
Finding Representative Set from Massive Data

Feng Pan, Wei Wang
University of North Carolina

at Chapel Hill
panfeng@cs.unc.edu
weiwang@cs.unc.edu

Anthony K. H. Tung
National University

of Singapore
atung@comp.nus.edu.sg

Jiong Yang
Case Western Reserve

University
jiong@eecs.cwru.edu

Abstract

In the information age, data is pervasive. In some ap-
plications, data explosion is a significant phenomenon. The
massive data volume poses challenges to both human users
and computers. In this project, we propose a new model for
identifying representative set from a large database. A rep-
resentative set is a special subset of the original dataset,
which has three main characteristics: It is significantly
smaller in size compared to the original dataset. It captures
the most information from the original dataset compared
to other subsets of the same size. It has low redundancy
among the representatives it contains. We use information-
theoretic measures such as mutual information and rela-
tive entropy to measure the representativeness of the rep-
resentative set. We first design a greedy algorithm and then
present a heuristic algorithm that delivers much better per-
formance. We run experiments on two real datasets and
evaluate the effectiveness of our representative set in terms
of coverage and accuracy. The experiments show that our
representative set attains expected characteristics and cap-
tures information more efficiently.

1. Introduction

Given a huge dataset, generating an accurate synopsis
are of great significance to both people and computer and
are used in many applications. In this project, we propose a
model for identifying representative set, which is a subset of
the original dataset, as a form of synopsis. A representative
set consists of selective samples from the original dataset. It
captures significant information in the original dataset more
efficiently than any random samples can. Applications of
representative set include but are not limited to the follow-
ing two.

• In unsupervised clustering, user interference is re-
stricted to setting a few global parameters such as the

number of clusters. Recent research has suggested that
moderate user interaction will greatly enhance the in-
terpretability and usefulness of the clustering result.
The representative set offers an opportunity to allow
sensible user interference. Since a representative set is
significantly smaller than the original dataset, special-
ists can observe every representative thoroughly and
decide on its class label or its relationships with oth-
ers. And these information are valuable references to
improve the quality of the final clustering results.

• A Google search can easily generate thousands of en-
tries that satisfy the search criterion. It is infeasible for
a user to examine every entry. However, if we can gen-
erate a representative set of the entries and each repre-
sentative can stand for a typical category or topic, the
user can quickly comprehend the scope of the search
results and determine ways to focus the search. Fur-
ther, these representatives are also good reference co-
ordinates for meaningful document clustering.

A good representative set should capture the most infor-
mation from the original dataset compared to other subsets
of the same size. Also, it should have low redundancy. Al-
gorithms such as Maximum Coverage [9] can generate a
subset that captures original information from a dataset, but
may only work well in a balanced dataset, where the num-
ber of transactions from each class is similar. However, the
maximum coverage approach does not generate good repre-
sentative sets that take into consideration low redundancy.
Good performance of the maximum coverage approach de-
pends on an appropriate choice of similarity function and
similarity threshold.

General cluster algorithms address the problem to
some extent, especially representative-based clustering al-
gorithms such as the k-medoid clustering [8]. However,
as we will show in the experiment section, generating a
representative set in advance can help the processing of
representative-based clustering algorithms.

We use information-theoretic measures such as mutual
information and relative entropy [3, 5] to search for good
representative sets. To meet the expectation that the repre-
sentative set should capture the most information and avoid
redundancy, we design an objective function and a greedy
algorithm to make the optimal choice at each step when se-
lecting a new representative. We also design a simplified
version of the greedy algorithm which employs heuristics
to achieve much better performance.

The rest of this paper is organized as follows: We define
the key terms in Section 2. The detail of our algorithms is
in Section 3. We report the experiment results in Section 4.
The related work is in Section 5. We conclude in Section 6.

2. Preliminary

We present some information-theoretic measurements in
this section. Since we have two requirements for a good
representative: high coverage and low redundancy, we em-
ploy two information-theoretic measurements. We use mu-
tual information to measure the coverage of the representa-
tives; good representatives that capture most information in
the original dataset should have a large mutual information
value with respect to the features of the dataset. We will
use relative entropy to measure the redundancy between the
representatives. A high relative entropy between represen-
tatives infers a low redundancy. Therefore, as we will see
in the next section, our objective function will consist of
two parts which are equally important. We will define terms
and provide examples related to mutual relative entropy and
mutual information in this section. The following table con-
tains the list of notations we will use in this section.

Table 1. Notations
E the entire element set, E = {e1, e2...en}
e, ei single element, e, ei ∈ E
Ei subset of E, Ei ⊆ E
F the entire feature set, F = {f1, f2...fm}
f, fi single feature, f, fi ∈ F
R the representative set, R ⊆ E
r, ri single representative, r, ri ∈ R
L(ri) set of elements related to representative ri

L(ri) ⊆ E
EΘ set of elements not related to any

representative in R, EΘ ⊆ E
rΘ the virtual representative for EΘ, L(rΘ) = EΘ

T random variable over domain of E
A random variable over domain of F
M random variable over domain of R ∪ {rΘ}

The datasets studied in the paper are a set of elements in
a given feature space. Each element is described by a set

features
e1 f1 f2 f3 f4

e2 f2 f3 f4

e3 f1 f4 f5

e4 f3 f4 f5

e5 f1 f5

(a) Original Dataset

f1 f2 f3 f4 f5

e1 1 1 1 1 0
e2 0 1 1 1 0
e3 1 0 0 1 1
e4 0 0 1 1 1
e5 1 0 0 0 1

(b) Transformed Table
Figure 1. Example Data

of features. For each feature, a binary variable is used to
depict the presence or absence of the feature. We represent
the entire element set as E and the entire feature set as F .
We transform the original dataset into a two-dimensional bi-
nary table whose rows correspond to elements and columns
correspond to features in the original dataset. For exam-
ple, Figure 1(a) is the original dataset which contains five
elements and five distinct feature values. Figure 1(b) is the
transformed dataset, e1 has value 1 in column f1 because e1

has feature f1 in the original dataset.
By normalizing each row in Figure 1(b), we can view

an element as a distribution in the feature domain. Table 2
shows the distribution after normalizing the data in Figure
1(b).

Table 2. Distribution Table
f1 f2 f3 f4 f5

e1 0.25 0.25 0.25 0.25 0
e2 0 0.33 0.33 0.33 0
e3 0.33 0 0 0.33 0.33
e4 0 0 0.33 0.33 0.33
e5 0.5 0 0 0 0.5

We define two random variables, T and A, in the ele-
ment domain and feature domain respectively. Giving equal
weight to each element ei ∈ E, we define:

p(T = ei) =
1
|E| , ei ∈ E

According to the distribution table, we obtain the condi-
tional probability P (A|T). For example, P (A = f1|T =
e1) = 0.25. For convenience, we use P (f1|e1) to represent
P (A = f1|T = e1). For each subset Ei of E, we define the
probability distribution function in the following way:

P (Ei) =
|Ei|
|E| , Ei ⊆ E

P (A|Ei) =
∑

e∈Ei

P (e)
P (Ei)

P (A|e) =
1
|Ei|

∑

e∈Ei

P (A|e)

For two element subsets, the relative entropy can be used
to measure the difference. It is defined on the two corre-
sponding probability distributions.

Definition 2.1 Relative entropy between element sets
Given two element sets Ei and Ej ⊆ E, the relative entropy
between them is the relative entropy or Kullback-Leibler di-
vergence between their distributions in the feature domain:

DKL[Ei||Ej] = DKL[P (A|Ei)||P (A|Ej)]

=
∑

f∈F P (f |Ei)log
P (f |Ei)
P (f |Ej)

To avoid the problem of indefinite value when P (f |Ei)
or P (f |Ej) equals 0, we will use a real number close to 0 to
replace 0 in implementation such as 10−10. In the discus-
sion below, we will also use the relative entropy between
two elements where single element is considered as a de-
generacy of element set.

A representative is a typical element of the set E. Our
algorithm aims to find a small representative set R from a
huge collection of elements. We give a general definition of
the representative set as follows:

Definition 2.2 Elements related to Representative
Given a representative r, an element e is related to r if
DKL(r||e) < (minei∈E−{r}DKL(r||ei)) ∗ tmax, where
tmax ≥ 1, that is, the relative entropy between r and e
is within a certain range of the minimal relative entropy be-
tween r and all other element in E. tmax is a parameter
used to control the range. We use L(r) to denote the set of
elements related to r. When tmax < 1, L(r) = {r}.

In principle, an element may be related to several repre-
sentatives which will make the problem complicated and
make trouble on the random variable M which we will de-
fine later. Therefore, we make some modification on Defi-
nition 2.2 to resolve this issue. We generate representatives
one by one, so that when we pick elements related to a new
representative, we only consider those elements that are not
related to any previously chosen representatives. By doing
so, each element will be related to at most one represen-
tative. Similar approach was used in some max coverage
approaches.

Definition 2.3 Representative Set
A representative set R is a subset of E. For each repre-
sentative ri ∈ R, we can get its related element set L(ri),
L(ri) ⊆ E. Given a representative set R = {r1, r2, ..rn},
E = L(r1) ∪ L(r2) ∪ .. ∪ L(rn) ∪ Eθ. Eθ contains all the
elements which are not related to any representative in R.

In Definition 2.3, Eθ contains all the elements not related
to any representative. For convenience in explaining our
algorithm, we consider Eθ the related set of a special repre-
sentative rθ that does not exist in the dataset, L(rθ) = Eθ.

We define a random variable M over the representative
set and rθ. Given a representative set R = {r1, r2, ..rn},

P (M = ri) =
|L(ri)|
|E| , P (M = rθ) =

|Eθ|
|E|

P (A|M = ri) =
1

|L(ri)|
∑

e∈L(ri)

P (A|e)

P (A|M = rθ) =
1
|Eθ|

∑

e∈Eθ

P (A|e)

For convenience, we will use P (f1|r1) to represent P (A =
f1|M = r1) later.

Mutual information is a measure of the relationship be-
tween two random variables. We can use mutual infor-
mation between random variables M and A, I(M, A) =
H(A) − H(A|M), to measure the information captured
when representing the original dataset with the representa-
tive set R. Intuitively, I(M,A) measures how much varia-
tion in the feature domain A is captured by a representative
set. The higher, the better. Given two representative sets R1

and R2, R1 = {r1, r2, .., rn}, R2 = R1∪{rn+1}, and their
corresponding E1θ = L(r1θ) and E2θ = L(r2θ), we get
L(r2θ) = L(r1θ) − L(rn+1). Using this equality, we can
calculate the difference between I(M1, A) and I(M2, A):

∆I(M2,M1) = I(M2, A)− I(M1, A)

= H(A|M1)−H(A|M2)
= |L(r2θ)|

|E| DKL[p(A|r2θ)||p(A|r1θ)] +
|L(rn+1)|

|E| DKL[p(A|rn+1)||p(A|r1θ)]

Since relative entropy is always positive, we know that
R2 retains more information than R1.

Property 2.1 (Monotonicity) Given a representative set
R, if we generate a new representative set R′ by adding
a new representative to R, we can always have I(M ′, A) ≥
I(M, A). M is the random variable defined over R and
{rθ}. M ′ is the random variable defined over R′ and {r′θ}.

2.1. Objective Function & Problem Definition

Property 2.1 suggests that we may use a greedy algo-
rithm to successively pick representatives that offer the
highest mutual information. Starting from an empty set
R = ∅, each time we add a new representative to R which
can increase the mutual information most – meaning it can
capture more original information than any of the remain-
ing non-representative elements. At the same time, we
should also minimize the redundancy between the new rep-
resentative and existing representatives. We measure the re-
dundancy between two representatives by their relative en-
tropy. High relative entropy infers big difference between
the probability distribution of the two representatives and
thereby small redundancy. Combining these two factors,
we define our objective function as follows:

f(rnew, R) = ∆I(Mnew, M) + minr∈R(DKL(rnew||r))

The formal definition of our problem is as follows.
Problem Definition: Given a dataset which consists of

elements E = {e1, e2, ..., en}, and an empty representative
set R, add k representatives into R one by one such that at
each step, the objective function f(ri, R) can be maximized.

3. Algorithms

In this section, we will first describe the greedy algo-
rithm we used to generate the representative set. And then,
we will give a simplified version of the greedy algorithm.

3.1. Greedy Algorithm

We use a greedy algorithm to select new representatives
at each step which can maximize the objective function f
until we have generated the required number of representa-
tives. A formal description of the greedy algorithm is given
in Algorithm 1. As we can see, the greedy algorithm is sim-
ple and easy to implement.

Algorithm 1 Greedy Algorithm: Representative Set
Input: Dataset which can be viewed as element set E =
{e1, e2, ...en}, Size of representative set, m.
Output: Representative Set R

1: R = {}
2: while |R| < m do
3: for all ei ∈ Eθ do
4: calculate f(ei, R)
5: R = R ∪ {e} if f(e, R) = maxei∈Eθ (f(ei, R))
6: update Eθ

3.2. Simplified Algorithm

The greedy algorithm in the previous section has a com-
putational complexity of O(m|E|), where m is the num-
ber of representatives, and |E| is the size of the element
set. When the dataset grows, it becomes time-consuming
to generate the representative set. In applications in which
response time is crucial, such as web search, we need to
generate the representative set much faster.

As we look through Algorithm 1, we can find that the
cause for the complexity is that at each iteration, we con-
sider each remaining element in the set as a candidate for the
next representative. So if we can narrow the candidate set,
we can expect a faster performance. According to our ob-
jective function in Section 2.1, a good representative max-
imizes information gain and dissimilarity with other repre-
sentatives. While it may be difficult to estimate information
gain in advance, it is easy to find elements dissimilar to the
representatives already found. Since we have calculated the
relative entropy between each pair of elements as part of

Algorithm 2 Simplified Version of Greedy Algorithm
Input: Dataset which can be viewed as element set E =
{e1, e2, ...en}, Size of representative set, m.
Output: Representative Set R

1: R = {}
2: Candidate = {}
3: while |R| < m do
4: for each rj ∈ R do
5: Candidate = Candidate

⋃
D(ri)

6: Candidate = Candidate−⋃
ri∈R

L(ri)
7: for all ei ∈ Candidate do
8: calculate f(ei, R)
9: R = R ∪ {e} if f(e, R) = maxei∈Candidate(f(ei, R))

preprocessing, we can use those results to find a set of ele-
ments which are most dissimilar to each representative very
quickly. We can build the candidate set by taking the union
of these dissimilar sets. Similar to Definition 2.2, we can
define a dissimilar set for each representative.

Definition 3.1 Dissimilar set of a representative
An element e belongs to the dissimilar set of
a representative r if and only if DKL(r||e) >
(maxei∈E−{r}DKL(r||ei)) ∗ tmin, tmin < 1. We
denote the dissimilar set of representative r as D(r).
Parameter tmin is used to control the size of the dissimilar
set. A smaller tmin will result in a larger dissimilar set for
a representative.

Definition 3.2 Candidate set for next representative
Given a set of generated representatives R =
{r1, r2, . . . , , rk}, the candidate set for the next repre-
sentative is: Candidate = ∪i=1..kD(ri)

In fact, the candidate set can be defined in a more general
way. With a pre-defined integer x, the candidate set consists
of elements which are contained in at least x dissimilar set
of representatives. If x = 1, candidate set is the union of
the dissimilar sets as we defined in Definition 3.2. And if
x is the number of representatives, the candidate set is the
intersection of the dissimilar sets. In our algorithm, we will
use x = 1.

The simplified greedy algorithm is described in detail in
Algorithm 2. We can expect the algorithm to be faster and
less optimal when the parameter tmin increases. As we will
see in the experiment section, tmin = 0.9 is a proper value.

4. Applications and Experiments

In this section, we verify the effectiveness of the repre-
sentative set. We apply the algorithm to different kinds of
real-life datasets including the Mushroom dataset and the
20 Newsgroup dataset. All the experiments are conducted

on a PC with PIV 1.6G CPU, 512M main memory and 30G
hard drive. The algorithms are implemented in C.
Algorithms

We compare the performance of our algorithm against
two others, MaxCover and RandomPick.

MaxCover is a greedy approach for Maximum k-
coverage in [9]. This approach assumes that every element
in the dataset has a coverage set which consists of elements
similar to it. In our implementation, we define the coverage
set of an element in the same way as Definition 2.2.

Definition 4.1 Coverage set of element
The coverage set of element e, C(e), is defined as
C(e) = {ei|DKL(e||ei) < (minei∈E−{e}DKL(e||ei)) ∗
cmax}, cmax ≥ 1.
cmax is a similarity threshold that is analogous to tmax.

In the RandomPick method, we randomly pick a subset
of the dataset as representatives. The average performance
of 10 runs is reported for each experiment.
Measurements

We use two measurements in experiments: coverage and
accuracy. Coverage measures the percentage of classes that
are covered by the representative set. A class is covered
if and only if at least one of the representative belongs to
that class. Let C(R) be the distinct number of class labels
covered by representative set R and |C| be the total number
of classes in the dataset, then coverage is defined as:

coverage =
C(R)
|C|

Besides the coverage measurement, we want to design a
more rigid task to show the effectiveness of our representa-
tive set. Therefore we design a clustering algorithm using
the representative set. Given a representative set, we obtain
the class label of each representative1. Each remaining el-
ement is assigned to the class of its closest representative.
The description of the algorithm follows:

Algorithm 3 Cluster Based on Representative Set
Input: Dataset which can be viewed as element set E =
{e1, e2, ...en}
Output: Clustering of the dataset

1: Generate representative set R, |R| = m, m << |E|
2: retrieve label for each representative in R
3: for all e ∈ E do
4: calculate DKL(ri||e), for ∀ri ∈ R
5: assign e to representative r if

DKL(r||e) = minri∈R(DKL(ri||e))

We argue here that a good set of representatives would
have the same class label as those elements that are being

1Both datasets in our experiments have class labels.

covered by them. Let C(E) be the number of elements
that have the same class label as their nearest representa-
tive. Then clustering accuracy is given in the form of:

clustering accuracy =
C(E)
|E|

For convenience, we will denote this measurement as accu-
racy in later discussions.

4.1. Mushroom Dataset

We use the Mushroom dataset from UCI machine learn-
ing archive. It contains 8124 elements and 22 categorical
attributes. The elements are in two classes.

We vary the number of representatives from 2 to 10 and
compare the coverage. We set the similarity threshold tmax

and cmax to 4. The result is in Figure 2(a). Both our al-
gorithm and MaxCover cover the two classes when enough
representatives are generated. However, our algorithm does
it faster than MaxCover and RandomPick.

|R| Representative Set MaxCover RandomPick
2 100% 50% 70%
3 100% 100% 95%
4 100% 100% 90%
5 100% 100% 100%
10 100% 100% 100%

(a) Representative Coverage

|R| Representative Set MaxCover RandomPick
2 67.9% 51.7% 48.3%
4 75.1% 71.0% 63.5%
8 89.0% 89.2% 79.3%
20 96.3% 96.4% 90.7%
30 100% 96.3% 93.7%

(b) Clustering Accuracy
Figure 2. Mushroom dataset, tmax = 4, cmax = 4

We also compare the clustering accuracy achieved by the
three methods in Figure 2(b). As we can see, the representa-
tive method gives the best performance. MaxCover is better
than RandomPick, however, since it does not consider the
redundancy of the elements selected, it still performs worse
than the representative set method.

Though MaxCover and the representative set method are
comparable in terms of coverage and accuracy, the reliable
performance of MaxCover depends on a well-defined simi-
larity threshold while the representative set method is much
less sensitive to it. Small adjustment of cmax may result in
poor performance, as shown in Figure 3(a) and 3(b). Max-
Cover fails to pick any elements from the second class until
the 10th representative and gets poor accuracy.

|R| Represent Max
ative Cover
Set

2 100% 50%
5 100% 50%
10 100% 100%

(a) Representative Coverage

|R| Represent Max
ative Cover
Set

8 89.0% 51.8%
20 98.5% 86.5%
30 100% 89.3%

(b) Clustering Accuracy
Figure 3. Mushroom dataset, tmax = 3,cmax = 3

4.1.1 Comparisons with other clustering algorithms

Several other algorithms have been applied on the Mush-
room dataset. One of them is the SUMMARY algorithm
[11]. This method summarizes the dataset by clustering it
into several groups. When SUMMARY has 30 clusters gen-
erated, it achieves accuracy of 99.6%. And it does not get
100% accuracy until more than 400 clusters are generated.
As we can see in Table 3, our representative set method can
capture the information of the original dataset more effi-
ciently and quicker than SUMMARY can.

Table 3. Clustering Accuracy on Mushroom
Dataset, Compared with SUMMARY, tmax=4

Representative Set SUMMARY
|R| accuracy] clusters accuracy
30 100% 30 99.6%
50 100% 140 99.93%
... ... 298 99.99%
... ... 438 100%

In comparison with unsupervised clustering methods
such as LIMBO [1], the representative set method also per-
forms better. In [1], the reported accuracy on the Mush-
room dataset is about 91%. While in our representative set
method, specialists only need to check around 30 elements
among 8000 elements to achieve the perfect result. The cost
of manual processing is small relative to the improvement
in accuracy.

4.1.2 Comparison of the greedy algorithm with its sim-
plified version

In this subsection, we compare the performance of the
greedy algorithm with that of its simplified version on the
Mushroom dataset. Note that the greedy algorithm is a spe-
cial case when parameter tmin is set to 0 in the simplified
version. Therefore, we denote the greedy algorithm as a
simplified version with tmin = 0 in this section.

First, we compare their runtime on the dataset. The pre-
processing takes about 290 seconds and we exclude that
from the figure below since the results are repeatedly used
in different runs. As we can see in Figure 4, the simplified

algorithm offers bigger performance improvement as tmin

increases. The two curves of tmin = 0 and tmin = 0.85 are
close to each other and exhibit similar trend while the curve
of tmin = 0.9 is far below them. The curve of tmin = 0.9
even converges to a constant value after 40 representatives
are identified when tmax = 4. This can be explained by
looking into the number of candidates generated in each it-
eration. In Figure 5, we plot the number of candidates in
each iteration. The curves of tmin = 0 and tmin = 0.85 are
always close to each other while that of tmin = 0.9 is lower.
On curve tmin = 0.9 when tmax = 4, the number of candi-
dates drops dramatically in the last several iterations, which
brings down the slope of the runtime growth and makes it
logarithmic in Figure 4.

tmax=4

0

40

80

120

160

0 10 20 30 40 50 60

number of representatives

ru
nt

im
e

(s
ec

.)

tmin=0 tmin=0.85 tmin=0.9

tmax=3

0

40

80

120

0 10 20 30 40 50 60

number of representatives

ru
nt

im
e

(s
ec

.)

tmin=0 tmin=0.85 tmin=0.9

Figure 4. Runtime of different tmin

tmax=4

0

2000

4000

6000

8000

0 10 20 30 40 50 60

iteration

nu
m

be
r

of
 c

an
di

da
te

s

tmin=0 tmin=0.85 tmin=0.9

tmax=3

0

2000

4000

6000

8000

10000

0 10 20 30 40 50 60

iteration
nu

m
be

r
of

 c
an

di
da

te
s

tmin=0 tmin=0.85 tmin=0.9

Figure 5. Number of candidates of different tmin

Besides runtime, we also compare the accuracy of the
clustering algorithm based on the representative sets gener-
ated under different tmin values. As we can see from Fig-
ure 6, when tmin = 0.85, the performance is the same as
tmin = 0 while at tmin = 0.9, the performance degrades
slightly but is still much better than MaxCov, SUMMARY
and LIMBO. This result confirms our discussion in Section
2.

4.2. 20 Newsgroup Dataset

The 20 Newsgroup dataset is a document-words dataset.
It consists of 20,000 newsgroup articles from 20 differ-
ent newsgroups. Since there are more than 30,000 distinct
words in all the articles, we conduct a scoring processing
which is mentioned in [10]. The top 2000 words with the
highest score are selected as features.

We use three subsets of the entire 20 Newsgroup dataset
to test our algorithm. Two of the subsets contain articles
from two and three newsgroups respectively. Since we get

|R| tmin = 0 tmin = 0.85 tmin = 0.9
10 89.2% 89.2% 79.6%
20 96.3% 96.3% 96.3%
30 100% 100% 98.9%
40 100% 100% 99.9%
50 100% 100% 99.9%

(a) Clustering Accuracy, tmax = 4

|R| tmin = 0 tmin = 0.85 tmin = 0.9
10 89.2% 89.1% 79.1%
20 98.5% 98.5% 98.3%
30 100% 100% 98.8%
40 100% 100% 99.9%
50 100% 100% 99.9%

(b) Clustering Accuracy, tmax = 3
Figure 6. Different tmin on Mushroom Dataset

similar results as the Mushroom dataset on these two sub-
sets, we won’t present the detailed results of them in this
paper. Interested readers can refer to technical report [7].

The third subset is the mini 20 newsgroup dataset which
is a reduced version of the full 20 newsgroup dataset. It con-
sists of the same set of 20 newsgroup topics, but each topic
contains only 100 articles. We want to test the performance
of the three algorithms with respect to the complexity of
the data. In this case, the number of newsgroups included
in the dataset is a good indicator of the data complexity.
Because of the different characteristics of the elements in
this mini 20 newsgroup dataset, we will set tmax < 1 and
cmax = 1.1 in all the following experiments in this section.

First, we compare the methods on the mini 20 newsgroup
data. The results are in Figure 7(a) and 7(b). As we can
see, in both accuracy and coverage, our representative set
method outperforms the other two methods.

Coverage
|R| Representative Set MaxCover RandomPick
20 70% 55% 65%
40 85% 80% 88.5%
60 100% 90% 92%
80 100% 95% 100%
100 100% 100% 99%

(a) Representative Coverage

Accuracy
|R| Representative Set MaxCover RandomPick
20 23.8% 12.5% 18.3%
40 32.5% 21.2% 21.7%
60 37.5% 26.1% 27.2%
80 38.8% 30.3% 28.8%
100 41.6% 32.6% 29.0%

(b) Clustering Accuracy
Figure 7. Mini 20 newsgroup, tmax < 1, cmax = 1.1

In order to show the change of performance by dataset
containing different number of topics(classes), we start with
a subset of the mini 20 Newsgroup consisting of 2 topics
and add two topics into the dataset each time until it in-
cludes all 20 topics. For each of these dataset, we generate
60 representatives to study the accuracy and coverage. The
changes of performance are shown in Figure 8.

Accuracy

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22

Number of Topics

A
cc

ur
ac

y(
%

)

Representative Set MaxCover RAndomPick

Coverage

85

90

95

100

0 2 4 6 8 10 12 14 16 18 20 22

Number of Topics

C
ov

er
at

e(
%

)

Representative Set MaxCover RandomPick

Figure 8. Performance of 60 representatives

All three methods exhibit degrade accuracy when more
topics are added into the dataset. However our algorithm
is always better than the other two. The accuracy of Max-
Cover and RandomPick get close when number of topics is
large because each elements is similar to a set of other el-
ements and the size of the similar set has a small deviation
when there are large number of topics in the dataset. The
choice made by MaxCover is then close to random.

For coverage, our algorithm maintains the same perfor-
mance while other two methods fail to cover all topics when
the number of topics increases. The MaxCover method has
a big drop on coverage when 8 topics are included. This is
because of the characteristic of the 8-topic subsets, i.e., sev-
eral similar topics are included. And while 2 more topics
are added in, the characteristic of the new subset changes.

4.2.1 Comparison of the greedy algorithm and its sim-
plified version

As in the previous section, we will compare the runtime
performance of our algorithm by varying parameter tmin.

We set tmin to 0, 0.85 and 0.95 to show its effects. As we
can see in Figure 9(a), when we set tmin to 0.95, runtime
drops dramatically. That is because when tmin = 0.95, the
size of the candidate set for each iteration is small, which
can been seen in Figure 9(b).

Besides runtime, we also compare the goodness of the
representative sets generated under different tmin by the
clustering algorithm. We present the accuracy in Table 4.

When tmin is set to 0.85, the simplified algorithm
achieves the same accuracy as the greedy algorithm. And
when tmin is set to 0.95, its accuracy is slightly worse than
the greedy algorithm, however, the results are still better
than that of the MaxCov and RandomPick methods as in
Figure 7(b). The slight degrade in accuracy brings the sig-
nificant improvement in runtime as shown in Figure 9(a).

Runtime

0

100

200

300

400

500

20 40 60 80 100

number of representatives

ru
nt

im
e

(s
ec

.)

tmin=0 tmin=0.85 tmin=0.95

(a) Runtime

Number of Candidates

0

500

1000

1500

2000

2500

20 40 60 80 100

number of representatives

nu
m

be
r

of
 c

on
di

da
te

s

tmin=0 tmin=0.85 tmin=0.95

(b) Number of Candidates

Figure 9. Performance of different tmin

Table 4. Accuracy of different tmin

|R| tmin = 0 tmin = 0.85 tmin = 0.95
20 23.8% 23.8% 23.1%
40 32.5% 32.5% 31.5%
60 37.5% 37.5% 33.3%
80 38.8% 38.8% 34.5%
100 41.6% 41.6% 38.2%

In all the experiments above, our representative set
method always outperforms MaxCover and RandomPick.
This shows the effectiveness of our representative sets.

5. Related Work

LIMBO[1] is an hierarchical clustering algorithm based
on Information Bottleneck framework. It produces a com-
pact summary model of the data in the first and then em-
ploys Agglomerative Information Bottleneck(AIB) algo-
rithm to work on the summarized data. By summarizing
the data, LIMBO can handle larger dataset than AIB can.

In [10], a two-phase clustering algorithm is designed for
document clustering. The algorithm first performs cluster-
ing on words, and then on documents, using the generated
word clusters. Its runtime complexity is around O(mn2),
where m is the number of required clusters and n is the size
of dataset. While our method takes only O(mn).

Storyline [6] is an approach for clustering web pages us-
ing graphic theorem. It builds a bipartite document-term
graph and figures out each dense sub-bipartite graph which
is actually a set of closely related pages and terms and
can be summarized into a cluster. One problem with this
method is that though it can cluster web pages into groups,
it may not find a proper representative for each group.

Max Coverage [9] can handle the problem we studied in
this paper by selecting elements which are similar to most
of the elements in the dataset. However Max Coverage can-
not capture original information as much as the our method
since it only considers coverage while omitting redundancy.

In [2], a semi-supervised clustering method based on in-
formation theory performs clustering using predefined con-

straints. However, to get better performance, the algorithm
tends to require more constraints which may be difficult to
generate manually.

In [4], a word clustering algorithm replaces the classical
feature selection method on document-words datasets. In
[4], words are clustered in a supervised way. Instead of
using mutual information between words and documents, it
maintains mutual information between words and classes.

6. Conclusion

In this paper, we have defined a special subset — the
representative set — of the dataset. A representative set is a
small subset of the original dataset, captures most original
information compared to other subsets of the same size and
has a low redundancy. We first design a greedy algorithm to
generate the representative set. Then we build a simplified
version based on the greedy algorithm for faster and better
performance. Our experiments show that the representative
set attains the desired characteristics and captures informa-
tion more efficiently than other methods.

Acknowledgement

This research was partially supported through NSF grant
IIS-0448392.

References

[1] P. Andritsos, P. Tsaparas, R. J. Miller, and K. C. Sevcik.
Limbo: Scalable clustering of categorical data. Hellenic
Database Symposium, 2003.

[2] S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic
framework for semi-supervised clustering. KDD’04 Pro-
ceedings, 2004.

[3] T. M. Cover and J. A. Thomas. Elements of Information
Theory. Wiley, New York, 1991.

[4] I. S. Dhillon, S. Mallela, and R. Kumar. A divisive
information-theoretic feature clustering algorithm for text
classification. Jounal of Machine Learning Research,
(3):1265–1287, 2003.

[5] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning. Springer-Verlag, New York, 2001.

[6] R. Kumar, U. Mahadevan, and D.Sivakumar. A graph-
theoretic approach to extract storylines from search results.
KDD’04 Proceedings, 2004.

[7] F. Pan, W. Wang, A. K. H. Tung, and J. Yang. Finding rep-
resentative set from massive data. Technical Report: TR05-
014, 2005.

[8] S. V. R. Kannan and A. Veta. On clusterings: good, bad,
and spectral. In IEEE Annual Symposium on Foundations of
Computer Science, 2000.

[9] D. S.Hochbaum and A. Pathria. Analysis of the greedy ap-
proach in problems of maximum k-coverage. Naval Re-
search Quarterly, (45):615–627, 1998.

[10] N. Slonim and N. Tishby. Document clustering using word
clusters via the information bottleneck method. ACM SIGIR
2000, 2000.

[11] J. Wang and G. Karypis. Summary: Efficiently summarizing
transactions for clustering. ICDM’04 Proceedings, 2004.

