. “Pincer-search: a new algorithm for
discovering the maximum frequent set.” In Proc. 6th Intl. Conf
Extending Database Technology (EDBT), 1998.

[9] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M.C. Hsu, "PrefixSpan: Mining Sequential Patterns Efficiently by
Prefix-Projected Pattern Growth", In Proc IEEE ICDE, April 2001.

[10] Myra Spiliopoulou. Managing interesting rules in sequence mining.
Proc. Euro. Conf. on Principles and Practice of Knowledge
Discovery in Databases, pp554-560, 1999.

[11] R. Srikant and R. Agrawal. “Mining Sequential Patterns:
Generalizations and Performance Improvements”. In Proc. of
EBDT. pp. 3-17. March 1996.

[12] J. Yang, W. Wang, P. Yu, J.Han. “Mining long sequential patterns
in a noisy environment.” SIGMOD 2002.

[13] M. J. Zaki. “Efficient enumeration of frequent sequences.” In Proc.
7th CIKM , Nov 1998.

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000

of random sequences added

recoverability (k=3,s=30%)
extraneous item s (k=3,s =30%)
recvoerability(k=6,s=20%)
extraneous item s (k=6,s =20%)
recoverability (k=6,s=30%)

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000

of random sequences added

recoverability (s=5%)
extraneous item s (s=5%)
recvoerability(s=50 seq)
extraneous item s (s=50 seq)

