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Abstract 

Knowledge discovery and datamining (KDD) is commonly 
defined as the nontrivial process of finding interesting, novel and 
useful patterns from data. In this paper, we examine closely the 
problem of mining sequential patterns and propose a compre-
hensive evaluation method to assess the quality of the mined 
results. We propose four evaluation criteria, namely (1) recove-
rability, (2) the number of spurious patterns (3) the number of 
redundant patterns, and (4) the degree of extraneous items in the 
patterns, to quantitatively assess the quality of the mined result 
from a wide variety of synthetic datasets with varying random-
ness and noise levels.  Recoverability, a new metric, measures 
how much of the underlying trend has been detected. Such an 
evaluation method provides a basis for comparing different 
frameworks for sequential pattern mining, which is very essen-
tial in understanding the performance of approximate solutions.  
In this paper, the method is employed to conduct a detailed 
comparison of the traditional frequent sequential pattern frame-
work with an alternative approximate pattern framework based 
on sequence alignment. We demonstrate that the alternative 
approach is able to best recover the underlying patterns with 
little confounding information under all circumstances including 
those where the frequent sequential pattern framework fails. 

1. Introduction 
Knowledge discovery and datamining (KDD) is 

commonly defined as the nontrivial process of finding 
interesting, novel, and understandable patterns from data. In 
any particular datamining problem, the first and most import-
ant task is to define patterns operationally.  The definition 
should ultimately lead to useful understandable patterns.  Yet, 
designing a good definition (framework) and evaluating what 
patterns emerge from the framework is difficult.   

In this paper, we focus on the problem of mining seq-
uential patterns.  Sequential pattern mining finds interesting 
patterns in sequence of sets.  Mining sequential patterns has 
become an important datamining task with broad applications. 
For example, supermarkets often collect customer purchase 
records in sequence databases in which a sequential pattern 
would indicate a customer’s buying habit.  

Sequential pattern mining is commonly defined as 
finding the complete set of frequent subsequences in a set of 
sequences [1].  Much research has been done to efficiently 
find such patterns.  But to the best of our knowledge, no 
research has examined in detail what patterns are actually 
generated from such a definition.  In this paper, we examined 
the results of the support framework closely to evaluate 
whether it in fact generates interesting patterns.   

To this end, we propose a comprehensive evaluation 
method that can quantitatively assess how “useful” and 
“understandable” the results are using the well known 
synthetic data generator [1].  This synthetic data generator 
has become a benchmark for evaluating performance.  In this 

paper, we propose to extend this benchmark to evaluate the 
quality of the mined results.  By mapping the mined patterns 
back to the base patterns (reported by the data generator) that 
generate the data, we are able to measure how well the 
methods find the real underlying patterns and whether or not 
it generates any confounding patterns under a variety of 
situations with varying randomness and noise levels.  

Such a method provides a basis for comparing the results 
of different sequential pattern mining frameworks.  In addi-
tion, the method is crucial in understanding the quality of the 
mined results because often times the frameworks are too 
complicated to analyze theoretically what patterns will emer-
ge. The evaluation method provides a comprehensive empiri-
cal understanding of the results.  This is especially important 
for understanding the performance of approximate solutions. 

When the evaluation method was applied to the support 
framework for sequential pattern mining, it revealed that the 
framework generates huge number of redundant and spurious 
patterns in long sequences, which bury the true patterns.  Our 
theoretical analysis of the expected support of short patterns 
in long sequences confirm that many short patterns can occur 
frequently simply by chance.  Furthermore, in the presence of 
noise in the data, the support framework cannot detect the 
underlying patterns well because a sequence supports a 
pattern if, and only if, the pattern is fully contained in the 
sequence.  Hence, noise in the data can cause the exact 
matching approach to miss general trends in the sequence 
database.  Many customers may share similar buying habits, 
but few of them follow exactly the same buying patterns.   

Motivated by these observations, we examined an 
entirely different framework for analyzing sequential data.  
What would be the proper framework to find the major 
groups of similar sequences in the database and then to 
uncover the underlying trend in each group?  As a simple 
extension from association rule mining (mining patterns in 
sets), the conventional framework does not efficiently detect 
trends in sequences.  However, detecting common underlying 
patterns (called consensus strings or motifs) in simple 
sequences (strings) has been well studied in computational 
biology.  The current research employs the multiple 
alignment framework to detect consensus strings.   

In the simple edit distance problem, one is trying to find 
an alignment of two sequences such that the edit distance is 
minimum.  In multiple alignment, the purpose is to find an 
alignment over N strings such that the total pairwise edit 
distance for all N strings is minimal.  A good alignment is 
one in which similar characters are lined up in the same 
column.   In such an alignment, the concatenation of the 
common characters in each column would represent the 
underlying pattern.  Table 1 shows an example of how the 
original word “pattern” was recovered from five typos. 

In this paper, we extend the multiple alignment 
framework to sequences of sets and employ the evaluation 
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method to understand what pattern are generated.  In contrast 
to the support framework, the study reveals that the 
alignment framework, robust to both noise and random 
sequences in the data, returns a succinct but accurate 
summary of the base patterns with few spurious or redundant 
patterns and very low level of extraneous items.   

 

Table 1. Multiple alignment of the word “pattern” 
seq1 P A T T T E R N
seq2 P A   T E R M
seq3 P   T T  R N
seq4 O A  T T E R B
seq5 P  S Y Y R T N

Underlying pattern P A  T T E R N
 

In summary, we make the following contributions: (1)  
We design an evaluation method to assess the quality of the 
mined results in sequential data. (2) We propose a novel 
framework for sequential pattern mining, multiple alignment 
sequential pattern mining. (3) We employ the evaluation 
method for a comparative study of the support framework 
and the alignment framework.  (4) We derive the expected 
support of patterns under the null hypothesis to better under-
stand the behavior and limitations of the parameter min_sup.   

The remainder of the paper is organized as follows.  
Sections 2 and 3 provide an overview of the two frameworks.  
Section 4 demonstrates both frameworks through an example. 
Section 5 details the evaluation method and the comparative 
study. It also includes the analysis of the expected support in 
random data.  Section 6 provides an overview of related 
works.  Section 7 concludes with a summary.   

2. Support Framework  
Table 2.  An example of a sequence 

Items I Itemsets s13 Sequence seq1 
{A, B, C, D} (C D) < (A) (B) (C D) > 

 

Definitions : Let items be a finite set of literals I={i1, i2, 
i3, …, ir}.  Then an itemset is a set of items from I and a 
sequence is an ordered list of itemsets.  A database D is a set 
of such sequences.  We denote a sequence seqi as 
<si1si2si3...sim> (concatenation of itemsets) and an itemset sij 
as (ij1 ij2 ij3 … ijn) where items ijk are from I.  (Table 2) 

seq2 is a supersequence of seq1 and seq1 is a subseq-
uence of seq2, if and only if seq1 is derived by deleting some 
items or whole itemsets from seq2.  Given a sequence 
database D, the support of a sequence seq, sup(seq), is the 
number of supersequences of seq in the database.  

Problem Statement: Given N sequences and a support 
threshold, min_sup, find all patterns P  s.t. sup(P) ≥ min_sup. 

The bottleneck in applying the support framework 
occurs when counting the support of all possible frequent 
subsequences in D.  Thus the two classes of algorithms  differ 
in how to efficiently count support of potential patterns.  The 
apriori based breadth-first algorithms [1, 11] pursue level-by-
level candidate-generation-and-test pruning following the 
Apriori property: any super-pattern of an infrequent pattern 
cannot be frequent.  In contrast, the projection based depth-
first algorithms [2, 9, 13] avoid costly candidate-generation-
and-test by growing long patterns from short ones.  The depth 
first methods generally do better than the breadth first 
methods when the data can fit in memory.  The advantage 
becomes more evident when the patterns are long [12]. 

3. Multiple Alignment Framework  
In this section, we present a new framework for finding 

useful patterns in sequence of sets.  The probability that two 

long sequences are similar is negligible.  Thus, if some num-
ber of long sequences can be aligned such that certain items 
occur in certain positions frequently we are able to implicitly 
find sequential patterns that are statistically significant.   

Definitions: The example in section 4 will help you 
understand the definitions better. The database, D, are 
defined in the same way as in the support framework.  

The global multiple alignment of a set of sequences is 
obtained by inserting a null itemset, ( ), either into or at the 
ends of the sequences such that each itemset in a sequence is 
lined up against a unique itemset or ( ) in all other sequences.  
In the rest of the paper, alignment will always refer to a 
global multiple alignment (Tables 6 and 7).  

Given two aligned sequences and a distance function for 
itemsets, the pairwise score between the two sequences is the 
sum over all positions of the distance between an itemset in 
one sequence and the corresponding itemset in the other 
sequence.  Given a multiple alignment of N sequences, the 
multiple alignment score is the sum of all pairwise scores. 
Then the optimum multiple alignment is one in which the 
multiple alignment score is minimal [6]. 

 

PS (seqi, seqj) = ∑distance(sik, sjk)  (for all k) 
 

MS (N)= ∑PS(seqi, seqj) (over all 1 ≤ i ≤ N and 1≤ j ≤ N) 
 

Weighted sequences are an effective method to compress 
a set of aligned sequences into one sequence. A weighted 
itemset, denoted as wsj=(ij1:wj1, …, ijm:wjm):vj, is defined as an 
itemset that has a weight associated with each item in the 
itemset as well as the itemset itself.  Then a weighted sequ-
ence, denoted as wseqi=<(i11:w11, …, i1s:w1s):v1 … (il1:wl1, …, 
ilt:wlt):vl>:n, is a sequence of weighted itemsets paired with a 
separate weight for the whole sequence.  The weight asso-
ciated with the weighted sequence, n, is the total number of 
sequences in the set.  The weight associated with the itemset 
sj, vj, represents how many sequences have a nonempty item-
set in position j.  And the weight associated with each item ijk 
in itemset sj, wjk , represents the total number of the item ijk 
present in all itemsets in the aligned position j (Tables 6 & 7).    

The strength of an item, ijk, in an alignment is defined as 
the percentage of sequences in the alignment that have item 
ijk present in the aligned position j.  strength(ijk) = wjk/n * 
100%.  Clearly, larger strength value indicates that more 
sequences share the item in the same aligned position.   

Given a threshold, θ, and a multiple alignment of N 
sequences, the consensus itemset for position j in the 
alignment is an itemset of all items that occur in at least θ 
sequences in position j. Then a consensus sequence is simply 
a concatenation of the consensus itemsets for all positions 
excluding any null consensus itemsets.  When weights are 
included it is called a weighted consensus sequence.   

 

Consensus itemset (j)= { ik | ∀ ik ∈I  and strength(ik) ≥ θ } 
 

Based on item strengths, items in an alignment are 
divided into three groups: rare items, non-frequent items, and 
frequent items.  The rare items may represent noise and are 
in most cases not of any interest to the user.  The frequent 
items occur in enough of the sequences to constitute the 
underlying pattern in the group.  The non-frequent items do 
not occur frequently enough to be part of the underlying 
pattern but occur in enough sequences to be of interest.  The 
non-frequent items constitute variations on the general pat-
tern.  That is, they are the items most likely to occur regularly 
in a subgroup of the sequences.  Using this categorization we 
make the final results more understandable by defining two 
types of consensus sequences corresponding to two thres-
holds:  (1) The pattern consensus sequence, which is compos-
ed solely of frequent items and (2) the variation consensus 
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sequence, an expansion of the pattern consensus sequence to 
include non-frequent items (Table 8).  This method presents 
both the frequent underlying patterns and their variations 
while ignoring the noise.  It is an effective method to 
summarize the alignment because the user can clearly 
understand what information is being dropped.  Furthermore, 
the user can control the level of summarization by defining 
the two thresholds for frequent and rare items as desired.   

Problem Statement: Given N sequences, a distance 
function for itemsets, and strength thresholds for consensus 
sequences (users can specify different thresholds for each set), 
the problem of multiple alignment sequential pattern mining 
is (1) to partition the N sequences into K sets of sequences 
such that the sum of the K multiple alignment scores is 
minimum, (2) to find the optimal multiple alignment for each 
partition, and (3) to find the pattern consensus sequence and 
the variation consensus sequence for each partition.   

Table 3 : Inter itemset distance metric replace  
Replace (A, B) = [size(A)+size(B) – 2*size(A∩B)] 

[size(A) + size(B)] 
INDELR(A) = Replace (A,∅) = 1 0 ≤ Replace ≤ 1 

 

The exact solution to multiple alignment pattern mining 
is NP-hard, and therefore too expensive to be practical.  An 
efficient approximation algorithm, ApproxMAP (APPROX-
imate Multiple Alignment Pattern mining), has three steps.  
First, k nearest neighbor clustering is used to approximately 
partition the database.  Second, for each partition, the optimal 
multiple alignment is approximated by the following greedy 
approach:  in each partition, two sequences are aligned first, 
and then a sequence is added incrementally to the current 
alignment of k-1 sequences until all sequences have been 
aligned. At each step, the goal is to find the best alignment of 
the added sequence to the existing alignment of k-1 sequen-
ces.  Third, based on user-defined thresholds the weighted 
sequence of each partition is used to generate two consensus 
sequences per partition, the pattern and the variation 
consensus sequences.  To further reduce the data presented to 
the user, a simple gamma-corrected color-coding scheme is 
used to represent the item strengths in the patterns [7].  

 

ApproxMAP defines the distance function, Replace(), 
for itemsets (Table 3).  Replace() is mathematically equival-
ent to the Sørensen coefficient, an index similar to the 
Jaccard coefficient except that it gives more weight to the 
common elements [7].  Thus, it is more appropriate if the 
commonalities are more important than the differences.  

Multiple alignment pattern mining has many practical 
applications.  It is a versatile exploratory data analysis tool 
for sequential data, because it organizes and summarizes the 
high dimensional data into something that is viewable by 
people.  Multiple alignment pattern mining summarizes 
interesting aspects of the data as follows: (1) The partitioning 
through k nearest neighbor clustering and subsequent 
multiple alignment within a cluster organizes the sequences, 
(2) the weighted sequences provide a compressed expression 
of the full database, and (3) the weighted consensus 
sequences provides a summary of each cluster’s pattern at a 
user specified level.  In addition, given the appropriate 
threshold, consensus sequences are patterns that are 
approximately similar to many sequences in the database.  
That is they are approximate sequential patterns based on 
approximate support, defined as asup(seq) =|{seq’| seq’∈ D 
& dist(seq,seq’) ≤ min_dist}| [7].  Note that once users have 
found interesting patterns, they can use the more efficient 
pattern search methods to do confirmatory data analysis.   

Multiple alignment pattern mining is also an effective 
method for clustering similar sequences.  This has the follow-  

 

Table 4. Sequence database 
ID Sequences 

seq1 < (A) (B C Y) (D) >   
seq2 < (A) (X) (B C) (A E) (Z) > 
seq3 < (A I) (Z) (K) (L M) >  
seq4 < (A L) (D E) >    
seq5 < (I J) (B) (K) (L) >  
seq6 < (I J) (L M) >    
seq7 < (I J) (K) (J K) (L) (M) >
seq8 < (I M) (K) (K M) (L M) >  
seq9 < (J) (K) (L M) >   
seq10 < (V) (K W) (Z) >   

Table 5. support=20% 
id pattern sup id pattern sup
1 (A) 4 24 (I) (L,M) 3 
2 (B) 3 25 (J) (K) 3 
3 (C) 2 26 (J) (L) 4 
4 (D) 2 27 (J) (M) 3 
5 (E) 2 28 (J) (L,M) 2
6 (I) 5 29 (K) (K) 2 
7 (J) 4 30 (K) (L) 5 
8 (K) 6 31 (K) (M) 4 
9 (L) 7 32 (K) (L,M) 3 
10 (M) 5 33 (I,J) (K) 2 
11 (Z) 3 34 (I,J) (L) 3 
12 (B,C) 2 35 (I,J) (M) 2
13 (I,J) 2 36 (I) (K) (K) 2 
14 (L,M) 2 37 (I) (K) (L) 2 
15 (A) (B) 2 38 (I) (K) (M) 2 
16 (A) (C) 2 39 (I) (K) (L,M) 2
17 (A) (D) 2 40 (J) (K) (L) 2 
18 (A) (E) 2 41 (J) (K) (M) 2
19 (A) (Z) 2 42 (K) (K) (L) 2 
20 (A) (B,C) 2 43 (K) (K) (M) 2 
21 (I) (K) 4 44 (I,J) (K) (L) 2
22 (I) (L) 5 45 (I) (K) (K) (L) 2
23 (I) (M) 4 46 (I) (K) (K) (M) 2

Table 6. Cluster 1 (min_strength = 40% = 1.2 < 2 sequences) 
seq1 (A) () (B, C, Y) (D) ()  
seq4 (A, L) () () (D, E) ()  
seq2 (A) (X) (B, C) (A, E) (Z)  

Weighted sequence (A:3, L:1):3 (X:1):1 (B:2, C:2, Y:1):2 (A:1, D:2, E:2):3 (Z:1):1 3
Consensus seq  (w≥ 2) (A)   (B, C)  (D, E)    

Wgt Consensus seq  (w≥ 2) (A:3):3   (B:2, C:2):2  (D:2, E:2):3   3

Table 7. Cluster 2 (min_strength = 40% = 2.8 < 3 sequences) 
seq9 (J) () (K) (L, M) () 
seq5 (I, J) (B) (K) (L) () 
seq3 (A,I) (Z) (K) (L, M) () 
seq7 (I, J) (K) (J, K) (L) (M) 
seq8 (I, M) (K) (K, M) (L, M) () 
seq6 (I, J) () () (L, M) () 
seq10 () (V) (K, W) () (Z) 

Weighted seq (A:1,I:5,J:4,M:1):6 (B:1,K:2,V:1,Z:1):5 (J:1,K:6,M:1,W:1):6 (L:6,M:4):6 (M:1,Z:1):2 7
Con. seq(w≥3) (I, J)    (K)  (L, M)  
Wgt Con. seq (I:5, J:4):6    (K:6):6  (L:6, M:4):6  7

Table 8. Consensus sequences (100%: 85%: 70%: 50%: 35%: 20%) 
Pattern Consensus Seq 1 support = 40% = 1.2 < 2 sequences ( A ) ( B, C ) ( D, E ) 

Variation Consensus Seq 1 Not appropriate in this small set 
Pattern Consensus Seq 2 support = 40% = 2.8 < 3 sequences ( I, J )  ( K ) ( L, M ) 

Variation Consensus Seq 2 support = 20% = 1.4 < 2 sequences ( I, J ) ( K ) ( K ) ( L, M ) 
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ing benefits.  First, it enables multiple alignment on a group 
of necessarily similar sequences to find the underlying 
pattern (consensus sequence).  Second, once sequences are 
grouped the user can specify the threshold, min_strength, 
specific to each group. This is in contrast to the support 
framework in which min_sup is specified against the whole 
database.  Frequent uninteresting patterns, which are usually 
grouped into large partitions, will have a higher threshold 
than infrequent interesting patterns, which tend to be grouped 
into small partitions.  Thus, frequent uninteresting patterns 
will not flood the results as they do in the support framework. 

4. Example 
Table 4 is a sequence database D.  Although the data is 

lexically sorted it is difficult to gather much information from 
the raw data even in this tiny example. 

Table 5 is the result from the support framework.  For 
better readability, we show the maximal sequential patterns 
in bolded Helvetica font.  Note that finding the maximal 
patterns automatically in sequential data is a non-trivial task.   

The ability to view Table 4 is immensely improved by 
using the alignment framework – grouping similar sequences 
then lining them up and coloring the consensus sequences as 
in Tables 6 through 8.  Note that the patterns <(A)(BC)(DE)> 
and <(IJ)(K)(LM)> do not match any sequence exactly. 

Given the input data shown in Table 4 (N=10 sequences), 
ApproxMAP (1) calculates the N*N sequence to sequence 
distance matrix from the data, (2) partitions the data into two 
clusters (k=2), (3) aligns the sequences in each cluster 
(Tables 6 and 7) – the alignment compresses all the 
sequences in each cluster into one weighted sequence per 
cluster, and (4) summarizes the weighted sequences (Tables 
6 and 7) into weighted consensus sequences (Table 8). 

5. Evaluation 
We present a method that objectively evaluates the qua-

ilty of the results produced by any sequential pattern mining 
method when applied to the output of a well-known synthetic 
data generator [1].  The evaluation method is a matrix of four 
experiments – (1) random data, (2) pattern data, and pattern 
data with (3) varying degree of noise, and (4) varying number 
of random sequences – assessed on four criteria: (1) 
recoverability, (2) the number of spurious patterns, (3) the 
number of redundant patterns, and (4) the level of extraneous 
items in the result.  Recoverability, defined in section 5.2, 
provides a good estimate of how well the underlying trends 
in the data are detected.  This evaluation method will enable 
researchers not only to use the data generator to benchmark 
performance but also to quantify the quality of the results.  
Such benchmarking will become increasingly important as 
more datamining methods focus on approximate solutions. 

Using this method, we compare the quality of the results 
from the support framework and the alignment framework. 
Note that all methods generate the same results for the sup- 
port framework.  In contrast, the exact solution to the multi-
ple alignment pattern mining is NP-hard, and in practice all 
solutions are approximate.  Consequently the results of the 
alignment framework are method dependent.  We use the 
results of ApproxMAP to represent the alignment framework.  

5.1. Synthetic Data 
Given several parameters (Table 9), the data generator 

given in [1] produces the database and reports the base 

patterns used to generate it.  The data is generated in two 
steps.  First, it generates Npat potentially frequent sequential 
patterns, called base patterns, according to Lpat and Ipat.  
Second, each sequence in the database is built by combining 
base patterns until the size required, determined by Lseq and 
Iseq, is met.  Along with each base pattern, the data generator 
reports the expected frequency, E(FB), and the expected 
length (total number of items), E(LB), of the base pattern in 
the database.  The E(FB) is given as a percentage of the size 
of the database and the E(LB) is given as a percentage of the 
number of items in the base pattern.   

Random data is generated by assuming independence 
between items both within and across itemsets. The 
probability of an item occurring is uniformly distributed. 

 

Table 9.  Parameters of the synthetic database 
Nseq 1000 total # of sequences in the DB 
Lseq 10 avg # of itemsets per sequence in the DB 
Iseq 2.5 avg # of items per itemset in the DB 
Npat 10 total # of base patterns embedded in the DB
Lpat 7 avg # of itemsets per base pattern 
Ipat 2 avg # of items per itemset in the pattern 

Nitems 500 total # of unique items in the DB 

5.2. Evaluation Criteria 
The effectiveness of a framework can be evaluated in 

terms of how well it finds the real underlying patterns in the 
database (the base patterns), and whether or not it generates 
any confounding information.  To the best of our knowledge, 
no previous study has measured how well the various 
methods recover the known base patterns in the data 
generator in [1].  In this section, we propose a new measure, 
recoverability, to evaluate the match between the base 
patterns and the result patterns.  Expanding it, we propose a 
vector of four criteria – (1) recoverability, (2) the number of 
spurious patterns, (3) the number of redundant patterns, and 
(4) the level of extraneous items in the result patterns – which 
can comprehensively depict the quality of the result patterns.   

In order to measure these four criteria, we match the 
resulting patterns from each method to the most similar base 
pattern.  In the multiple alignment framework, only the 
pattern consensus sequences are considered.  That is, the 
result pattern, P, is matched with the base pattern, B, if the 
longest common subsequence between P and B, denoted as 
B⊗P, is the maximum over all base patterns.  The items 
shared by P and B, B⊗P, are defined as pattern items.  The 
remaining items in P are defined as extraneous items.  The 
overall level of extraneous items in the set of result patterns is 
the total number of extraneous items over the total number of 
all items in the full set of result patterns.   

Depending on the mix of pattern and extraneous items, 
the result patterns are categorized into spurious, max, or 
redundant patterns.  Spurious patterns are result patterns with 
more extraneous items than pattern items.  Of the remaining, 
max patterns are result patterns whose ||B⊗P|| is the longest 
over all result patterns for a given base pattern.  Note that the 
number of max patterns is equal to the number of base 
patterns detected.  The rest of the result patterns, P1, are 
redundant patterns as there exists a max pattern, P2, that 
match with the same base pattern but better.  For the 
alignment framework, we include the number of clusters that 
generated no patterns as null patterns.   

Next we measure how well a framework detects the 
underlying base pattern by evaluating the quality of the max 
patterns.  The number of base patterns found or missed is not 



 5

alone an accurate measure of how well the base patterns were 
detected because it can not take into account which items in 
the base pattern were detected or how strong (frequent) the 
patterns are in the data.  The base patterns are only potentially 
frequent sequential patterns.  The actual occurrence of a base 
pattern in the data, which is controlled by E(FB) and E(LB), 
varies widely. E(FB) is exponentially distributed then normal-
ized to sum to 1.  Thus, some base patterns with tiny E(FB) 
will not exist in the data or occur very rarely.  Recovering 
these patterns are not as crucial as recovering the more 
frequent base patterns.  E(LB) controls how many items in the 
base patterns, on average, are injected into one occurrence of 
the base pattern in a sequence.  E(LB) is normally distributed.   

We designed a weighted measure, recoverability, which 
can more accurately evaluate how well the base patterns have 
been recovered.  Specifically, given a set of base patterns, B, 
and a set of result patterns, P, we define the recoverability as,  

 
max{||B⊗P||} is the number of items in the max pattern 
shared with the base pattern B.  Since E(LB) is an expected 
value, sometimes the actual observed value, max{||B⊗P||} is 
greater than E(LB).  In such cases, we truncate the value of 
max{||B⊗P||}/E(LB) to one so that recoverability stays 
between 0 and 1. When recoverability of the mining is high, 
major portions of the base patterns have been found.   

In summary, a good framework would produce high 
recoverability with small numbers of spurious and redundant 
patterns and a low level of extraneous items.  

5.3. Spurious patterns in random datasets 
5.3.1.     Analysis of expected support on random data 

Implicit in the use of a minimum support for identifying 
frequent sequential patterns is the desire to distinguish true 
patterns from those that appear by chance.  Yet many 
subsequences will occur frequently by chance, particularly if 
the subsequence is short, the data sequence is long, and the 
items appear frequently in the database.  When min_sup is 
low, the support of these sequences can exceed min_sup 
simply by chance. Conversely, an arbitrarily large min_sup 
may miss rare but statistically significant patterns. 

We can derive the expected support, E{sup(seq)}, for a 
subsequence under the statistical null hypothesis that the 
probability of an item appearing at a particular position in the 
sequence is independent of both its position in the sequence 
and the appearance of other items in the sequence. The 
expected support (measured as a percentage) for a 
subsequence under our null hypothesis is Pr{seqi appears at 
least once}=1-Pr{seqi never appears}.  

First let’s consider simple sequences, strings.  Then the 
probability that A will appear at least one time in a string of 
length L, where p(A) is the probability of item A appearing in 
the sequence at any particular position, is   

E( sup (A) ) = 1– Pr{A never appears} = 1– [ 1– p(A) ]L      (1) 
 

Now consider the Pr{A..B} where A and B arbitrarily 
represent two items, which need not be distinct.  To calculate 
Pr{~(A..B)}, i.e. the probability of never seeing an A 
followed by a B, divide all possible outcomes into L+1 
mutually exclusive sets: A first appears in position j, denoted 
as first(A, j), for j=1..L and A never appears.  Then, 

Pr{first(A, j)}=Pr{A first appears in pos j}=[1– p(A)]j-1p(A) (2) 
 

Next, we condition the probability of ~(A..B) as follows: 
 

Pr{~(A..B)}=∑Pr{~(A..B)| first(A, j)} .  Pr{first(A, j)} + 
Pr{~(A..B)| A never appears}. Pr{A never appears}  (3) 

for j=1..L.  Where in general,  
 

Pr{~(A..B)| first(A, j)} = Pr{~(A..B)| A first appears in pos j} (4)   
=Pr{B never appears in a sequence of length L-j} =  [1-p(B)]L-j    

 

By substituting the proper equations into (3) and recognizing 
that Pr{~(A..B)| A never appears}= 1 we have 

{ }∑
=

−− −+−−=
L

j

LjjL ApApBpApBA
1

1 )](1[)](1[)](1[)()}..(Pr{~

Then,  E( sup (AB) ) = 1-Pr{~(A..B)}.   
Due to space limitations, the extensions are discussed 

briefly.  First, the expected support of longer subsequences 
can be calculated recursively.  Second, the expected support 
of sequences of sets can be calculated by noting that the prob-
ability of seeing a set of n arbitrary items in the same itemset 
is p(i1)*p(i2)…*p(in).  Then we can derive the expected 
support by substituting the probability of an arbitrary element, 
p(A), with p(i1)*p(i2)…*p(in), in any of the equations above.   

The quantities p(A), p(B), etc., are not known, however it 
is beyond the scope of this paper to evaluate its distribution.  
We merely propose as a first step that the choice of min_sup 
as well as the interpretation of the results should be guided by 
E(sup(seqi)).  In Frigure 1, we calculate the expected support 
of <(A)(B)> with respect to L.  The expected support grows 
linearly with respect to L.    

0%

10%

20%

30%

40%

50%

0 50 100 150 200

L

E(
Su

p)
p(A)=0.01
p(B)=0.01

p(A)=0.01
p(B)=0.001

p(A)=0.001
p(B)=0.001

 
Figure 1.  E(sup) w.r.t. L 

 

Figure 2. # of spurious patterns in random data 
 

5.3.2.  Empirical analysis  
We generated random data sets with parameters Nseq, Iseq, 

Nitems as given in Table 9 and varied Lseq to test empirically 
how many spurious patterns are generated from random data.   

The support framework has no mechanism to eliminate 
patterns that occur simply by chance.  As seen in the 
theoretical analysis, when sequences are long, short patterns 
can occur frequently simply by chance.  Consequently, 
support alone cannot distinguish between significant patterns 
and random sequences.  To combat this problem in 
association rule mining, [4] has used correlation to find 
statistically significant associations.  Unfortunately, the 
concept of correlation does not extend easily to sequences.   

Consistent with the theoretical analysis, the support fra-
mework generates many spurious patterns given random data 
(Figure 2). The number of spurious patterns increases ex-
ponentially with respect to Lseq. This follows naturally from 
Figure 1 which shows that E(sup) of length 2 sequences incr-
ease linearly with respect to L.  Thus, the total of all patterns, 
1≤Lpat≤maxL, should grow exponentially.  When min_sup= 
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5% and Lseq=30, there are already 53,571 spurious patterns.  
In real applications, since min_sup<<5%, and Nseq> 30, there 
will be many spurious patterns mixed in with true patterns.    

In contrast, the probability of a group of random sequen-
ces aligning well enough to generate a consensus sequence is 
negligible.  Thus, using default values, the multiple align-
ment framework found few spurious patterns – from 0 to 3 
(Figure 2).  Furthermore, all the patterns found have only one 
item, which can easily be dismissed. Although the algorithm 
generated many clusters (80 to 100), all the clusters were 
either very small, or not enough sequences in the cluster 
could be aligned to generate meaningful consensus itemsets.   

5.4. Baseline study of patterned database 
Table 10. Pattern data 

 parameters recover noise max spur redundant
Sup framework Min_sup=5% 91.6% 5.2% 10 6,648 247,266
Align  framework k=6&Min_strgh=30% 92.5% 0% 8 0 2 

 

This experiment serves several purposes.  First, it 
evaluates how well the frameworks detect the underlying 
patterns in a simple patterned dataset.  Second, it illustrates 

how readily the results may be understood.  Third, it 
establishes a baseline for the remaining experiments.  We 
generate 1000 sequences from 10 base patterns (Table 9).  
We tuned both frameworks to the optimal parameters.  

The recoverability for both frameworks was good at 
over 90% (Table 10).  However, in the support framework it 
is difficult to extract the 10 base patterns from results that 
include 247,266 redundant patterns and 6,648 spurious pat-
terns. Furthermore, there were 93,043 extraneous items in 
total, which constituted 5.2% of all items in the result patterns.   

In comparison, the alignment framework returned a very 
succinct but accurate summary of the base patterns.  There 
were only two redundant patterns, no spurious patterns, and 
no extraneous items.  Table 11 shows all the pattern consen-
sus sequences, PatConSeqi, the variation consensus sequen-
ces, VarConSeqi, with the matching base patterns, BasePi.  
The two weak base patterns missed are at the bottom.  In this 
small dataset, manual inspection clearly shows how well the 
consensus sequences match the base patterns used to generate 
the data.  Each consensus pattern found was a subsequence of 
considerable length of a base pattern. The 20 consensus seq-
uences provide a good overview of the 1000 data sequences. 

 

Table 11. Patterns detected when k=6; PatSup=30%, VarSup=20%, 5 seq ≤ DB support ≤ 100 seq 
BasePi (E(freq):E(len)) LEN Pattern <100: 85: 70: 50: 35: 20> 

PatConSeq1 13 < ( 15 16 17 66 ) ( 15 ) ( 58 99 ) ( 2 74 ) ( 31 76 ) ( 66 ) ( 62 ) > 
VarConSeq1 18 < ( 15 16 17 66 ) ( 15 22 ) ( 58 99 ) ( 2 74 ) ( 24 31 76 ) ( 24 66 ) ( 50 62 ) ( 93 ) > 

BaseP1 (0.21:0.66) 14    [15,16,17,66] [15] [58,99] [2,74] [31,76] [66] [62] [93] 
PatConSeq2 9 < (16 ) ( 99 ) ( 94 ) ( 45 67 ) ( 50 ) ( 96 ) ( 51 ) ( 66 ) > 
VarConSeq2 13 < ( 16 22 ) ( 29 99 ) ( 94 ) ( 22 ) ( 45 67 ) ( 50 ) ( 96 ) ( 51 ) ( 66 ) ( 15 ) > 
PatConSeq3 13 < ( 22 50 66 ) ( 16 ) ( 29 99 ) ( 94 ) ( 45 67 ) ( 12 28 36 ) ( 50 ) > 
VarConSeq3 13 < ( 22 50 66 ) ( 16 ) ( 29 99 ) ( 94 ) ( 45 67 ) ( 12 28 36 ) ( 50 ) > 
PatConSeq4 19 <( 22 50 66 )( 16 )( 29 99 )( 94 )( 45 67 )( 12 28 36 )( 50 )( 96 )( 51 )( 66 )( 2 22 58 ) > 
VarConSeq4 21 <( 22 50 66 )( 16 )( 29 99 )( 58 94 )( 2 45 67 )( 12 28 36 )( 50 )( 96 )( 51 )( 66 )( 2 22 58 )> 

BaseP2 (0.161:0.83) 22  [22,50,66][16][29,99][94][45,67][12,28,36][50][96][51][66][2,22,58][63,74,99] 
PatConSeq5 11 < ( 22 ) ( 22 ) ( 58 ) ( 2 16 24 63 ) ( 24 65 93 ) ( 6 ) > 
VarConSeq5 15 < ( 22 ) ( 22 ) ( 22 ) ( 58 ) ( 2 16 24 63 ) ( 24 65 93 ) ( 6 ) ( 11 15 74 ) > 

BaseP3 (0.141:0.82) 14     [22] [22] [58] [2,16,24,63] [24,65,93] [6] [11,15,74] 
PatConSeq6 11 < ( 31 76 ) ( 58 66 ) ( 16 22 30 ) ( 16 ) ( 50 62 66 ) > 
VarConSeq6 11 < ( 31 76 ) ( 58 66 ) ( 16 22 30 ) ( 16 ) ( 50 62 66 ) > 

BaseP4 (0.131:0.90) 15     [31,76] [58,66] [16,22,30] [16] [50,62,66] [2,16,24,63] 
PatConSeq7 13 < ( 43 ) ( 2 28 73 ) ( 96 ) ( 95 ) ( 2 74 ) ( 5 ) ( 2 ) ( 24 63 ) ( 20 ) > 
VarConSeq7 16 < ( 22 43 ) ( 2 28 73 ) ( 58 96 ) ( 95 ) ( 2 74 ) ( 5 ) ( 2 66 ) ( 24 63 ) ( 20 ) > 

BaseP5 (0.123:0.81) 14    [43] [2,28,73] [96] [95] [2,74] [5] [2] [24,63] [20] [93] 
PatConSeq8 8 < ( 63 ) ( 16 ) ( 2 22 ) ( 24 ) ( 22 50 66 ) > 
VarConSeq8 9 < ( 63 ) ( 16 ) ( 2 22 ) ( 24 ) ( 22 50 66 ) ( 50 ) > 

BaseP6 (0.121:0.77) 9     [63] [16] [2,22] [24] [22,50,66] [50] 
PatConSeq9 11 < ( 70 ) ( 58 66 ) ( 22 ) ( 74 ) ( 22 41 ) ( 2 74 ) ( 31 76 ) > 
VarConSeq9 16 < ( 70 ) ( 58 66 ) ( 22 ) ( 22 58 ) ( 74 ) ( 22 41 ) ( 2 66 74 ) ( 31 76 ) ( 2 74 ) > 

BaseP7 (0.054:0.60) 13    [70][58,66][22][74][22,41][2,74][31,76][2,74] 
PatConSeq10 15 < ( 20 22 23 96 ) ( 50 ) ( 51 63 ) ( 58 ) ( 16 ) ( 2 22 ) ( 50 ) ( 23 26 36 ) > 
VarConSeq10 8 < ( 20 22 23 31 76 96 ) ( 50 66 ) ( 51 63 ) ( 58 ) ( 16 ) ( 2 22 ) ( 50 ) ( 23 26 36 ) > 

BaseP8 (0.014:0.91) 17   [20,22,23,96][50][51,63][58][16][2,22][50][23,26,36][10,74] 
BaseP9 (0.038:0.78) 7 [88][24,58,78][22][58][96] 
BaseP10 (0.008:0.66) 17 [16][2,23,74,88][24,63][20,96][91][40,62][15][40][29,40,99] 

 

Table 12. Consensus pattern detected from the systematic interaction of two base patterns 
BaseP1 (15 16 17 66) (15) (58 99) (2 74) (31 76) (66) (62) (93) 
ConSeq (15 16 17 22 66) (2 15 22) (22 58 99) (2 58 74) (2 16 24 31 63 74 76) (24 65 66 93) (6 62)  
BaseP3                (22)         (22)     (58) (2 16 24 63) (24 65 93) (6) (11 15 74)
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Many of the redundant patterns in the support frame-
work are either subsequences of a longer pattern or a small 
variation on it.  They hold no additional information and inst-
ead bury the real patterns.  Although, finding max or closed 
frequent itemset has been researched [3, 8], these methods to 
not extend easily to sequences. 

In contrast, the two redundant patterns in the alignment 
framework have useful information.  Sequences in the parti-
tion that generated PatConSeq3 (Table 11) were separated out 
from the partition that generated PatConSeq4 because they 
were missing most of the six items at the end of PatConSeq4.  
Similar information can be gathered from the pattern consen-
sus sequence PatConSeq2.  Thus, when the redundant pat-
terns in the alignment framework are subsequences of a long-
er pattern, it alerts the user that there is a significant group of 
sequences that do not contain the items in the longer pattern.   

5.5. Robustness with respect to noise 
We evaluate the robustness of the frameworks with 

respect to varying degrees of noise in the data.  Noise is 
introduced into the patterned data (section 5.4) using a 
corruption probability α.  Items in the database are randomly 
changed into another item or deleted with probability α.  This 
implies that 1-α is the probability of any item remaining 
constant.  Hence, when α=0 no items are changed, and higher 
values of α imply a higher level of noise [12]. 

 

Table 13. Effect of noise 
parameters 1-a recover noise max spurious redundant null 

5% 88.50% 10.10% 10 12,733 257,792 na
15% 71.50% 18.00% 10 3,250 50,320 na
25% 55.80% 20.50% 10 970 15,375 na

Min_sup 
= 

3% 
(30 seqs)  35% 43.30% 24.60% 10 512 7,425 na

5% 92.40% 10.10% 8 1 7 18
15% 88.30% 9.50% 8 0 6 14
25% 81.30% 3.60% 7 0 8 31

k=2 
Min 

strgth 
=30% 35% 77.30% 4.60% 8 0 10 44

Figure 3. Effect of noise 
The results show that the support framework is 

vulnerable to random noise injected into the data.  As seen in 
Table 13 and Figure 3, as the corruption factor, α, increases, 
the support framework detects less of the base patterns and 
incorporates more extraneous items in the patterns.  When 
the corruption factor is 35%, the recoverability degrades 
significantly to 43% even when min_sup has been reduced to 
3%=30 sequences.  Such results are expected since the 
framework is based on exact match.  Note that even with 
recoverability at 43%, the framework returns 7,947 patterns 
that have 24.6% extraneous items in them. 
In comparison, the alignment framework is robust to noise in 
the data.  Despite the presence of noise, it is still able to 
detect a considerable number of the base patterns (i.e. 
recoverability is 77.3% when corruption factor is 35%).  Fur-
thermore, although the number of extraneous items in the 
consensus sequence has increased relative to the data without 
noise, the number of extraneous items is not directly related 

to the level of noise injected (Table 13 and Figure 3). This is 
because the random noise injected into the data does not 
correspond to the extraneous items in the consensus sequen-
ces.  Rather, the extraneous items in the consensus sequences 
tend to be segments of a second base pattern.  In the presence 
of noise, a smaller cluster is more likely to form around seq-
uences that were constructed from a systematic interaction 
between two base patterns.  In such cases, a new base pattern 
highly shared by a small group of sequences emerges and 
ApproxMAP detects it.  The experiment with 1-α = 5% had 
20 extraneous items in total of which 14 came from  the  con- 
sensus pattern, mapped to BaseP1, given in Table 12.  A 
closer examination reveals that when the extraneous items (in 
gray) are put together, the new pattern is highly similar to a 
second base pattern, BaseP3.    In  fact,  of  the  14 extraneous 
items, only three are true extraneous items and 11 are from 
BaseP3 (darker gray).  Thus, the true level of extraneous 
items in the result is 9/198=4.5%.  The simple model of 
matching a consensus pattern to only one base pattern results 
in items that belong to the second base pattern being 
categorized as extraneous items, when in fact they are not. 
5.6. Robustness w.r.t. random sequences 

This experiment is designed to test the effect of random 
sequence added to patterned data.  We generated random data 
as in the first experiment with the same parameters as the 
patterned data in the second experiment and added them 
together.  The main effect of the random sequences are the 
weakening of the patterns as a percentage of the database. 

Consequently, in the support framework the recover-
ability and the number of spurious and redundant patterns are 
reduced when min_sup is maintained at 5%.  Level of extra-
neous items in the patterns increase as we add more random 
sequences.  On the other hand, if we maintain min_sup=50 
sequences, obviously the recoverability can be maintained.  
The tradeoff is that spurious patterns, redundant patterns, and 
extraneous items all increase slightly (Table 14 and Figure 4). 

In ApproxMAP, the parameter that controls which 
patterns are detected is k in the kNN clustering step.  The user 
input parameter k, can be adjusted to control the resolution of 
clustering.  Since k defines the neighbor space, larger k 
values will tend to merge more points (resulting in a smaller 
number of large clusters) while smaller values of k will tend 
to break up clusters.  Thus, k controls at what level of detail 
the data is partitioned.  The benefit of using a small k is that 
ApproxMAP can detect patterns that occur rarely.  The cost 
is that it will break up clusters representing frequent patterns 
to generate multiple consensus sequences that are similar.   

In this experiment, when k is maintained at 6, the added 
random sequences had no effect on the clusters formed or 
how the patterned sequence were aligned.  Each cluster just 
picks up various amounts of the random sequences which are 
aligned after all the patterned sequences are aligned.  In effect, 
the random sequences are ignored when it cannot be aligned 
with the patterned sequences in the cluster.  The rest of the 
random sequences formed separate clusters that generated no 
patterns, as in the first experiment.  Nonetheless, the consen-
sus sequences were shorter, reducing recoverability, since the 
random sequences increased the cluster size, and thus 
weakened the signature in the cluster (Figure 4).   

However, as seen in Table 15 and Figure 4, we can 
easily find the longer underlying patterns by adjusting either 
min_strength or k to compensate for the random sequences in 
the data.  The min_strength can be lowered to pick up more 
patterned items.  The tradeoff would be that more extraneous 
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items could be picked up as well.  A better adjustment would 
be to use a smaller k value to pick up the less frequent pat-
terns.  In this experiment, the small adjustment in k from 6 to 
3 does not breakup any of the existing clusters.  Instead, it 
just creates many more small clusters of no patterns.  The 
increase in number of spurious and redundant patterns and 
the percentage of extraneous items are negligible.   

Table 14. Support framework results  
Rand Seq Min_sup Recover Noise Max Spurious Redundant

250 63 seq (5%) 86.20% 4.10% 10 2,615 113,375
500 75 seq (5%) 80.30% 3.90% 10 1,387 61,123 
750 88 seq (5%) 74.90% 4.70% 10 861 30,572 

1000 100 seq (5%) 68.20% 6.30% 10 699 16,893 
250 50 seq (4%) 91.59% 5.22% 10 6,653 247,167
500 50 seq (3.30%) 91.59% 5.22% 10 6,658 247,222
750 50 seq (2.90%) 91.59% 5.23% 10 6,670 247,313

1000 50 seq (2.50%) 91.59% 5.24% 10 6,691 247,765

Table 15. Mulitple alignment framework results  
Rand Seq k Min_stgth Recover Noise Max Spur Redundant Null

250 6 20% 81.90% 1/98 8 0 1 1
500 6 20% 82.00% 3/101 8 0 1 6
750 6 20% 79.60% 0/96 8 0 1 7

1000 6 20% 79.60% 0/93 7 0 1 12
250 3 30% 92.03% 1/127 8 0 3 3
500 3 30% 91.94% 1/125 8 0 3 15
750 3 30% 91.94% 2/127 9 1 2 29

1000 3 30% 90.61% 2/126 9 1 2 70

Figure 4. Effect of random sequences 

5.7. Scalability 
Methods based on the support framework has to build 

patterns one at a time.  Thus, the lower bound on the time 
complexity with respect to the patterns is exponential. In 
contrast, the methods based on the alignment framework find 
the patterns directly through multiple alignment.  Thus, the 
time complexity does not depend on the number of patterns.  
Instead, computation time is dominated by the clustering step, 
which has to calculate the distance matrix and build the k 
nearest neighbor list.  This inherently makes the time 
complexity O(Nseq

2Lseq
2).  However, unlike the support 

framework there is potential for improving on the time 
complexity by using a sampling based clustering algorithm 
and stopping the sequence to sequence distance calculation as 
soon as it is clear that the two sequences are not neighbors.  
Thus, not surprisingly when the patterns are relatively long, 
the multiple alignment algorithms tend to be faster than 
support based algorithms that are exponential in nature to the 
size of the pattern.    

6. Related Work  
Many papers have proposed methods for finding freq-

uent subsequences [1, 2, 9, 11, 13].  There are two works in 

particular, that extend the support framework to find more 
useful patterns.  [10] extends the framework to find rules of 
the form “if A then B” using the confidence framework.  [12] 
presents a probabilistic model to handle noise in mining 
strings. However, it cannot be easily generalized to sequence 
of sets, and it does not address the issue of generating huge 
number of patterns that share significant redundancy.  

There is a rich body of literature on string analysis in 
computer science as well as computational biology that can 
be extended to this problem domain.  In particular, multiple 
alignment has been studied extensively in computational 
biology [5, 6] to find common patterns in a group of strings 
(ordered lists of characters).  In this paper, we have 
generalized string multiple alignment to find patterns in 
ordered lists of sets.   

7. Conclusion 
Designing good operational definitions for patterns is the 

first step in mining useful and interesting patterns.  Sequential 
patterns are commonly defined as frequent subsequences 
based on exact match.  Noting some inherent problems in the 
framework, we present an entirely different framework, 
multiple alignment sequential pattern mining.  We do a 
comparative study of the two frameworks using a novel  
evaluation method on the well-known synthetic data 
generator [1].  The method can comprehensively depict the 
quality of the result patterns that emerge from certain 
definitions empirically.  The results demonstrate that the 
alignment framework is able to best recover the underlying 
patterns with little confounding information under all 
circumstances including those where the support framework fails. 
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