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Abstract

We find recurring amino-acid residue packing pat-
terns, or spatial motifs, that are characteristic of pro-
tein structural families, by applying a novel frequent
subgraph mining algorithm to graph representations of
protein three-dimensional structure. Graph nodes repre-
sent amino acids, and edges are chosen in one of three
ways: first, using a threshold for contact distance be-
tween residues; second, using Delaunay tessellation;
and third, using the recently developed almost-Delaunay
edges.

For a set of graphs representing a protein family
from the Structural Classification of Proteins (SCOP)
database, subgraph mining typically identifies several
hundred common subgraphs corresponding to spatial
motifs that are frequently found in proteins in the fam-
ily but rarely found outside of it. We find that some of the
large motifs map onto known functional regions in two
families explored in this study, i.e., Serine Proteases and
Kinases.

1 Introduction

1.1 Spatial Motif Discovery in Proteins

Recurring substructural motifs in proteins reveal im-
portant information about protein structure and func-
tion. Common structural fragments of various sizes
have fixed 3D arrangements of residues that may cor-
respond to active sites or other functionally relevant fea-
tures, such as Prosite patterns [Hofmann et al., 1999].
Identifying such spatial motifs in an automated and ef-
ficient way may have a great impact on protein clas-
sification [Chakraborty & Biswas, 1999], protein func-

tion prediction [Fischer et al., 1994] and protein fold-
ing [Kleywegt, 1999].

Protein structures have been modeled using graphs in
many applications, including identification of active site
clusters, folding clusters, aromatic clusters in relation
to thermodynamic stability, and the analysis of protein-
protein interaction. (See Vishveshwara et al. [2002] for a
recent and comprehensive review on applying graph the-
ory to protein structure analysis.) The choice of a graph
representation is a key aspect of protein structure analy-
sis. Several representations have been developed, rang-
ing from coarse representations in which each node is
a secondary structure segment [Grindley et al., 1993] to
fine representations in which each node is an atom [Ja-
cobs et al., 2001].

We represent a protein structure by a labeled graph.
Every node of the graph represents a distinct amino acid
residue in a protein and has the residue type as its label;
each residue is represented by its Cα atom. We distin-
guish two types of edges that connect residues: bond
edges connect pairs of residues that are adjacent in the
primary sequence, and proximity edges connect pairs of
(non-bonded) residues identified as spatial neighbors by
the following three representations.

In all representations, we only consider edges no
longer than a threshold δ, usually chosen between 6 and
10 Å. For the first representation, the contact distance
graph (CD), this is the only criterion. The second repre-
sentation uses the edges from the Delaunay tessellation
(DT), applied to the coordinates of the Cα atoms. Prox-
imity edges thus satisfy an empty sphere property [De-
launay, 1934], which implies that they join residues that
are neighbors in 3D space. The Delaunay tessellation
has been used to analyze protein packing [Richards,
1974; Tsai et al., 1999] and structure [Liang et al., 1998;
Singh et al., 1996; Wernisch et al., 1999; Wako & Yam-



ato, 1998; Tropsha et al., 2003]. The third representa-
tion, derived from the recently-defined almost-Delaunay
edges [Bandyopadhyay & Snoeyink, 2004], expands the
set of Delaunay edges to account for perturbation or mo-
tion of point coordinates, controlled by a parameter ε.
Thus, we actually define a family of graphs, AD(ε), that
interpolates between the DT and CD representations so
that DT ⊆ AD(ε) ⊆ CD for all ε ≥ 0. The AD rep-
resentation allows us to reduce the number of edges in a
CD graph without losing common patterns due to impre-
cise positioning of the chosen points of residues.

In this paper we expand the scope of our earlier study
of graph representations for subgraph mining in pro-
teins [Huan et al., 2004a]. We apply a generalized form
of frequent subgraph mining to identify subgraphs com-
mon to proteins of a given structural family found in the
SCOP database [Murzin et al., 1995]. Given a group of
proteins with a fixed support threshold, general frequent
subgraph mining always finds a superset of subgraphs in-
clusive of those identified by the means of either induced
[Huan et al., 2003] or coherent [Huan et al., 2004d] sub-
graph mining and yet it is more robust for local connec-
tivity variations. The residue packing patterns that cor-
respond to frequent subgraphs can be regarded as motifs
specific to protein families, which can be explored for
their role in protein stability and function. We evaluate
the influence of the different graph representations on the
performance of subgraph mining. We explore the nature
and biological significance of fingerprints, patterns that
are highly specific to a family and rarely seen in the rest
of the Protein Data Bank (PDB) [Berman et al., 00].

We find that AD graphs significantly reduce the num-
ber of edges in the graph representation, yet the features
extracted from such graphs have approximately equiv-
alent biological interpretation as those extracted from
CD graphs. Performance of fingerprint identification de-
pends on the sequence and structural variability within
the family. In highly homogeneous families such as Ser-
ine Proteases, DT graphs are adequate for finding finger-
prints, AD graphs are better but slower, and the compu-
tation on CD graphs could not be completed after sev-
eral days. In structurally diverse protein families such
as Protein Kinases, the DT graphs do not find any sig-
nificant fingerprints while AD and CD graphs do, and
even calculations using CD graphs can be completed in
a reasonable time.

The remainder of the paper is organized as follows.
Section 1.2 presents the related work. Section 2 presents
definitions for the subgraph isomorphism and discusses
the details of different graph representations of proteins.
Section 3 presents the data structure and the algorithm
for subgraph mining and Section 4 presents the results
of our study of three protein families from the SCOP

database, including eukaryotic and prokaryotic serine
proteases, and protein kinases. Finally, Section 5 in-
cludes conclusions and a brief discussion of future stud-
ies.

1.2 Related Work

To find patterns from graphs is a challenging task.
Several algorithms have been developed recently in the
data mining community to find all frequent subgraphs of
a group of labeled graphs [Kuramochi & Karypis, 2001;
Yan & Han, 2002; Huan et al., 2003, 2004b]. These algo-
rithms can be roughly classified into two types: The first
type uses a level-wise search scheme to enumerate the
recurring subgraphs [Inokuchi et al., 2000; Kuramochi
& Karypis, 2001] and the second type uses a depth-
first enumeration for frequent subgraphs, which usually
has better memory utilization and therefore better per-
formance [Yan & Han, 2002; Borgelt & Berhold, 2002;
Huan et al., 2003, 2004b]. In fact, depth-first search can
outperform FSG [Kuramochi & Karypis, 2001], the cur-
rent state-of-the-art level-wise search scheme, by an or-
der of magnitude [Yan & Han, 2002].

Graphs have long been used to study organic
molecules [Dehaspe et al., 1998; Borgelt & Berhold,
2002] and macromolecules such as nucleic acids [Klein,
1998; Wang et al., 1998] and proteins [Milik et al., 2003;
Mitchell et al., 1990; Singh & Brutlag, 1997]. Non-
graph based approaches have been reported as well. Sev-
eral research groups have addressed the problem of find-
ing spatial motifs by using techniques from computa-
tional geometry and computer vision. If a protein is
represented as a set of points in R3, then the problem
of spatial motif finding for pairs of molecules may be
modeled as the Largest Common Pointset (LCP) prob-
lem: identifying the largest common subset of two sets
of points [Akutsu et al., 1997]. A number of varia-
tions have been explored, which include approximate
LCP [Chakraborty & Biswas, 1999; Indyk et al., 1999]
and LCP-α: identifying a subset that approximates the
LCP with a factor α characterizing the degree of approx-
imation [Finn et al., 1997].

The TRILOGY program [Bradley et al., 2002] looks
for patterns among the conserved residues within a fam-
ily, and is able to find matches that correspond to func-
tional motifs. It handles sequence matches as regular ex-
pressions of similar residues separated by a fixed range
of sequence gaps and structure matches by calculating
the distances between Cαs and angles between paired
Cα − Cβ vectors. TRILOGY constructs longer matches
from smaller ones, beginning with triples as seeds. Our
search method finds spatial packing patterns in families
with low sequence homology or varying sequence sepa-



ration between packed residues, and thus is complemen-
tary to the TRILOGY method.

2 Methodology

2.1 Frequent Subgraphs

We define a labeled graph G as a five element tuple
G = (V, E, ΣV , ΣE , λ) where V is a set of vertices or
nodes and E ⊆ V × V is a set of undirected edges.
ΣV and ΣE are disjoint sets of vertex and edge labels,
respectively, and λ is a function that assigns labels to
vertices and edges: V → ΣV and E → ΣE . We assume
that a total ordering is defined on the labels in ΣV ∪ΣE .

Figure 1. A graph database G of three labeled graphs.
The mapping q1 → p2, q2 → p1, and q3 → p3 demon-
strates that graph Q is isomorphic to a subgraph of P ,
and so we say that Q occurs in P . Similarly graph S
occurs in both graph P and graph Q.

G′ = (V ′, E′) is a subgraph of G if vertices V ′ ⊆ V ,
and edges E ′ ⊆ (E ∩ (V ′ × V ′)), i.e. E′ is a subset of
the edges of G that join vertices in V ′. Subgraph G′ is
an induced subgraph of G if E ′ = (E ∩ (V × V )), i.e.
if E′ includes all edges in G that join vertices in V ′.

A fundamental part of our method is to find an oc-
currence of a graph H within another graph G. To
make this more precise, we say that H occurs in G
if we can find an isomorphism between graph H =
(VH , EH , ΣV , ΣE , λH) and some subgraph of G =
(VG, EG, ΣV , ΣE , λG). An isomorphism from H to the
subgraph of G defined by vertices V ⊆ VG is a bijection
between vertices f : VH → V that preserves edges and
labels:

∀u ∈ VH , λH(u) = λG(f(u)), and

∀(u, v) ∈ EH , (f(u), f(v)) ∈ EG ∧
λH(u, v) = λG(f(u), f(v))

This definition is illustrated in Figure 1.
In the previous work [Huan et al., 2003, 2004a,d] we

have used a more restrictive definition of occurrence, in
which a graph H occurs in graph G only if H is isomor-
phic to an induced subgraph of G. In Figure 1, graph
Q is isomorphic to an induced subgraph of P , but graph
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Figure 2. All (non-empty and connected) frequent
subgraphs with support ≥ 2/3 in G from Figure 1.
The actual support value is given with the frequent sub-
graphs. All are subgraphs of the one maximal frequent
graph, which is the graph G at the lower right.

S is not isomorphic to an induced subgraph of P . Un-
der the definitions used in this paper, both Q and S are
said to occur in P . The basic problem of testing sub-
graph isomorphism or induced subgraph isomorphism is
NP complete, although the most intractable cases arise
in large and dense graphs with few distinguishing labels.
The lower density representations investigated in this pa-
per, together with improvements in our algorithms, aim
to obtain tractable methods for mining fully general sub-
graphs from sets of graphs representing families of pro-
teins.

Given a graph database G, which is a set of graphs,
we define the support of a graph H as the fraction of
graphs in G in which H occurs. When the graph database
G is understood, we let supH denote this fraction. We
choose a threshold 0 < σ ≤ 1, and define H to be
frequent if and only if supH ≥ σ. Note that while H
may occur many times within a single graph G, for the
purposes of support, only one occurrence is counted per
graph.

The problem of Frequent Subgraph Mining is to iden-
tify all frequent subgraphs for a graph database G. Figure
2 shows all frequent connected subgraphs with σ = 2/3
in the graph database of Figure 1.

Since any subgraph of a frequent graph H is also fre-
quent, we can confine our search to find maximal fre-
quent graphs [Huan et al., 2004b], which are not sub-
graphs of any other frequent graph. If we increase the
support threshold to σ > 2/3, then the graph E in Fig-
ure 2 becomes the maximal frequent subgraph, while us-
ing the more restrictive induced subgraph criterion can
only yield the graph C as a maximal induced frequent
subgraph. Thus we believe that the definition of occur-
rence based on simple subgraph isomorphism is more
robust under variations in local connectivity.



2.2 Building Protein Graphs

The vertices of our graph represent the amino acid
residues in the protein. Since the protein backbone de-
fines the overall protein conformation, we have chosen to
use the Cα atom to represent the residue. Other choices
are possible including the Cβ [Lovell et al., 2003] or
the side chain centroid [Cammer et al., 2002]. Two ver-
tices are connected by a bond edge when the residues
they represent are consecutive in the primary sequence.
Starting from this simplified protein model, we compute
proximity edges using three different approaches.

In the first representation, we connect two vertices by
an edge if the distance between them does not exceed
a threshold δ. Since we are interested in neighboring
residues within a physical interaction radius, we chose δ
to vary over values ranging from 6.5–9.5 Å. As stated in
the Section 1, we refer to this distance-threshold depen-
dent graph as the CD graph.

Figure 3. Examples of a Voronoi diagram and its dual
Delaunay Tessellation for 2D points [a–f]

In the second representation, proximity edges come
from the Delaunay tessellation [Delaunay, 1934], which
is defined for a finite set of points by an empty sphere
property: A pair of points is joined by an edge if and only
if there exists an empty sphere with those two points on
its boundary. The Delaunay captures neighbor relation-
ships in the sense that there is a point in space that has the
two chosen points as closest neighbors. (The Delaunay
is dual to the Voronoi diagram—two points are joined
by an edge in the Delaunay iff their Voronoi cells share
a common face. Figure 3 illustrates the Delaunay in 2D
with solid lines, and the dual Voronoi with dashed.) We
removed edges longer than δ in a postprocessing step.
We refer to this representation of protein structure as the
DT graph.

The definition of the Delaunay tessellation depends
on the precise coordinate values given to its points,
but we know that these values are not exact in pro-
teins due to measurement imprecision and atomic mo-
tions. Thus, the third representation uses the almost-

Delaunay edges [Bandyopadhyay & Snoeyink, 2004]
that are based on a generalization of the empty sphere
property: a pair of points p and q is joined by an
almost-Delaunay edge with parameter ε, or AD(ε), if
by perturbing all points by at most ε, the chosen p and
q can be made to lie on an empty sphere. The pre-
cise parameter value for each edge of the contact dis-
tance graph can be computed by an algorithm that is
much like the roundness algorithms from the computer-
aided design (CAD) field of computational metrology.
They look for a shell of width 2ε, formed by concentric
spheres, so that p and q are on the outer sphere, and all
points are outside the inner sphere. Code is available
from http://www.cs.unc.edu/∼debug/papers/AlmDel, or
see Bandyopadhyay & Snoeyink [2004] for algorithmic
details.

All Delaunay edges are in AD(0), and AD(ε) ⊆
AD(ε′) for ε ≤ ε′. Therefore, the almost-Delaunay
edges are a superset of the Delaunay edges, where the
size of the set is controlled by the parameter ε. Var-
ious values of ε correspond to different allowed per-
turbations or motions. 0.1–0.25 Å would model deci-
mal inaccuracies in the PDB coordinates or small vibra-
tions, and 0.5–0.75 Å would model perturbations due to
coarser motions. Thus, a protein graph constructed with
the almost-Delaunay edges of parameter ε is called the
AD(ε) graph.

3 Frequent Subgraph Mining

In this section, we outline the framework we use
to find frequent subgraphs in a protein graph database.
Since these graphs encode aspects of the spatial struc-
ture of the proteins, the frequent subgraphs correspond
to spatial motifs common to the proteins in the database.

3.1 Canonical Adjacency Matrix of Labeled
Graphs

We represent each graph by an adjacency matrix M
such that every diagonal entry of M is filled with the
label of the corresponding node and every off-diagonal
entry is filled with the label of the corresponding edge, or
zero if there is no edge. This is slightly different from the
standard adjacency matrix representation for unlabeled
graphs [Cormen et al., 2001].

Given an n × n adjacency matrix M of a graph G
with n nodes, we define the code of M , denoted by
code(M), as the sequence of lower triangular entries
of M (including the entries at diagonal) in the order:
M1,1M2,1M2,2...Mn,1Mn,2...Mn,n−1Mn,n where Mi,j

represents the entry at the ith row and jth column in M .
Since our edges are undirected, we are concerned only
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Figure 4. Three adjacency matrices for the graph P
in Figure 1. Using the following ordering of label val-
ues: a > b > c > d > x > y > 0, we have
code(M1) =“aybyxb0yxc00y0d” ≥ code(M2) = “ay-
byxb00yd0yx0c” ≥ code(M3) = “bxby0dxy0cyy00a”.
Hence M1 is the CAM for graph P .

with the lower diagonal entries of M . Figure 4 shows ex-
amples of adjacency matrices and codes for the labeled
graph P shown in Figure 1.

We use lexicographic order of sequences to define a
total order over adjacency matrix codes. Given a graph
G, its canonical form is the maximal code among all
its possible codes. The adjacency matrix M which pro-
duces the canonical form is denoted as G’s canonical
adjacency matrix (CAM). For example, the adjacency
matrix M1 shown in Figure 4 is the CAM of the graph
P from Figure 1, and code(M1) is the canonical form of
the graph.

For a matrix N , we define the proper maximal sub-
matrix (submatrix for short) as the matrix M obtained
by removing the last row and column from N .

One valuable property of the canonical form we are
using (compared to the forms of Inokuchi et al. [2000]
and Kuramochi & Karypis [2001] is that, given a graph
database G, all frequent subgraphs (represented by their
CAMs) can be organized into a rooted tree. This tree
is referred to as the CAM Tree of G and is formally de-
scribed as follows:

(i) The root of the tree is the empty matrix;

(ii) Each node in the tree is a distinct frequent con-
nected subgraph in G, represented by its CAM;

(iii) The parent of a given non-root node (with
CAM M ) is the graph represented by M ’s
proper maximal submatrix.

3.2 Algorithm Overview

The search algorithm shown below is used to sys-
tematically traverse the CAM tree while maintaining all
frequent subgraphs. Additional details can be found in
Huan et al. [2003].
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Figure 5. The CAM Tree for the frequent subgraphs
in the graph P shown in Figure 1.

A number of recent improvements have been incorpo-
rated in the graph mining algorithm used for the experi-
ments reported here. These enabled us to solve problems
that were intractable in our preliminary study [Huan
et al., 2004a]. As a result, however, the running times
reported and set of subgraphs found here are not directly
comparable to the results reported there.

There are two significant changes. First, the defini-
tion of what it means for a graph H to occur in G has
been relaxed as described in Section 2.1. Second, maxi-
mal frequent subgraphs [Huan et al., 2004c,b] are mined
instead of coherent subgraphs [Huan et al., 2004d]. The
net effect of these two changes is that every subgraph re-
ported by the previous algorithms is a subgraph of some
maximal frequent subgraph reported by the current al-
gorithm. The overview of the algorithm is presented in
Table 1 and 2.

FFSM(G):
begin
1. S ← { the CAMs of the frequent nodes in G}
2. P ← { the CAMs of the frequent edges in G}
3. FFSM-Explore(P,S)
end

Table 1. An algorithm for finding frequent subgraphs
from a group of graphs G.

FFSM-Explore (P, S)
begin
1. for {X ∈ P} do
2. S ← S ∪ {X}
3. C ← { all matrices M |X is submatrix of M}
4. C ← { y| y ∈ C, y is a frequent and maximal CAM}
5. FFSM-Explore(C,S)
6. end for
end

Table 2. Enumerate all frequent subgraphs recursively.



3.3 Algorithm Details

In the following discussion, we present two important
details about the FFSM algorithm: (1) how to compute
the CAM of a given subgraph and (2) how to compute
whether a subgraph is frequent or not. With these, we
guarantee that subgraphs reported by our algorithm are
correct in that their frequencies are validated; they are
also non-redundant since only subgraphs in their CAM
form are reported. Finally, the completeness of the re-
sult (that all frequent subgraph are identified by our al-
gorithm) is guaranteed by using the CAM tree since all
subgraphs have one unique position in the CAM tree.
Because we are primarily concerned with the applica-
tion, we substitute algorithm proofs with intuitive de-
scription of the algorithms. Interested readers are re-
ferred to [Huan et al., 2004c] for further information
about formal correctness proof.

We introduce a greedy algorithm to compute the
CAM of a subgraph G. The algorithm works by picking
up maximal labeled nodes in G as a group of single-node
matrices. It iteratively grows those matrices by attaching
one additional node to each of them in all possible ways.
The resulting group of matrices are inspected one by one.
Only those which are maximal among their peers are se-
lected for the next iteration. This computation is deter-
mined to converge to the CAM of the input subgraph G.

Compute-CAM (G)
begin
1. S ← {u| u is a single-node matrix with the maximal

node label in G}
2. do
3. Q← {y| y is a adjacency matrix of a subgraph of G by

including one additional node to a matrix x ∈ S}
4. S ← {y| y ∈ Q and y is maximal in S}
5. until S contains adjacency matrix of G
end

Table 3. An algorithm to compute the canonical adja-
cency matrix of a graph G

In order to compute the support value of a subgraph
and decide whether it is frequent or not, we need to
invoke a subgraph isomorphism test for the subgraph
against each graph in a group of input graphs. This
procedure is generally expensive since subgraph isomor-
phism test is an NP-complete problem. Fortunately, we
can empirically speed up the computation by (1) using
a depth first enumeration of the CAM tree and (2) keep
embeddings of each subgraph we visited. To that end,
we need the following definition:
Given an arbitrary n × n CAM A and a labeled
graph G = (V, E, ΣV , ΣE , λ), a vertex list L =

u1, u2, . . . , un ⊂ V is an embedding of A in G if and
only if:

• ∀ i, (ai,i = λ(ui));

• ∀ i, j(ai,j �= 0 ⇒ ai,j = λ(ui, uj));

where 0 < j < i ≤ n and ai,j represents the element at
the ith row and the jth column in A .

Using an embedding list, we can check subgraph iso-
morphism incrementally at successive levels of the CAM
tree and avoid repeating subgraph isomorphism tests per-
formed previously. Empirically, this optimization speeds
up the computation significantly [Huan et al., 2003].

4 Results

4.1 Experimental Setup

We applied the subgraph mining procedure to two
datasets from the SCOP database [Murzin et al.,
1995]. The first dataset is a group of serine proteases
from SCOP superfamily “Trypsin-like serine proteases,”
which is referred to as the SP dataset. We used both
prokaryotic and eukaryotic serine proteases in the super-
family since they share the same catalytic site geometry
by evolutionary convergence, but differ in the surround-
ing residues. One interesting question for the SP dataset
is whether we can find subgraphs including known active
site residues in SP.

The second dataset is a group of sequence-diverse
protein kinases from the SCOP family “Protein kinases,
catalytic subunit”. This group is referred to as the Ki-
nase dataset hereafter. For the Kinase dataset, we are
interested in whether we can find biologically significant
motifs using our frequent subgraph mining procedure.

To represent all the structures in the PDB, we selected
around 4600 non-redundant structures using the culled
PDB list (http://www.fccc.edu/research/labs/dunbrack/pisces/
culledpdb.html) with no more than 60% pair-wise se-
quence similarity, in order to remove highly homologous
proteins. We retrieved proteins with resolution≤ 3.0 and
R factor ≤ 1.0 to ensure that we use high quality x-ray
structures. The SP and Kinase proteins selected for the
analysis were confined to the non-redundant structures
in the same culled PDB list and therefore had pair-wise
sequence identity less than 60%. Our final list of the SP
dataset contained 35 ESP proteins and 8 PSP proteins
and the Kinase dataset contained 29 proteins. We ob-
tained the coordinates for all proteins from the Protein
Data Bank (PDB).

All calculations were run on a single processor,
2.8GHz Pentium PC with 2GB memory, operating on



RedHat Linux 7.3. The frequent subgraph mining algo-
rithm was implemented in C++ and compiled using g++
with O3 optimization. We calculated the Delaunay tes-
sellation for a set of coordinates using Quickhull [Bar-
ber et al., 1996]. The almost-Delaunay computa-
tion [Bandyopadhyay & Snoeyink, 2004] used the code
available at http://www.cs.unc.edu/∼debug/papers/AlmDel/.

4.2 Comparing Three Graph Representations

Three graph representations, CD, DT and AD, were
constructed for each protein. Figure 6 shows the aver-
age number of edges per vertex as a function of the dis-
tance threshold for the Kinase dataset. For small distance
thresholds, the graphs are nearly the same. As the dis-
tance threshold grows, the number of edges in CD graphs
grows as a third power of the distance, while it remains
almost constant in DT graphs. The number of AD(ε)
edges as a function of the distance interpolates between
the CD and DT representations.

Using both the SP and Kinase datasets, we have com-
pared the performance of the subgraph mining algorithm
using the three graph representations. Note that we used
a general subgraph mining algorithm in the place of the
induced subgraph mining algorithm in our previous pub-
lication [Huan et al., 2004a]. Our current approach finds
a superset of sungraphs identified by the previous pub-
lished method. Figure 7 shows the CPU time and the
number of found patterns per second as a function of
the distance threshold for the SP and Kinase datasets.
We chose to plot the rate of discovering patterns since in
practice one has to compare the output of the three repre-
sentations after they have been allowed to run for a fixed
time.

As expected, the running times for the three graph
representations are similar when the graph representa-
tions are similar (at the distance threshold around 6.5 Å).
As the distance threshold increases, the three graph rep-
resentations differ, and the performance gaps between
them increase. CD graphs reach a prohibitively long
running time at the distance threshold 9.5 Å for Ki-
nases. The SP dataset is more computationally chal-
lenging than the Kinase dataset since proteins in SP are
more conserved at both the sequence and structure lev-
els, and hence are expected to have more and larger com-
mon subgraphs in their graph representations. The CD,
AD(0.25), and AD(0.5) graphs reach a prohibitively long
running time at the distance threshold of 8.5 Å.

4.3 Fingerprint Identification

In this section, we investigate finding common and
characteristic features of a protein family. For a group

4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

AD(0.5) 

DT 

AD(1.0) 

AD(1.5) 

CD

Average vertex degree of graph as function of edge length

A
vg

 #
 o

f 
ed

g
es

 p
er

 r
es

id
u

e

Distance threshold δ (Angstrom)

AD(0.1) 

CD
DT
AD(0.1)
AD(0.5)
AD(1.0)
AD(1.5)

Figure 6. Average vertex degree as a function of the
distance threshold for the three types of graphs repre-
senting the cytoplasmic domain of the Type I Tgf- Re-
ceptor in complex with Fkbp12 (1bc6).

P of proteins, represented by label graphs, we define
a fingperprint of P as a subgraph whose support value
in P is at least a certain high threshold (minSupport or
σ) whereas its support in the whole PDB database (or a
large non-redundant representative subset) does not ex-
ceed a low upper-bound (maxBackground or λ). In all
our experimental studies, we used σ = 90% and λ= 5%.

4.3.1 Serine Proteases

We have identified fingerprints in the SP dataset us-
ing the AD(0.1) graph representation with the distance
threshold of 8.5. AD(0.1) was chosen because the cor-
responding graph is relatively sparse leading to a rea-
sonable running time with this dataset, as explained in
Section 4.2. We have identified a total of 5569 finger-
prints (sizes range from 2 to 13 residues); 19 of them had
background frequency less than 1%, which implies that
they appear in no more than 46 proteins in the 4600 non-
redundant structures (excluding serine proteases). One
of these fingerprints with the largest number of residues
included the ASP-HIS-SER catalytic triad. This finger-
print is shown in Figure 8 in the form of correspond-
ing subgraph as well as its occurrence in the structure of
Kallikrein 6 (PDB code 1lo6).

Table 4 summarizes the background frequency dis-
tribution of the 5569 subgraphs. 830 subgraphs (sizes
range from 2 to 11 residues) are identified based on
the DT representation with the same distance threshold
and none of them have background frequency less than
1%. Experiments on CD graphs could not complete after
three days of calculations.
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Figure 7. The total running time of the subgraph mining algorithm (left) and the average number of identified patterns per
second (right) using the SP dataset (the left two figures) and the Kinase dataset (the right two figures). The support threshold
is set to 90% across all experiments. The running time and average number of identified patterns per second for CD graphs
at distance 9.5 Å are extrapolated from previous data because it takes too long to complete the run.
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HIS57ASP102
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ALA55 SER 195

HIS57ASP102

Figure 8. One of the fingerprints in the SP dataset contains the catalytic triad. Left: graph representation. Right: mapping
of this motif onto the backbone of Kallikrein 6 (1lo6). The catalytic residues (His57, Asp102, and Ser 195) are highlighted
in the graph representation and color coded by blue in the protein structure. The rest of the five residues are shown by ball
and stick model.

4.3.2 Protein Kinases

Using the distance threshold 8.5 Å and the AD(0.5) rep-
resentation, we obtained 30 fingerprints which appear in
at least 90% of the members of the Kinase dataset and
less than 5% of background structures. We use a large
perturbation for AD graphs, since the structural diversity
of kinases implies fewer common subgraphs, and com-
putational efficiency is not a bottleneck as it was for the
SP dataset. This calculation took less than one minute to

complete.

Table 4 also summarizes the background frequency
distribution of the 30 subgraphs. 37 subgraphs were
obtained using CD graphs, and 4 were obtained using
DT graphs with the same distance threshold. Across all
representations, none of the fingerprints had background
frequency less than 1%.

From the results, we find that the DT fingerprints
of the kinase family are at most 4 residues long, the
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Figure 9. Large subgraph motif found in more than 90% of the Protein Kinase family members that includes a catalytic
residue. Left: graph representations. All edges are proximity edges. Right: mapping of this motif onto the backbone of Cell
Division Kinase 5 (1h4l). The motif includes the invariant catalytic residue Lys128, highlighted in the graph representation
and colored blue in the protein structure, and neighboring hydrophobic residues that contact the ligand.

λ(%) 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
SP 0.0 0.3 1.4 3.4 6.0 9.6 16.1 31.3 59.3 100
Kinase 0.0 0.0 20.0 36.7 50.0 66.6 73.3 86.7 93.3 100

Table 4. The background occurrence of features mined from the SP and Kinase dataset using the AD graphs. Entries in
the table are the fraction of features which have background frequency less than λ.

AD(0.5) fingerprints are 3 to 7 residues long, and the
CD fingerprints are at most 8 residues long. The larger
fingerprints could carry biologically significant informa-
tion about conserved residues which are separated along
the sequence within protein families that is difficult to
derive from sequence comparisons. For example, the
largest AD(0.5) fingerprint that includes a catalytic ly-
sine (shown in Figure 9 for CDK5, PDB ID 1h4l) has six
residues (Leu-Met-Ala-Leu-Ile-Lys), no two of which
are adjacent in the sequence, and the sequence gaps be-
tween residues are not conserved. The fingerprint starts
from the C-terminal hydrophobic pocket and ends at an
invariant catalytic lysine. The second catalytic residue,
Asp, is not contained in a fingerprint in most kinases,
and no fingerprint contains both catalytic residues. The
fingerprint mentioned above is often repeated; in CDK5
the second copy includes a non-conserved lysine in the

N-terminal domain. This highlights structural similar-
ities between the arrangement of residues in these two
regions.

4.3.3 Do Fingerprints Superimpose?

Since fingerprints are derived from graphs which are for-
mally dimensionless, an interesting questions arises as to
whether these fingerprints are geometrically conserved,
i.e., if the identical fingerprints found in different mem-
bers of the family could be structurally superimposed.
We have investigated this question as applied to the fin-
gerprints in the active sites of SP and Kinases. Consider
the largest fingerprint of SP, which is shown in Figure 8
and contains an Asp-His-Ser catalytic triad.

Figure 10 shows the least-squares superposition of
this fingerprint derived from 30 SP proteins. We also



Figure 10. Least-squares superposition of the largest
fingerprint that contains the whole active site in 30 pro-
teins from our dataset of 35 eukaryotic and 8 prokaryotic
serine proteases. Maximum RMSD is 0.5 Å RMSD in
the first four residues (Asp-His-Ala-Ser). Only 7 ser-
ine proteases (ESP: 1lo6A,1eq4A,1fiwA,1eaxA; PSP:
1qq4A, 1sgpE, 1hpgA) are shown superposed, for clar-
ity. The surrounding conserved Cα trace is also shown.

show that several surrounding Cα atoms superimpose
as well. The observed good superposition supports the
hypothesis that common fingerprints correspond to ge-
ometrically conserved packing patterns within protein
families. Notice that our algorithm for finding common
subgraphs does not require identified subgraphs to super-
impose, unlike those found by LCP [Akutsu et al., 1997]
or other methods.

The largest fingerprints found in the Kinase dataset do
not superpose, but differ widely in their conformation.
This is because the sparse and unconstrained nature of
the largest Kinase fingerprints and the large overall ge-
ometric differences in the structures themselves. Such
large and unique packing patterns, despite their struc-
tural diversity, could be useful for the annotation of new
structures.

5 Discussion and Future Work

In this paper we report on the application of the gen-
eral frequent subgraph mining algorithm to the identi-
fication of common packing patterns in protein struc-

tures represented as graphs. The goal of this investi-
gation was to identify frequent subgraphs common to
all (or the majority of) proteins belonging to the same
structural and functional family in the SCOP database
and explore these subgraphs as amino acid residue fin-
gerprints specific to the underlying family. Although
protein graphs are complex, this application has become
possible, thanks to several advanced features of the fre-
quent subgraph mining algorithm [Huan et al., 2003,
2004b] employed in this paper.

Three graph representations of the protein structures
termed CD, DT, and AD graphs have been explored to
identify fingerprints. As discussed in Section 2.2, all
three representations used the vertices defined by the
proteins’ Cα atoms, but differ by the approach used to
define the edges. These three representations have been
compared in terms of the number and composition of the
unique protein family-specific features identified by sub-
graph mining, and computational efficiency of identify-
ing these features. Our results demonstrate that using
a simplified graph representation such as DT is needed
when structures of a protein family are conserved and
a huge number of patterns can be found by the graph
mining algorithm. On the other hand, CD graphs may
support more patterns than DT graphs if the related com-
putation is feasible. AD graphs provide a good trade-off
due to their relative computational efficiency and their
robustness in taking into account possible experimental
errors in determining protein atomic coordinates. We
demonstrate that common fingerprints could include ac-
tive site residues as well as correspond to other struc-
turally conserved residue patterns.

The success of these preliminary studies encourages
us to consider several possible directions for future in-
vestigations of protein graphs with the frequent subgraph
mining algorithms. We plan to develop an incremen-
tal subgraph mining approach that repeatedly increases
the parameter ε in the AD graphs until it has found the
maximum number of fingerprints. We further hypoth-
esize that some of the individual subgraph-fingerprints
identified as the result of protein structure analysis may
also carry sequence specificity, i.e., contain characteris-
tic residues found in the same order and approximately
at the same separation distances in the underlying pri-
mary sequences of the protein family. Instances of such
structure-derived primary sequence motifs formally sim-
ilar to PROSITE patterns [Hofmann et al., 1999] have
been implicated in our earlier analyses of protein pack-
ing with Delaunay tessellation, summarized in [Tropsha
et al., 2003]. This latter hypothesis offers an exciting
new avenue in exploring structure-sequence-function re-
lationships in proteins by using subgraphs (i.e., residue
packing patterns) for functional and structural annotation



of not only novel protein structures but also sequences
from the ongoing genomics projects.
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