
AGILE: A General Approach to Detect Transitions in Evolving Data Streams

Jiong Yang Wei Wang
Department of EECS Department of Computer Science

Case Western Reserve University University of North Carolina at Chapel Hill
jiong@eecs.cwru.edu weiwang@cs.unc.edu

Abstract

In many applications such as e-commerce, system diagnosis
and telecommunication services, data arrives in streams at a
high speed. It is common that the underlying process generat-
ing the stream may change over time, either as a result of the
fundamental evolution or in response to some external stimu-
lus. Detecting these changes is a very challenging problem of
great practical importance. The overall volume of the stream
usually far exceeds the available main memory and access to
the data stream is typically performed via a linear scan in as-
cending order of the indices of the records. In this paper, we
propose a novel approach, AGILE, to monitor streaming data
and to detect distinguishable transitions of the underlying pro-
cesses. AGILE has many advantages over the traditional Hid-
den Markov Model, e.g., AGILE only requires one scan of the
data.

Keywords: Stream processing, Transition detection, Variable
memory Markov model, Emission tree

1 Introduction
Analyzing stream data has drawn increasing interests re-

cently. A data stream is a long ordered sequence of records
that do not support efficient random access. Access to the data
stream is typically performed via a linear scan in ascending
order of the indices of the records. The overall data volume
usually far exceeds the available memory. Only a summary of
the past data and/or a recently observed portion of the stream
may be able to be stored in the memory. This poses an excep-
tional challenge to many existing data mining techniques that
require multiple scans and/or random access of the data. This,
in part, makes many previous algorithms assume that (1) the
data was generated from a stationary distribution and (2) any
portion of the stream can serve as a good representative of the
entire stream. These assumptions, in general, do not hold in
many of today’s applications because the underlying process
that generates the stream may change over time, either as a
result of the fundamental evolution or in response to some ex-
ternal stimulus. Applying algorithms designed for stationary
process to an evolving stream may lead to invalid conclusions.

Our focus in this paper is on detecting transitions of under-
lying processes of a data stream, which has great importance
in many applications, e.g., web page recommendation, intru-
sion detection, network traffic analysis, etc. Many of these ap-
plications build their models upon some statistics (e.g., count,
conditional dependency, etc.) of the data assuming a stationary
process. Successful transition detection provides an opportu-
nity to apply many existing techniques directly to streaming

data without the concern of deriving invalid models. A model
is always valid before a transition of the underlying process
occurs. The detection of a transition can be regarded as a sig-
nal to trigger verification and/or revision of the existing model.
We shall show later in the experimental result that our proposed
method can successfully support, for example, the maintenance
of a decision tree on an evolving stream.

The most common statistical approach to model an evolving
sequence is the Hidden Markov Model (HMM). The learning
of a Hidden Markov Model involves constructing the structure
(e.g., the set of states and their connections) and estimating
the parameters (e.g. transition and emission probabilities). In
practice, the structure and topology of the HMM and the tran-
sition path are often predetermined, and, the memory length is
limited to the first order to make the learning process a feasi-
ble task, which make the success of HMM vulnerable to er-
roneous settings. Furthermore, this learning process typically
requires multiple scans of the entire sequence before the transi-
tion points can be determined, which makes it not practical for
monitoring streaming data. Mining massive stream data has
been an active topic in recent years. Much work was devel-
oped. Due to the space limitations, we omit the related work
discussion, interested readers please refer to [5].

In this paper, we devise a novel approach, AGILE, as an al-
ternative to the HMM. AGILE employs the variable memory
Markov (VMM) model [2] to represent each underlying pro-
cess, which has been proven to be very powerful in capturing
longer dependencies and higher order statistics [1, 3] and can
be learned with a single scan of the sequence. These advan-
tages make the VMM model an ideal choice for modelling each
underlying process of the stream. Moreover, with the VMM
model on hand, the potential change can be detected easily by
checking whether the most recent observations in the stream
still comply with the current VMM model. One way to perform
the compliance check is to estimate the probability of generat-
ing the (recently observed portion of the) sequence using the
VMM model. If this probability is significantly higher than the
probability under a memoryless random process, we may think
that the underlying process remains static. Otherwise, it may
signal a potential transition of the underlying processes. When
the underlying process remains static, the recent observations
will be used to perfect the VMM model; while a new VMM
model will be built to reflect the current state if the underlying
process changes. This new VMM model will be continuously
refined until the next transition point. To facilitate the learn-
ing and maintenance of each VMM model, a novel variation of
suffix tree, emission tree, is utilized to organize the emission
probabilities. The emission tree is succinct, highly adaptable,
and easy to retrieve and update.

1

When monitoring a data stream, AGILE uses a buffer to
hold the most recently observed portion of the stream and em-
ploys an emission tree to maintain the emission probabilities
of the current underlying process, which is continuously en-
riched as AGILE scans through the stream until a transition is
detected. Comparing to the traditional HMM approach, AG-
ILE has many important advantages that are crucial to moni-
toring high speed data streams. (1) The state path, topology,
and complexity of each underlying process do not need to be
predetermined and can be automatically learned from the data
stream. (2) The transition points can be identified promptly
without tracing back the history of the stream. (3) The compu-
tational complexity to process each record is linearly propor-
tional to the memory length of the underlying process and all
computations are performed in memory.

The remainder of this paper is organized as follows. Section
2 describes the problem definition while the basic algorithm
is discussed in Section 3. We present the empirical results in
Section 4. Finally, we draw conclusions in Section 5.

2 Problem Definition
We now formalize the problem studied in this paper. A

stream is an ordered sequence of records r1, r2, For the
sake of brevity, we assume that each record ri is represented
by a symbol in a finite alphabet � = {s1, s2, . . . , sn}. The
stream is assumed to be generated from a number of distin-
guishable (but unknown) stationary stochastic processes with
some upperbound on the transition rate. That is, the stream
can be viewed as the concatenation of an (unknown) number
of continuous fragments, each of which is generated by a sin-
gle process with an (unknown) duration greater than some (un-
known) constant �. The concept of distinguishability is intro-
duced to ensure the stability of each underlying process and to
enable reliable discrimination between different processes.

The emission probabilities of a general stationary stochastic
process specify the conditional probability distribution of the
next record given the preceding segments. The probability of
generating a segment r1r2 . . . rl from a stochastic process π
can be calculated as Pπ(r1r2 . . . rl) = Pπ(r1)×Pπ(r2|r1)×
· · · ×Pπ(rl|r1 . . . rl−1), where Pπ(ri|r1 . . . ri−1) is the prob-
ability of generating ri right after the segment r1 . . . ri−1.
This probability can be used to infer whether an observed
segment was generated from a particular underlying process.
If the probability Pπ(r1r2 . . . rl) is considerably higher than
the probability P r(r1r2 . . . rl) of generating the same segment
from a memoryless random process, we may conclude with
fairly high confidence that π is the underlying process. In this
case, we also say that the segment r1r2 . . . rl complies with π.

Definition 2.1 A segment r1r2 . . . rl complies with a station-
ary stochastic process π iff P π(r1r2...rl)

P r(r1r2...rl)
> c where c > 1 is a

constant real number1.

Under the variable memory Markov (VMM) model, the condi-
tional probability Pπ(ri|r1 . . . ri−1) is equal to (or can be well
approximated by) Pπ(ri|ri−j . . . ri−1) where j (0 < j < i)
is called the memory length of the segment r1 . . . ri−1. In gen-
eral, the memory length is short (comparing to the length of the
segment) and may vary for different segments. The probability

1In theory, c can be any real number greater than 1. We choose c to be 2 in
this paper. A study on the optimal range of c is in Section 5.2.2.

Pπ(r1r2 . . . rl) becomes Πl
i=1P

π(ri|ri−ji
. . . ri−1) where ji

is the memory length of r1 . . . ri−1. It has been demonstrated
[1, 2, 3] that the VMM model is a very powerful model to cap-
ture stationary stochastic process.

Two VMM models are said to be distinguishable if there
exists a segment longer than a certain threshold � such that
it complies to only one of these two VMM models. A tran-
sition between two VMM models is called a distinguishable
transition if these two models are distinguishable. Given a
stream, our goal is to detect each distinguishable transition of
the underlying processes at the earliest possible moment as the
stream is parsed.

3 AGILE

In this paper, we propose a novel algorithm, AGILE, to
promptly detect the transition of the underlying processes. The
emission tree is employed to capture and organize the emis-
sion probabilities of each underlying VMM model. The emis-
sion tree is similar as the probabilistic tree presented in [4] with
one difference. Since the data stream arrives continuously, the
emission tree needs to grow with new data. There are two types
of nodes in an emission tree. One is the matured nodes where a
large amount of evidences are collected so the probability dis-
tribution captured in these matured nodes is stable and will not
be updated. When new data arrives, the unmatured nodes will
be updated to include more evidences for the probability distri-
bution. Figure 2 shows an example of emission tree. Readers
may refer to [5] for the detailed description of the emission
tree.

3.1 Overview

Figure 1 is the flowchart of major steps taken by AGILE as
the data stream is being parsed. At the beginning, a buffer is
allocated to track the recently observed portion of the stream
and a VMM model is initialized. Since only mature node(s)
in the emission tree will be used for compliance verification,
AGILE first goes through a short warm-up stage until the root
node matures. In this warm-up stage, every time a new record
arrives, it will be put in the buffer and will be used to train the
VMM model. Once the root node matures, AGILE proceeds to
the verification and training stage where, in addition to train-
ing the VMM model, the buffered segment will also be used
to check for potential transition. Every time a new record ar-
rives, it will be put in the buffer and the most obsolete record
will be replaced if the buffer is full. (Records in the buffer
are stored in the chronological order.) For example, after the
41st record is read in, the buffer content becomes babbaabbba
as shown in Figure 2 where the most obsolete record (the 31st
record, a, in the example) is discarded. The buffered stream
is then examined to see whether it still complies with the cur-
rent VMM model. If so, it will be used to further train the
current VMM model. Otherwise, the conflict may signal a
transition of the underlying process. The buffer is purged by
removing previous records that show compliance to the obso-
lete VMM model. A new VMM model is then initiated based
on the remaining records in the buffer. AGILE will then enters
the warm-up stage again.

2

comply with the current
VMM model?

Does the buffered portion

Purge the buffer

Start a new VMM model

Start

Initialize a buffer

Initialize a VMM model

Read in a new record

Is the rootnode
mature ?

Yes

No

Is the buffer full?

Remove the most obsolete
record from the buffer

in the buffer
Put the new record

Yes

No

warm-up stage

Train the VMM model

Read in a new record

Yes

No

verification and training stage

Train the VMM model

Put the record in the buffer

Figure 1. The Flowchart of AGILE

3.2 Compliance Verification

Without loss of generality, let’s assume that the buffer size is
much larger than the memory length of the underlying process
of the stream and the buffer currently holds records r1 . . . rl.
By definition, the compliance of r1 . . . rl with the current
VMM model, say π, is

Pπ(r1 . . . rl)
P r(r1 . . . rl)

=
Πl

i=1P
π(ri|ri−ji

. . . ri−1)
P r(r1 . . . rl)

where ji (1 ≤ ji < i) is the memory length of the seg-
ment r1 . . . ri−1 in the VMM model π, for i = 1, . . . , l. In
fact, ri−ji

. . . ri−1 should be the longest suffix of r1 . . . ri−1

which labels a mature node in the emission tree. This node
can be located by, starting from the root of the emission tree,
traversing along the path root � ri−1 � ri−2 � · · · � r1

to the furthest mature node. The emission probability of ri

in the emission probability table at this node is the value of
Pπ(ri|ri−ji

. . . ri−1).
The computational complexity is O(l × min{l, h}) where l

and h are the buffer size and the memory length of the VMM
model (i.e., the height of the emission tree), respectively.

3.3 Purging the Buffer

Once a transition is detected, the buffer needs to be purged
to ensure that records generated by the previous underlying

process will not interfere the learning of the new model. All
records except the most recent record are discarded.

3.4 Initializing a VMM model

This step is invoked in one of the two following conditions:
when we start to monitor a new stream and when a transition
of the underlying process is detected. Before any information
is injected, the initial status of a VMM model is represented
by a degenerate emission tree with a single root node. In the
case when a new stream starts to be monitored, the user may
also choose to construct an emission tree to reflect the a priori
knowledge of the emission probabilities as an alternative initial
VMM model.

3.5 Training the VMM Model

Again, let’s assume that the buffer holds records r1 . . . rl

where rl is the most recently observed symbol. We need to
update the information related to rl at the following nodes:
the root, node rl−1, node rl−2rl−1, ..., and node rl−j . . . rl−1,
where j is the memory length of r1 . . . rl−1. These nodes
all locate on a single path, referred to as the updating path,
in the emission tree and can be accessed by traversing down
along the branch root � rl−1 � rl−2 � · · · � rl−j .
For each node rl−k . . . rl−2rl−1 (k = 1, 2, . . . , j), the counter
N(rl−k . . . rl−2rl−1rl) is incremented by 1 and the emission
probability entries (if immature) are also updated accordingly.

Nnew(rl−k . . . rl−2rl−1rl) = Nold(rl−k . . . rl−2rl−1rl) + 1

Pnew(rl|rl−k . . . rl−2rl−1) = Pold(rl|rl−k . . . rl−2rl−1)

× Nnew(rl−k . . . rl−2rl−1rl)
Nnew(rl−k . . . rl−2rl−1rl) − 1

∀y �= rl Nnew(rl−k . . . rl−2rl−1y) = Nold(rl−k . . . rl−2rl−1y)

Pnew(y|rl−k . . . rl−2rl−1) =
Nnew(rl−k . . . rl−2rl−1y) × Pold(y|rl−k . . . rl−2rl−1)
Nnew(rl−k . . . rl−2rl−1y) + Pold(y|rl−k . . . rl−2rl−1)

If the updated value of N(rl−k . . . rl−2rl−1rl) is equal to α
(i.e., the segment rl−k . . . rl−2 rl−1rl just becomes signifi-
cant), then a new node rl−k . . . rl−2rl−1rl needs to be initi-
ated (to monitor the emission probabilities given rl−k . . . rl−2

rl−1rl as the preceding segment). Assume that there is still
space available in main memory2. This new node is inserted
as a child of node rl−k+1 . . . rl−2rl−1rl in the emission tree,
which may reside on a different branch other than the one we
just visited. The parent node of the new node can be located
by traversing along the updating path root � rl � rl−1 �
· · ·� rl−k+1 to reach the furthest node.

Due to space limitations, we do not present the formal proof
of correctness and several additional improvements on the ba-
sic algorithm of AGILE. Interested readers please refer to [5].

2If the main memory is full, AGILE needs to adjust the significance thresh-
old α. This scenario is investigated in [5].

3

a

a

buffer

b

bb

b

1 5 10
a b a b b a b a b b b a a b b a b b a b b a a b a b b a b b a b a b b a a b b b a b

2015 25 3530 40

0.2
0.8

3
9

a
b

a
b

a
b

0.2
0.8 1

1
4

a b a
b

0.5
0.5 10

0.8
0.2ba ab bb

a
b

a
b

0.2
0.8

1
4

0.4
0.6 24

a
broot

bba 0
0

17

5

10MM

M

Figure 2. The Emission Tree After Examining the
41st Record

4 Experimental Results
We implement the AGILE algorithm in C. The experiments

are performed on a SUN Ultra-Sparc 10 workstation with 1GB
main memory and a 500 MHz CPU. In all tests, the initial sig-
nificance threshold α is set to 25.

We experimented the AGILE system on both real and syn-
thetic data sets. Due to the space limitations, we only show
the results on the real data set here. Interested readers please
refer to [5] for more detailed empirical results. The real data
stream is constructed from a web page access log of an on-
line merchant3. This trace log consists of the merchandize web
pages that were accessed by users between March 15, 2003 to
July 31, 2003. Each user is identified by the IP address. A
user session is a list of web pages that accessed by a single
user (IP address) within a certain time period, e.g., 1 hour. A
stream is generated by concatenating all sessions in chronolog-
ical order of their starting time, separated by a special symbol,
$. There are over 20 million sessions in the trace and the over-
all length of the stream is over 400 million merchandize visits.
The overall distinct number of merchandizes is 1678. When
constructing the emission tree and verifying the compliance of
the VMM model, we do not consider any segments that cross
the session boundary. This is achieved by purging the buffer
every time $ is reached. Roughly 500MB space is used to store
the emission tree.

Three transitions are detected by AGILE. One transition
corresponds to a major renovation of the web site, e.g., mer-
chandize re-categorization. The second transition is due to a
major revision of recommendation list for each merchandize
when it is browsed by a user. We can observe that the rec-
ommendation system influences the user’s browsing behavior
significantly. The last transition reported by AGILE does not
correspond to any important “mechanical” change of the web
site. After further investigation, we found that the transition is a

3Due to confidential agreement, we are not able to disclose the identity of
the web site.

consequence of some recommendation list becoming obsolete
when the NBA season ends. The probability that a user would
follow a NBA-related recommendation declines dramatically
after the NBA season is over. It is interesting to know that the
merchant was not aware of this transition before AGILE detects
it. From this test, we can see that AGILE can be very useful to
detect unknown yet important changes in a stream. Last but not
least, it takes less than 4ms to process each symbol on average.

To further demonstrate the usefulness of AGILE, we com-
pare three alternative methods of online classification based on
the web access trace. The objective is to build a decision tree to
predict user’s purchasing behavior in the immediate future. (1)
The decision tree is rebuilt once a month. (2) A sliding win-
dow is employed and the decision tree is (partially) rebuilt after
every session. (3) AGILE is employed and the decision tree is
rebuilt once a transition is detected be AGILE. We found that
the third method can produce equally good result4 as the sec-
ond method during the entire course of the trace. This suggests
that AGILE is powerful to capture every transition that may
result in a different decision tree. Further, AGILE can suc-
cessfully avoid the expensive computation required by the sec-
ond method. In our experiment, AGILE manages to save more
than 70% of the computational cost consumed by the second
method. Even though the first method requires less computa-
tional effort than the second method, it fails to respond to the
transition promptly.

5 Conclusions and Future Work

In this paper, we develop a framework, AGILE, for on-
line detection of changes of streaming data in the form of
transitions of the underlying processes. The variable memory
Markov model is used to characterize each stationary under-
lying process and is represented via a compact data structure
— emission tree. The potential transition can be promptly de-
tected by checking whether the recently observed records still
well comply with the current emission tree. It has been shown
that AGILE is very effective and efficient in terms of high accu-
racy and low storage requirement and computation cost. AG-
ILE guarantees to report any distinguishable transition with an
incubation period no longer than �.

References

[1] G. Bejerano and G. Yona. Modeling protein families using prob-
abilistic suffix trees. Proc. of ACM RECOMB, pp. 15-24, 1999.

[2] D. Ron, Y. Singer, N. Tishby. The power of amnesia: learn-
ing probabilistic automata with variable memory length. Machine
Learning, vol. 25, no. 2-3, pp. 117-149, 1996.

[3] Y. Seldin, G. Bejerano, and N. Tishby. Unsupervised sequence
segmentation by a mixture of switch variable memory Markov
sources. Proc. of ICML, 2001.

[4] J. Yang and W. Wang. CLUSEQ: efficient and effective sequence
clustering. Proceedings of the 19th IEEE International Conference
on Data Engineering (ICDE), 2003.

[5] J. Yang and W. Wang. A general approach to detect transitions in
in evolving data streams. UNC Technical Report TR03-023, 2003.

4The quality of the result is assessed by the accuracy of the classification
model.

4

