
Mining Protein Family Specific Residue Packing Patterns
From Protein Structure Graphs

Jun Huan1, Wei Wang1, Deepak Bandyopadhyay1, Jack Snoeyink1, Jan Prins1,
Alexander Tropsha2

1Department of Computer Science, University of North Carolina at Chapel Hill
{huan, weiwang, debug, snoeyink, prins}@cs.unc.edu

2The Laboratory for Molecular Modeling, Division of Medicinal Chemistry and Natural Products,
School of Pharmacy, University of North Carolina at Chapel Hill

tropsha@email.unc.edu

ABSTRACT
Finding recurring residue packing patterns, or spatial motifs, that
characterize protein structural families is an important problem in
bioinformatics. To this end, we apply a novel frequent subgraph
mining algorithm to three graph representations of protein three-
dimensional (3D) structure. In each protein graph, a vertex repre-
sents an amino acid. Vertex-residues are connected by edges using
three approaches: first, based on simple distance threshold between
contact residues; second using the Delaunay tessellation from com-
putational geometry, and third using the recently developed almost-
Delaunay tessellation approach.

Applying this approach to a set of graphs representing a pro-
tein family from the Structural Classification of Proteins (SCOP)
database, we typically identify several hundred common subgraphs
equivalent to common packing motifs found in the majority of pro-
teins in the family. We also use the counts of motifs extracted from
proteins in two different SCOP families as input variables in a bi-
nary classification experiment using Support Vector Machines. The
resulting models are capable of predicting the protein family asso-
ciation with the accuracy exceeding 90 percent. Our results indicate
that graphs based on both almost-Delaunay and Delaunay tessella-
tions are more sparse than contact distance graph; yet the former
afford similar accuracy of classification as the latter. The protein
graph mining and classification approaches developed in this paper
can be used for rapid and automated annotation of protein struc-
tures determined in structural genomics projects.

Categories and Subject Descriptors
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1. INTRODUCTION

1.1 Spatial Motif Discovery in Proteins
Recurring substructural motifs in proteins reveal important in-

formation about protein structure and function. Common structural
fragments of various sizes have fixed 3D arrangements of residues
that may correspond to active sites or other functionally relevant
features, such as Prosite patterns [12]. Identifying such spatial mo-
tifs in an automated and efficient way may have a great impact on
protein classification [4], protein function prediction [9] and pro-
tein folding [20].

Several research groups have addressed the problem of finding
spatial motifs by using computational geometry/computer vision
approaches. A protein is typically represented as a set of points
in R3 and the problem of (pair-wise) spatial motif finding is of-
ten formalized as the Largest Common Point set (LCP) problem:
identifying the largest common subset of two sets of points [27].
A number of variations to this problem have been explored, which
include approximate LCP problem [4, 16] and LCP-α: identifying
a subset of LCP that approximates LCP with a factor α character-
izing the degree of approximation [8].

1.2 Application of Graph Theory to Molecular
Structures

Chemical graphs have long been used to study molecules and
macromolecules such as organic compounds, nucleic acids, and
proteins. Recurring substructures in a group of compounds with
similar biological activity can be identified by representing these
compounds as undirected graphs, then finding frequent subgraphs.
The recurring substructures can indicate chemical features respon-
sible for compounds’ activities [6, 3]. In another example, RNA
secondary structure has been modeled by a labeled tree in which
each node is a paired base and the parent/sibling relation is de-
termined by the nesting of base pair bonds. The similarity between
two RNA structures is measured by the largest approximately matched



subforests [11]. Many variations of this basic model exist, includ-
ing rooted vs unrooted trees [19, 33], different granularity levels of
representation [25], and different similarity measures [36].

Protein structures have been modeled using graph representa-
tions in many applications, including identification of active site
clusters, folding clusters, aromatic clusters in relation to thermo-
dynamic stability, and the analysis of protein-protein interaction.
(See [31] for a recent and comprehensive review on applying graph
theory to protein structure analysis.) The choice of a graph repre-
sentation is the key in the analysis of protein structures. Several
representations have been developed, ranging from coarse repre-
sentations in which each node is a secondary segment [10] to fine
representations in which each node is an atom [18].

We form graphs whose vertices represent the amino acids, using
the coordinates of the Cα atoms and labeling by residue type. Two
types of edge may connect residues: a bond edge that connects two
residues that are adjacent in the primary sequence, or a proximity
edge that connects two (non-bonded) residues identified as spatial
neighbors by the following different criteria.

We consider three kinds of proximity edges. The first represen-
tation is a contact distance graph (CD) in which vertex-residues are
connected with a proximity edge if the Cα atoms are found within
a given distance δ of each other. The second representation is the
Delaunay tessellation from computational geometry. This approach
recognizes natural nearest neighbor residues by finding four-tuples
that define tetrahedra with an empty sphere property [7]; this tes-
sellation is dual to the Voronoi diagram. The Delaunay tessellation
graph (DT) has been used to analyze protein packing [24, 29] and
structure [22, 26, 34, 32, 28] The third representation, derived from
the recently-defined almost-Delaunay edges [1], expands the set of
Delaunay edges to account for perturbation or motion of point co-
ordinates, controlled by a parameter ε. Thus, we actually define
a family of graphs, AD(ε), that interpolates between the CD and
DT representations so that DT ⊆ AD(ε) ⊆ CD for all ε ≥ 0.
This representation allows us to reduce the number of edges in a
CD graph without losing common patterns due to imprecise posi-
tioning of the protein’s Cα atoms.

Several algorithms have been developed recently in the data min-
ing community to find all frequent subgraphs of a group of gen-
eral graphs [21, 35, 14, 13]. These algorithms can be roughly
classified into two types: The first type uses a level-wise search
scheme to enumerate the recurring subgraphs, such as AGM [17]
and FSG [21]. The second type uses a depth-first enumeration for
frequent subgraphs, which usually has better memory utilization
and therefore better performance [35, 3, 14]. In fact, depth-first
search can outperform FSG, the current state-of-the-art level-wise
search scheme, by an order of magnitude [35].

Applying frequent subgraph mining to find common patterns for
a group of proteins is a non-trivial task. As we reported earlier [14],
the total number of frequent subgraphs for a set of graphs grows
exponentially as the graph size increases. For instance, for a mod-
erate protein dataset (about 100 proteins with the average of 200
residues per protein), the total number of frequent subgraphs can be
extremely high (� 1 million). Because the underlying operation of
subgraph isomorphism testing is NP-complete, it is critical to min-
imize the number of frequent subgraphs that need to be considered.
This motivated us to investigate different graph representations for
systematically simplified versions.

In our experimental study, we use frequent subgraph mining to
identify subgraphs common to proteins of a given structural family
found in the SCOP database [23]. The counts of subgraphs in dif-
ferent proteins are then used as input variables for a binary classifi-
cation task to distinguish between two protein families in the SCOP

database. The support vector machine approach is used to construct
the classifier. We find that AD graphs afford a significant reduction
in size of the graph representation, yet the features extracted from
such graphs produce the highest classification accuracy. We sug-
gest that frequent subgraph mining can be used to identify packing
motifs that are highly specific to individual protein families provid-
ing opportunities for rapid and automated protein annotation.

The remainder of the paper is organized as follows. Section 2
presents definitions for the subgraph isomorphism and discusses
various graph representations of proteins. Section 3 presents the
data structure and the algorithm for subgraph mining and Section 4
presents the results of our study of several protein families from the
SCOP database, including eucaryotic and procaryotic serine pro-
teases and nucleotide binding proteins.

2. METHODOLOGY

2.1 Labeled Graph
We define a labeled graphG as a five element tuple G = {V, E,

ΣV , ΣE , δ} where V is a set of vertices and E ⊆ V × V is a set
of undirected edges. ΣV and ΣE are sets of vertex labels and edge
labels respectively. The labeling function δ defines the mappings
V → ΣV and E → ΣE . Without loss of generality, we assume
that there is a total order ≥ on each label set ΣV and ΣE .

A labeled graph G = (V, E,ΣV , ΣE , δ) is isomorphicto an-
other graph G′ = (V ′, E′, Σ′

V , Σ′
E , δ′) iff there is a bijection that

preserves labels f : V → V ′ such that:

∀u ∈ V , δ(u) = δ′(f(u))

∀u, v ∈ V ,
�
((u, v) ∈ E ⇔ (f(u), f(v)) ∈ E′)

∧ δ(u, v) = δ′(f(u), f(v))
�

The bijection f defines as an isomorphismbetween G and G′. If G
and G′ refer to the same graph, f defines an automorphism.

A labeled graph G = (V, E, ΣV , ΣE , δ) is an induced subgraph
of graph G′ = (V ′, E′, Σ′

V , Σ′
E , δ) iff V ⊆ V ′, E ⊆ E′, ∀u, v ∈

V, ((u, v) ∈ E′ ⇒ (u, v) ∈ E), ∀u ∈ V, (δ(u) = δ′(u)) and
∀(u, v) ∈ E, (δ(u, v) = δ′(u, v)).

A labeled graph G is induced subgraph isomorphicto a labeled
graph G′, denoted by G ⊆ G′, iff there exists an induced subgraph
G′′ of G′ such that G is isomorphic to G′′. An example of la-
beled graphs and an induced subgraph isomorphism is presented in
Figure 1. In the rest of this paper, the term “subgraph” will mean
“induced subgraph” unless stated otherwise.

Given a set of graphs G (referred to as a graph database), the
supportof a graph G is defined as the fraction of graphs in G of
which G is a subgraph. For a graph database G, we choose a thresh-
old 0 < σ ≤ 1, and say that G is frequentiff its supportis at least
σ. The problem of Frequent Subgraph Miningis to identify all
frequent (connected) subgraphs of G. Figure 3 shows all frequent
subgraphs with σ = 2/3 in the three graphs of Figure 1.

2.2 Building Protein Graphs
Since the protein backbone trace defines the overall protein con-

formation, we choose the Cα atoms as the nodes of protein graphs.
Based on this simplified protein model, we compute edges using
three different approaches.

In the first representation, we connect two points by an edge if
the distance between them does not exceed certain threshold δ.
Since in principle we are interested in defining nearest neighbor
residues located within the physical interaction distance, we chose
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Figure 1: Example of a graph databaseG of three labeled graphs with
an induced subgraph isomorphism. We assume that the node and edge
labels are ordered s.t.a > b > c > x > y. The mapping q1 → p2,
q2 → p1, q3 → p3 represents an induced subgraph isomorphism from
graph Q to P . Throughout this paper, we use the ordera > b > c >

d > x > y > 0.

δ = 10 Å as the threshold. As stated in the Introduction, we refer
to this distance-threshold dependent graph as the CD graph.

In the second representation, all nearest neighbor residues con-
nected by edges are defined using Delaunay tessellation. This tes-
sellation [7] is defined for a finite set of points by an empty sphere
property: A pair of points is joined by an edge iff one can find
an empty sphere whose boundary contains those two points. The
Delaunay captures neighbor relationships in the sense that there is
a point in space that has the chosen two points as closest neigh-
bors. The Delaunay is dual to the Voronoi diagram—two points
are joined by an edge in the Delaunay iff their Voronoi cells share
a common face. Figure 2 illustrates the Delaunay in 2D with solid
lines, and the dual Voronoi with dashed). We used the Quickhull [2]
program to compute the Delaunay edges, and removed edges longer
than δ = 10 Å in a postprocess. We refer to this representation of
protein structure as DT graphs.

The definition of the Delaunay tessellation depends on the pre-
cise coordinate values given to its points, but we know that these
coordinate values are not exact in the case of proteins due to mea-
surement imprecision and atomic motions. Thus, Bandyopadhyay
and Snoeyink recently defined the almost-Delaunay edges [1] by
relaxing the empty sphere property to say that a pair of points p
and q is joined by an almost-Delaunay edge with parameter ε, or
AD(ε), if by perturbing all points by at most ε, p and q can be
made to lie on an empty sphere. Equivalently, they look for a
shell of width 2ε, formed by concentric spheres, so that p and q
are on the outer sphere, and all points are outside the inner sphere.
All Delaunay edges are in AD(0), and AD(ε) ⊆ AD(ε′) for
ε ≤ ε′. Therefore, the almost-Delaunay edges are a superset of
the Delaunay edges, whose size is controlled by the parameter ε.
Various values of the parameter ε correspond to different allowed
perturbations or motions. 0.1–0.25 Å would model decimal in-
accuracies in the PDB coordinates or small vibrations, and 0.5–

Figure 2: Examples of a Voronoi diagram and its dual Delaunay Tes-
sellation for 2D points [a–f]
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Figure 3: All frequent subgraphs (with support σ = 2/3) in G from
Figure 1.

0.75 Å would model perturbations due to coarser motions. Thus,
the protein graphs constructed with the almost-Delaunay edges are
termed AD graphs. The precise parameter value for each edge of
the contact distance graph can be computed by an algorithm that is
much like the roundness algorithms from the computer-aided de-
sign (CAD) field of computational metrology. Code is available
from http://www.cs.unc.edu/∼debug/papers/AlmDel, or see [1] for
algorithmic details.

3. ALGORITHM DETAILS
In this section, we outline the framework we used to identify

spatial motifs from a group of proteins. Those motifs can be used to
classify protein families and identify protein family signatures, as
further explained in the experimental study section. Our framework
has two major components: (1) computing a graph representation
for each protein as described above and (2) identifying significant
common subgraphs from the database of protein graphs.

3.1 Mining Subgraphs From a Graph Database

3.1.1 Canonical Adjacency Matrix
We represent each graph by an adjacency matrix M such that ev-

ery diagonal entry of M is filled with the label of the correspond-
ing node and every off-diagonal entry is filled with the label of the
corresponding edge, or zero if there is no edge. This is slightly
different from the widely used adjacency matrix representation for
unlabeled graphs, such as the one used by [5].

Given an n× n adjacency matrix M of a graph G with n nodes,
we define the codeof M , denoted by code(M), as the sequence
of lower triangular entries of M (including the entries at diagonal)
in the order: M1,1M2,1M2,2...Mn,1Mn,2...Mn,n−1Mn,n where
Mi,j represents the entry at the ith row and jth column in M . Fig-
ure 4 shows examples of adjacency matrices and codes for the la-
beled graph P showing in Figure 1.

We use lexicographic order of sequences to define a total order
over sequences. Given a graph G, its canonical formis the maximal
code among all its possible codes. The adjacency matrix M which
produces the canonical form is denoted as G’s canonical adjacency
matrix (CAM). For example, the adjacency matrix M1 shown in
Figure 4 is the CAM of the graph P from Figure 1, and code(M1)
is the canonical form of the graph.

For a matrix N , we define the proper maximal submatrix(sub-
matrix for short) as the matrix M obtained by removing the last
row (and the symmetric entries in N ) from N .

One valuable property of the canonical form we are using (com-
pared to the forms of [17, 21]) is that, given a graph database G, all
frequent subgraphs (represented by their CAMs) can be organized
into a rooted tree. This tree is referred to as the CAM Treeof G and
is formally described as follows:

(i) The root of the tree is the empty matrix;

(ii) Each node in the tree is a distinct connected subgraph
of G, represented by its CAM;
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Figure 4: Three adjacency matrices for the graph P in Fig-
ure 1. After applying the total ordering, we have code(M1) =

“aybyxb0yxc00y0d” ≥ code(M2) = “aybyxb00yd0yx0c” ≥
code(M3) = “bxby0dxy0cyy00a”.

(iii) For a given none-root node (with CAM M ), its par-
ent is the graph represented by M ’s proper maximal
submatrix.

3.1.2 Algorithm Overview
Below, we present a high-level outline of the frequent subgraph

mining algorithm. Further details can be found in [14].

FFSM

1: S ← { the CAMs of the frequent nodes }
2: P ← { the CAMs of the frequent edges }
3: FFSM-Explore(P, S);

FFSM-Explore (P, S)

1: for X ∈ P do
2: if (X.isCAM) then
3: S ← S ∪ {X}
4: C ← { all matrices M |X is submatrix of M}
5: remove CAM(s) from C that is either infrequent or not

optimal
6: FFSM-Explore(C,S)
7: end if
8: end for

3.1.3 Post Processing using Mutual Information
Typically a large number of subgraphs are produced from the

above mining procedure for a moderate support value. One may ex-
pect that many of these subgraphs may not be useful for subsequent
tasks, such as classification. To select the most informative collec-
tion of subgraphs from the whole list, we used the information-
theoretic metric of mutual information as follows.

We define a random variable XG for a subgraph G in a graph
database GD as

XG =

�
1 with probability supG

0 with probability 1-supG

Given a graph G and its subgraph G’, we define the mutual infor-
mation I(G,G′) as
I(G, G′) =

�
XG,XG′ p(XG, XG′ ) log2

p(XG,XG′ )
p(XG)p(XG′ )

where p(XG, XG′ ) is the (empirical) joint probability distribution
of (XG, XG′ ), which is defined as

p(XG, XG′ ) =

���
��

supG if XG = 1, XG′ = 1
0 if XG = 1, XG′ = 0
supG′ − supG if XG = 0, XG′ = 1
1 − supG′ otherwise
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Figure 5: The CAM Tree for the frequent subgraphs in the graph P

shown in Figure 1.

A pattern G is a coherent subgraphif the mutual information
between G and each of its own subgraphs is above some thresh-
old. Selecting only coherent subgraphs from the available frequent
subgraph list offers several advantages: 1) it filters out subgraphs
which are generic across families (for those subgraphs, the mutual
information tends to be low) and (2) it finds statistically significant
patterns since each coherent subgraph is strongly correlated with
its own subgraphs. Our experimental study shows that coherent
subgraph mining selects a small subset of features which have high
distinguishing power between protein classes. Further details about
coherent subgraph mining can be found in [15].

3.1.4 Classification Modeling
We built binary classification models using the Support Vector

Machine (SVM) method [30]. There are several advantages of us-
ing SVM for the classification task in our context: 1) SVM is de-
signed to handle sparse high-dimensional datasets (there are many
features in the dataset and each feature may occur in only a small
set of samples), and 2) there is a set of kernel learning functions
(namely linear, polynomial and radius based) to choose from, de-
pending on the property of the dataset. We used the libsvm pro-
gram ( http://www.csie.ntu.edu.tw/∼cjlin/libsvm/) for SVM classi-
fication and found the radius kernel worked best in our experiments.

4. RESULTS

4.1 Experimental Setup
All calculations were run on a single processor, 2.0GHz Pentium

PC with 2GB memory, operating on RedHat Linux 7.3. The fre-
quent subgraph mining algorithm was implemented using the C++
programming language and compiled using g++ with O3 optimiza-
tion. We calculated the Delaunay tessellation for a set of coordi-
nates using Quickhull [2]. The almost-Delaunay computation fol-
lowed [1] using the code available at http://www.cs.unc.edu/∼debug/
papers/AlmDel/.

We obtained the coordinates for all proteins used in our studies
from the Protein Data Bank (PDB). Three graph representations:
CD, DT and AD were constructed for each protein using methods
stated above. Figure 6 shows the average number of edges per ver-
tex as a function of the threshold distance. For small distances the
graphs are nearly the same, but as the distance grows, the number
of edges in CD grows cubically, while DT remain almost constant
and AD(ε) interpolates between CD and DT.
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Figure 6: Average vertex degree as a function of the contact distance
threshold for the three types of graphs representing Human Kallikrein
6 (1Lo6).

4.2 Binary Classification of SCOP families
Two datasets from the SCOP database [23] were used to eval-

uate the discrimination power of frequent subgraphs under a bi-
nary classification scheme. Proteins in the SCOP database are gen-
erally classified in five hierarchical levels: class, fold, superfam-
ily, family and individual proteins. The first binary dataset (C1)
included two protein families that belong to two different SCOP
classes. The first family is the nuclear receptor ligand-binding do-
main proteins (NB) from the all alpha class and the second one is
the prokaryotic serine protease family (PSP) from the all beta class.
The second dataset (C2) included the families of eukaryotic serine
proteases (ESP) and the prokaryotic serine proteases. These two
families belong to the same superfamily. All the proteins included
in the datasets C1 and C2 were selected from the culled PDBlist
(http://www.fccc.edu/research/labs/dunbrack/pisces/culledpdb.html ) with
no more than 60% pair-wise sequence similarity in order to remove
highly homologous proteins. We retrieved proteins with resolution
≤ 3.0 and R factor ≤ 1.0 to ensure that we use high quality x-ray
structures. The two datasets are further summarized in Table 1 be-
low.

Data Set Family I size Family II size
C1 NB 9 PSP 9
C2 PSP 9 ESP 35

Table 1: Protein datasets

4.2.1 Protein Family Classification using Coherent
Subgraph Counts as Variables

For each protein family we have identified common coherent
subgraphs as discussed in Section 3.1.3. We used support thresh-
olds ranging from 0.5 to 0.25; we report only the results with σ =
0.3, which gave the best classification accuracy. Each coherent
subgraph with acceptable support was regarded as a feature, or vari-
able, formally defined as follows.

Given n frequent subgraphs f1, f2, . . . , fn, we represent each
protein G in a dataset as an n-element vector V = v1, v2, . . . , vn in
a feature space where vi is the total number of distinct occurrences
of the subgraph fi in G.

For each feature f we have defined its discrimination powerP
as follows:

P =

����fGA

SA
− fGB

SB

���� ,
where fGA and fGB are the total number of proteins in family A
and B having f as a subgraph, and SA and SB are the size of family

A and B, respectively. The greater the P value, the more selective
the feature is.

A single classification experiment typically took less than ten
minutes in our calculations. The classification results are summa-
rized in Table 2. They demonstrate that the high classification ac-
curacy was obtained using all three graph representations.

Data Set C1 Features Dist. Feat Accuracy
DT 20,646 934 100%

AD(0.1) 23,130 1093 100%
AD(0.25) 26,943 1234 96%

AD(0.5) 32,463 1582 100%
AD(0.75) 37,394 1674 96%

CD 40,274 1859 95%
Data Set C2 Features Dist. Feat Accuracy

DT 15,895 20 95%
AD(0.1) 18,491 29 95%

AD(0.25) 23,288 35 93%
AD(0.5) 29,083 35 95%

AD(0.75) 32,569 36 95%
CD 34,697 20 98%

Table 2: Binary classification results using DT, AD(ε), and CD protein
graphs. Column two is the total number of features obtained. Column
three is the number of distinguishing features selected to build the clas-
sification model. We use 0.75 as a threshold to select distinguishing
features across all experiments. Column four lists the five-fold cross
validation accuracy reported by the SVM program. Accuracy is de-
fined for the test set as the fraction of true positives plus true negatives
among all predicted.
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Figure 7: The total number of features extracted from the three graph
representations of the datasetC2 for different values of the discrimina-
tion power P .

For the dataset C1, in which the two protein families are quite
dissimilar, we expected to find a large number of features that dis-
tinguish the two families. Indeed we have obtained a large number
of features with high discrimination power for all three graph rep-
resentations (see Table 2).

For dataset C2, in which the two families are quite similar to each
other, we expected that only a handful of features will discriminate
between the two families. The discrimination power of the features
found for the three different graphs is shown in Figure 7. Interest-
ingly, more features with high discrimination power were obtained
with DT and AD graphs than with CD graphs, despite the fact that
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Figure 8: The largest subgraph motif found in every member of the Eukaryotic Protease Family. Left: graph representation. Right: mapping of
this motif onto the backbone of Kallikrein 6 (1lo6). Note that this motif includes two members of the catalytic triad, i.e., His57 and Asp102.

the total number of features extracted from the latter graphs was the
highest.

4.3 Signature Identification in Eukaryotic Ser-
ine Protease

Finding features (corresponding to packing motifs) that discrim-
inate between the two protein families motivated us to further in-
vestigate the possibility of examining these motifs as characteristic
signaturesof a protein family. For a group P of proteins, repre-
sented by graphs, we define a signature of the group as a subgraph
whose support in P is above certain high threshold (minSupport)
whereas its support in the whole PDB database is less than some
small upper bound (maxBackground). In our experimental study,
we used minSuppport = 90% and maxBackground = 2%.

Using frequent subgraph mining with the DT graphs for dataset
C2, we obtained 3,298 features (subgraphs) which appeared in at
least 90% of the members of the eukaryotic serine protease fam-
ily. These calculations took about one minute to complete. There
were 57 subgraphs with the background frequency as low as 0.6%.
The background occurrence (or frequency) of a subgraph is defined
as the number (or percent) of proteins found in a diverse subset
of 500 proteins selected randomly from the 4800 proteins on the
culled PDB list (excluding the Eukaryotic Serine Protease family)
that contain the same subgraph. Thus, the background frequency of
0.6% implies that each feature was found in no more than 3 out of
the 500 diverse random proteins. There were 438 subgraphs with
background frequency less than 1%. Table 3 summarizes the back-
ground frequency distribution of the 2,086 subgraphs which have
at most 2% background frequency.

λ 3 4 5 6
N 57 163 218 272
λ 7 8 9 10
N 302 330 361 383

Table 3: The background occurrence of features mined from the
datasetC2 using the DT graphs.λ: background occurrences,N , total
number of features which haveλ occurrences.

One of these features with the largest number of residues was
chosen for more thorough examination. Figure 8 shows the cor-
responding subgraph and composition of this feature as well its
mapping onto the structure of Kallikrein 6 (PDB code 1lo6). This
feature includes two of the residues, His57 and Asp102, of the key
ASP-HIS-SER triad from the catalytic site of serine proteases [31].

We notice an excessively long running time (>24 hours) if we
use CD graphs representing the same protein dataset because of its
dense representation. Frequent subgraph mining is known to be
very sensitive to the density of graph database [14].

5. DISCUSSION AND FUTURE WORK
In this paper we report on the application of the frequent sub-

graph mining algorithm to protein structures represented as graphs.
The goal of this investigation was to identify frequent subgraphs
common to all (or the majority of) proteins belonging to the same
structural and functional family in the SCOP database and explore
these subgraphs as family specific amino acid residue signatures of
the underlying family. Although protein graphs are complex, this
application has become possible, thanks to several advanced fea-
tures of the frequent subgraph mining algorithm [14, 15] employed
in this paper.

Three graph representations of the protein structures termed CD,
DT, and AD graphs have been explored to identify the most dis-
criminatory subgraph-signatures. As discussed in Section 2.2, all
three representations used the vertices defined by the proteins’ Cα

atoms, but they differed by the approach used to define the edges.
These three representations have been compared in terms of the
number and composition of the unique protein family specific fea-
tures identified as the result of subgraph mining, computational ef-
ficiency of identifying these features, and the ability of these fea-
tures to discriminate between SCOP families in the binary classifi-
cation calculations using the SVM algorithm. Our results demon-
strate that using highly simplified graph representations such as AD
and DT graphs, we can still capture biologically meaningful signa-
tures from SCOP families and as well as distinguishing features for
classification purposes. The lists of family specific features iden-
tified from three different graph representations are not identical,
suggesting that each graph representation captures unique aspects
of protein structural organization. The total number of features
was the highest as identified by the CD graphs followed by the
AD graphs followed by the DT graphs. Nevertheless, the smaller
number of features identified from AD graphs were shown to afford
the highest discriminatory power in the binary classification exper-
iments followed by the DT graphs. This result demonstrates that
almost-Delaunay edges not only enrich the diversity of frequent
subgraphs that could be identified by the FSM algorithm but are
likely to capture additional functionally significant subgraphs that
could not be detected by the Delaunay tessellation alone. We con-



clude that in order to achieve the highest accuracy in finding protein
family specific signatures, AD graphs present the best choice both
due to their relative computational efficiency and their robustness
in taking into account possible experimental errors in determining
protein atomic coordinates.

The success of this preliminary studies encourages us to con-
sider several possible directions for future investigations of protein
graphs with the FSM algorithm. We plan to develop an incremental
subgraph mining algorithm that repeatedly increases the parameter
ε in the AD until it has found the maximum number of the fam-
ily specific signatures. We also plan to extend the classification
experiments to multiple families using multi-class classification al-
gorithms, rather than simple binary classification, with an ultimate
goal of classifying the entire collection of SCOP families on the ba-
sis of family specific frequent subgraphs, or residue signatures. Fi-
nally, some of the individual subgraph-signatures identified as the
result of protein structure analysis may also bear sequence speci-
ficity, i.e., contain characteristic residues found in the same order
and approximately at the same separation distances in the under-
lying primary sequences of the protein family. Some instances of
such structure-derived primary sequence motifs formally similar to
PROSITE patterns [12] have been implicated in our earlier analy-
ses of protein packing with Delaunay tessellation (recently summa-
rized in [28]). This latter hypothesis offers an exciting new avenue
in exploring structure-sequence-function relationships in proteins
by using structure based subgraphs (residue patterns) for functional
and structural annotation of not only novel proteins structures but
also sequences resulting from the ongoing genomics projects.
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