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Since its introduction in 1960, the Kalman filter has become an integral component in 
thousands of military and civilian navigation systems. This deceptively simple, 
recursive digital algorithm has been an early-on favorite for conveniently integrating (or 
fusing) navigation sensor data to achieve optimal overall system performance. To 
provide current estimates of the system variables -- such as position coordinates -- the 
filter uses statistical models to properly weight each new measurement relative to past 
information. It also determines up-to-date uncertainties of the estimates for real-time 
quality assessments or for off-line system design studies. Because of its optimum 
performance, versatility, and ease of implementation, the Kalman filter has been 
especially popular in GPS/inertial and GPS stand-alone devices. In this month's column, 
Larry Levy will introduce us to the Kalman filter and outline its application in GPS 
navigation.

Dr. Levy is chief scientist of the Strategic Systems Department of The Johns Hopkins 
University Applied Physics Laboratory. He received his Ph.D. in electrical engineering 
from Iowa State University in 1971. Levy has worked on applied Kalman filtering for 
more than 30 years, codeveloped the GPS translator concept in SATRACK (a GPS-
based missile-tracking system), and was instrumental in developing the end-to-end 
methodology for evaluating Trident II accuracy. He conducts graduate courses in 
Kalman filtering and system identification at The Johns Hopkins University Whiting 
School of Engineering and teaches Navtech Seminars's Kalman Filtering short course.

"Innovation" is a regular column featuring discussions about recent advances in GPS 
technology and its applications as well as the fundamentals of GPS positioning. The 
column is coordinated by Richard Langley of the Department of Geodesy and 
Geomatics Engineering at the University of New Brunswick, who appreciates receiving 
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your comments as well as topic suggestions for future columns. To contact him, see the 
"Columnists"section on page 4 of this issue.

When Rudolf Kalman formally introduced the Kalman filter in 1960, the algorithm was 
well received: The digital computer had sufficiently matured, many pressing needs 
existed (for example, aided inertial navigation), and the algorithm was deceptively 
simple in form. Engineers soon recognized, though, that practical applications of the 
algorithm would require careful attention to adequate statistical modeling and numerical 
precision. With these considerations at the forefront, they subsequently developed 
thousands of ways to use the filter in navigation, surveying, vehicle tracking (aircraft, 
spacecraft, missiles), geology, oceanography, fluid dynamics, steel/paper/power 
industries, and demographic estimation, to mention just a few of the myriad application 
areas.

EQUATION-FREE DESCRIPTION

The Kalman filter is a multiple-input, multiple-output 
digital filter that can optimally estimate, in real time, the 
states of a system based on its noisy outputs (see Figure 1). 
These states are all the variables needed to completely 
describe the system behavior as a function of time (such as 
position, velocity, voltage levels, and so forth). In fact, one 
can think of the multiple noisy outputs as a 
multidimensional signal plus noise, with the system states 
being the desired unknown signals. The Kalman filter then 
filters the noisy measurements to estimate the desired 
signals. The estimates are statistically optimal in the sense 
that they minimize the mean-square estimation error. This 
has been shown to be a very general criterion in that many 
other reasonable criteria (the mean of any monotonically 
increasing, symmetric error function such as the absolute 
value) would yield the same estimator. The Kalman filter 
was a dramatic improvement over its minimum mean 
square error predecessor, in-vented by Norbert Wiener in 
the 1940s, which was primarily confined to scalar signals in 
noise with stationary statistics.

Figure 2 illustrates the Kalman filter algorithm itself. 
Because the state (or signal) is typically a vector of scalar 
random variables (rather than a single variable), the state 
uncertainty estimate is a variance-covariance matrix -- or 
simply, covariance matrix. Each diagonal term of the 

WHAT GAUSS SAID 

If the astronomical 
observations and other 
quantities, on which the 
computation of orbits is 
based, were absolutely 
correct, the elements 
also, whether deduced 
from three or four 
observations, would be 
strictly accurate (so far 
indeed as the motion is 
supposed to take place 
exactly according to the 
laws of Kepler), and, 
therefore, if other 
observations were used, 
they might be confirmed, 
but not corrected. But 
since all our 
measurements and 
observations are nothing 
more than 
approximations to the 
truth, the same must be 
true of all calculations 
resting upon them, and 
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matrix is the variance of a scalar random variable -- a 
description of its uncertainty. The term is the variable's 
mean squared deviation from its mean, and its square root is 
its standard deviation. The matrix's off-diagonal terms are 
the covariances that describe any correlation between pairs 
of variables.

The multiple measurements (at each time point) are also 
vectors that a recursive algorithm processes sequentially in 
time. This means that the algorithm iteratively repeats itself 
for each new measurement vector, using only values stored 
from the previous cycle. This procedure distinguishes itself 
from batch-processing algorithms, which must save all past 
measurements.

Starting with an initial predicted state estimate (as shown in 
Figure 2) and its associated covariance obtained from past 
information, the filter calculates the weights to be used 
when combining this estimate with the first measurement 
vector to obtain an updated "best" estimate. If the 
measurement noise covariance is much smaller than that of 
the predicted state estimate, the measurement's weight will 
be high and the predicted state estimate's will be low.

Also, the relative weighting between the scalar states will 
be a function of how "observable" they are in the 
measurement. Readily visible states in the measurement 
will receive the higher weights. Because the filter calculates 
an updated state estimate using the new measurement, the 
state estimate covariance must also be changed to reflect 
the information just added, resulting in a reduced 
uncertainty. The updated state estimates and their 
associated covariances form the Kalman filter outputs.

Finally, to prepare for the next measurement vector, the 
filter must project the updated state estimate and its 
associated covariance to the next measurement time. The 
actual system state vector is assumed to change with time 
according to a deterministic linear transformation plus an 
independent random noise. Therefore, the predicted state 
estimate follows only the deterministic transformation, 
because the actual noise value is unknown. The covariance 

the highest aim of all 
computations made 
concerning concrete 
phenomena must be to 
approximate, as nearly as 
practicable, to the truth. 
But this can be 
accomplished in no other 
way than by a suitable 
combination of more 
observations than the 
number absolutely 
requisite for the 
determination of the 
unknown quantities. This 
problem can only be 
properly undertaken 
when an approximate 
knowledge of the orbit 
has been already attained, 
which is afterwards to be 
corrected so as to satisfy 
all the observations in the 
most accurate manner 
possible.

-- From Theory of the 
Motion of the Heavenly 
Bodies Moving about the 
Sun in Conic Sections, a 
translation by C.H. Davis 
of C.F. Gauss's 1809 
Theoria Motus Corporum 
Coelestium in 
Sectionibus Conicis 
Solem Ambientium. 
Davis's 1857 translation 
was republished by 
Dover Publications, Inc., 
New York, in 1963.
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prediction ac-counts for both, because the random noise's 
uncertainty is known. Therefore, the prediction uncertainty 
will increase, as the state estimate prediction cannot 
account for the added random noise. This last step 
completes the Kalman filter's cycle.

 One can see that as the measurement vectors are recursively processed, the state 
estimate's uncertainty should generally decrease (if all states are observable) because of 
the accumulated information from the measurements. However, because information is 
lost (or uncertainty increases) in the prediction step, the uncertainty will reach a steady 
state when the amount of uncertainty increase in the prediction step is balanced by the 
uncertainty decrease in the update step. If no random noise exists in the actual model 
when the state evolves to the next step, then the uncertainty will eventually approach 
zero. Because the state estimate uncertainty changes with time, so too will the weights. 
Generally speaking, the Kalman filter is a digital filter with time-varying gains. 
Interested readers should consult "The Mathe-matics of Kalman Filtering" sidebar for a 
summary of the algorithm.

If the state of a system is constant, the Kalman filter reduces to a sequential form of 
deterministic, classical least squares with a weight matrix equal to the inverse of the 
measurement noise covariance matrix. In other words, the Kalman filter is essentially a 
recursive solution of the least-squares problem. Carl Friedrich Gauss first solved the 
problem in 1795 and published his results in 1809 in his Theoria Motus, where he 
applied the least-squares method to finding the orbits of celestial bodies (see the "What 
Gauss Said" sidebar). All of Gauss's statements on the effectiveness of least squares in 
analyzing measurements apply equally well to the Kalman filter.

A SIMPLE EXAMPLE

A simple hypothetical example may help clarify the concepts in the preceding section. 
Consider the problem of determining the actual resistance of a nominal 100-ohm 
resistor by making repeated ohmmeter measurements and processing them in a Kalman 
filter.

First, one must determine the appropriate statistical models of the state and 
measurement processes so that the filter can compute the proper Kalman weights (or 
gains). Here, only one state variable -- the resistance, x -- is unknown but assumed to be 
constant. So the state process evolves with time as

 

x k+1 = xk . [1]
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Note that no random noise corrupts the state process as it evolves with time. Now, the 
color code on a resistor indicates its precision, or tolerance, from which one can deduce -
- assuming that the population of resistors has a Gaussian or normal histogram -- that 
the uncertainty (variance) of the 100-ohm value is, say, (2 ohm)2. So our best estimate 
of x, with no measurements, is x0/= 100 with an uncertainty of P0/= 4. Repeated 

ohmmeter measurements,

 

zk = xk + vk , [2]

directly yield the resistance value with some measurement noise, vk (measurement 

errors from turn-on to turn-on are assumed uncorrelated). The ohmmeter manufacturer 
indicates the measurement noise uncertainty to be Rk= (1 ohm)2 with an average value 

of zero about the true resistance.

Starting the Kalman filter at k = 0, with the initial estimate of 100 and uncertainty of 4, 
the weight for updating with the first measurement is

 

  P0/-   4

 K0= ----------------  = ---------------

  P0/- + R0   4+1

, [3]

with the updated state estimate as

 

x0/0 = (1-K0)x0/- + K0z0

[4]

 

where x0/0 denotes the best estimate at time 0, based on the measurement at time 0. 
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Note that the measurement receives a relatively high weight because it is much more 
precise (less uncertain) than the initial state estimate. The associated uncertainty or 
variance of the updated estimate is

 

P0/0 = (1 - K0)P0/- =

 1    4
---------4 = ---
4 + 1    5

. [5]

 

Also note that just one good measurement decreases the state estimate variance from 4 
to 4/5. According to equation [1], the actual state projects identically to time 1, so the 
estimate projection and variance projection for the next measurement at time 1 is

  4
x 1/0 = x 0/0 ; P1/0 = P0/0 = ---

  5
. [6]

 

Repeating the cycle over again, the new gain is

  P1/0  4/5

K1 = ------------- = ------

  P1/0+R1  4/5+1

[7]

 

and the new update variance is
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P1/1 = (1 - K1) P1/0 =

  1   4   4

(
 --------
-

 )  ---  =  ---

 
 4/5 + 
1

  5   9

. [8]

 

Figure 3 represents a simulation of this process with the estimate converging toward the 
true value. The estimation uncertainty for this problem, which the Kalman filter 
provides, appears in Figure 4. One can see that the uncertainty will eventually converge 
to zero.

A New Set of Conditions. Let's now change the problem by assuming that the 
measurements are taken one year apart with the resistor placed in extreme 
environmental conditions so that the true resistance changes a small amount. The 
manufacturer indicates that the small change is independent from year to year, with an 
average of zero and a variance of 1/4 ohms2. Now the state process will evolve with 
time as

 

xk + 1 = xk + wk. [9]

where the random noise, wk, has a variance of Qk = 1/4. In the previous case, the 

variance prediction from time 0 to time 1 was constant as in equation [6]. Here, because 
of the random noise in equation [9], the variance prediction is

 

     4  1   

 P1/0 = P0/0 + Q0 = --- + --- =  1.05

     5  4   

. [10]
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Now the gain and update variance calculations proceed on as in equations [7] and [8] 
but with larger values for the predicted variance. This will be repeated every cycle so 
that the measurement update will decrease the variance while the prediction step will 
increase the variance. Figure 5 illustrates this tendency. Eventually, the filter reaches a 
steady state when the variance increase in the prediction step matches the variance 
decrease in the measurement update step, with Pk+1/k = 0.65 and Pk/k = 0.4. The Qk 

represents a very important part of the Kalman filter model because it tells the filter how 
far back in time to weight the measurements. An incorrect value of this parameter may 
dramatically affect performance.

GPS/INS INTEGRATION

We can see that the Kalman filter provides a simple 
algorithm that can easily lend itself to integrated systems 
and requires only adequate statistical models of the state 
variables and associated noises for its optimal performance. 
This fact led to its wide and enthusiastic use in aided 
inertial applications.

Integrating GPS with an inertial navigation system (INS) 
and a Kalman filter provides improved overall navigation 
perfor-
mance. Essentially, the INS supplies virtually noiseless 
outputs that slowly drift off with time. GPS has minimal 
drift but much more noise. The Kalman filter, using 
statistical models of both systems, can take advantage of 
their different error characteristics to optimally minimize 
their deleterious traits.

As shown in the "The Mathematics of Kalman Filtering" 
sidebar, the Kalman filter is a linear algorithm and assumes 
that the process generating the measurements is also linear. 
Because most systems and processes (including GPS and 
INS) are nonlinear, a method of linearizing the process 
about some known reference process is needed. Figure 6 
illustrates the approach for integrating GPS and inertial 
navigators. Note that the true values of each system cancel 
out in the measurement into the Kalman filter so that only 
the GPS and inertial errors need be modeled. The reference 
trajectory, one hopes, is sufficiently close to the truth so 
that the error models are linear and the Kalman filter is 
optimal. For most GPS applications this is the case.

THE MATHEMATICS 
OF KALMAN 
FILTERING

The Kalman filter 
assumes that the system 
state vector, xk, evolves 

with time as

xk+1 = Fkxk + wk

with the measurement 
vector given by

zk = Hkxk + vk 

where x0, wk, and vk are 

mutually uncorrelated 
vectors: The latter two 
are white noise 
sequences, with means of 
m0, 0, and 0 and 

nonnegative definite 
covariances of S0, Qk, 

and Rk, respectively. The 

corresponding optimal 
Kalman filter is given by 
the recursive algorithm 
of Figure 7, which 
corresponds to the block 
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So, even though the overall systems are nonlinear, the 
Kalman filter still operates in the linear domain. Of course, 
the state variables for the Kalman filter must adequately 
model all error variables from both systems. GPS errors 
could include receiver clock, selective availability, 
ionospheric, tropospheric, multipath, and satellite 
ephemeris and clock errors. Inertial inaccuracies, on the 
other hand, could include position, velocity, orientation, 
gyro, accelerometer, and gravity errors. The equipment 
quality and the application requirements will determine 
how extensive the error models must be.

If the GPS outputs are user position, one terms the 
integration architecture as loosely coupled. A tightly 
coupled architecture depicts one in which the GPS outputs 
are pseudoranges (and possibly carrier phases) and the 
reference trajectory is used (along with the GPS ephemeris 
from the receiver) to predict the GPS measurements. In the 
tightly coupled system, the measurement errors would be in 
the range domain rather than the position domain. Usually, 
the tightly coupled arrangement is preferred because it is 
less sensitive to satellite dropouts, and adequate Kalman 
filter models are simpler and more accurate. One must 
employ the loosely coupled arrangement when the receiver 
outputs provide position without raw measurements.

The open-loop correction approach of Figure 6 is termed 
linearized Kalman filtering. An alternate approach in which 
the algo-rithm feeds the estimates back to the inertial 
system to keep the reference trajectory close to the truth is 
an example of extended Kal-man filtering.

GPS-ONLY NAVIGATION

In some applications, an INS is not desired or may not be 
available, as in a stand-alone GPS receiver. In such cases, 
the Kalman filter resides within the receiver, and some 
known (or assumed) receiver equations of motion will 
replace the inertial system in a tightly coupled version of 
Figure 6. The extent to which the equations of motion 
(usually dead reckoning, for a moving receiver) faithfully 

diagram of Figure 2. The 
vector xk/j denotes the 

optimal estimate of x at

time tk, based on 

measurements up to tj, 

and Pk/j is the 

corresponding "optimal" 
estimation error 
covariance matrix when 
the implemented 
filter model matches the 
real-world system that is 
actually generating the 
data.

One can derive the filter 
equations using a number 
of methods. Minimizing 
the generalized mean 
square error, 
E[et

k/jAek/j], where 

ek/j[xk  xk/j and A is any 

positive semidefinite 
weighting matrix, results 
in the Kalman equations 
if all variables and noises 
are Gaussian. For non-
Gaussian cases, an 
additional restriction 
requires that there be a 
linear relationship 
between the state 
estimate, the 
measurements, and the 
predicted state.
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model the receiver trajectory will determine the error model 
needed in the Kalman filter.

Simple equations of motion generally exhibit large errors 
that cause degraded performance relative to inertial-based 
reference trajectories in moving-receiver scenarios. Of 
course, fixed location equations of motion are trivial and 
very accurate. Here, the advantage of using Kalman 
filtering versus a single-point, least-squares fix is that the 
equations of motion can smooth the GPS noise, improving 
the performance.

PRACTICAL DESIGNS

Regardless of an application's equipment -- be it GPS, 
INS, or other devices -- developing a practical Kalman 
filterbased navigation system requires attention to a 
variety of design considerations.

The filter's covariance analysis portion (not requiring 
real data; see Figures 2 and 7) uses predetermined error 
models of potential systems (GPS, inertial, and so forth) 
to predict the particular configuration's performance. 
The filter designer repeats this for different potential 
equipment (models) until the requirements are satisfied. 
In some cases, one must implement the Kalman filter in 
a "small" computer with only a few states to model the 
process. This suboptimal filter must be evaluated by 
special covariance analysis algorithms that recognize the 
differences in the real-world model producing the 
measurements and the implemented filter model. 
Finally, once the filter meets all performance 
requirements, a few simulations of all processes should 
be run to evaluate the adequacy of the linearization 
approach and search for numerical computational errors.

In most cases, the extended Kalman filter (with resets 
after every cycle) will ameliorate any linearization 
errors. Numeric computational errors caused by finite 
machine word length manifest themselves in the 
covariance matrices, which become nonsymmetric or 
have negative diagonal elements, causing potentially 

  Further Reading

The literature on Kalman 
filtering abounds, with 
applications ranging from 
spacecraft navigation to the 
demographics of the French 
beef cattle herd. To ease you 
into it, here are a few 
suggestions.

For the seminal introduction of 
the Kalman filter algorithm, see

●     "A New Approach to 
Linear Filtering and 
Prediction Problems," by 
R.E. Kalman in the 
Journal of Basic 
Engineering, the 
Transactions of the 
American Society of 
Mechanical Engineers, 
Series D, Vol. 83, No. 1, 
pp. 3545, March 1960. 

For an excellent, comprehensive 
introduction to Kalman filtering, 
including a GPS case study, see

●     Introduction to Random 
Signals and Applied 
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disastrous performance. This problem can be alleviated 
by increasing the computational precision or by 
employing a theoretically equivalent but more 
numerically robust algorithm.

CONCLUSIONS

Because of its deceptively simple and easily 
programmed optimal algorithm, the Kalman filter 
continues to be the integration method of choice in GPS-
based navigation systems. It requires sufficiently 
accurate multidimensional statistical models of all 
variables and noises to properly weight noisy 
measurement data. These models enable the filter to 
account for the disparate character of the errors in 
different systems, providing for an optimal integrated 
combination of large-scale systems. The recursive nature 
of the filter allows for efficient real-time processing. Off-
line covariance studies enable the integrated system 
performance to be predicted before development, 
providing a convenient and easy-to-use system design 
tool.

Kalman Filtering (with 
Matlab exercises and 
solutions), 3d edition, by 
R.G. Brown and P.Y.C. 
Hwang, published by 
John Wiley & Sons, Inc., 
New York, 1997. 

For discussions about various 
Kalman filter applications, see

●     IEEE Transactions on 
Automatic Control, 
Special issue on 
applications of Kalman 
filtering, Vol. AC-28, 
No. 3 published by the 
Institute of Electrical and 
Electronics Engineers 
(IEEE), March 1983. 

For a comprehensive selection of 
reprints of Kalman filter theory 
and application papers, including 
some of the germinal ones from 
the 1960s and those from the 
IEEE Transactions on Automatic 
Control special issue, see

●     Kalman Filtering: 
Theory and Application, 
edited by H.W. 
Sorenson, published by 
IEEE Press, New York, 
1985. 

For a discussion about special 
covariance analysis and 
numerically robust algorithms, 
see the lecture notes

●     Applied Kalman 
Filtering, Navtech 
Seminars, Course 457, 
presented by L.J. Levy, 
July 1997. 

For an introductory discussion 
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about GPS and inertial 
navigation integration, see

●     "Inertial Navigation and 
GPS," by M.B. May, in 
GPS World, Vol. 4, No. 
9, September 1993, pp. 
5666. 

Several good Web sites devoted 
to Kalman filtering exist, 
including 

●     "The Kalman Filter," a 
site maintained by G. 
Welch and G. Bishop of 
the University of North 
Carolina at Chapel Hill's 
Department of Computer 
Science: 
http://www.cs.unc.edu
/~welch/kalman

Links.html. 

Copyright 1998 Advanstar Communications
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Figure 1.The purpose of a Kalman filter is to optimally estimate the values of variables describing the 
state of a system from a multidimensional signal contaminated by noise. 
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Figure 2.The Kalman filter is a recursive, linear filter. At each cycle, the state estimate is updated by 
combining new measurements with the predicted state estimate from previous measurements. 
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Figure 3.The individual resistance measurements of a nominally 100-ohm resistor are scattered about the 
true value of slightly less than 102 ohms. The Kalman filter estimate gradually converges to this value. 
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Figure 4.Initially, the predicted uncertainty (variance) of the resistor's value is 4 ohms2 and is simply 
based on the manufacturer-provided tolerance value. However, after six measurements, the estimated 
variance drops to below 0.2 ohms2. 
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Figure 5.The true resistance of a resistor in an environment with a widely varying temperature is not 
quite constant. If this is modeled assuming a variation with an average of zero and a variance of 0.25 
ohms2, the Kalman filter estimate of the resistance variance converges to 0.4 ohms2 after only a few 
measurements. 
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Figure 6.An integrated GPS receiver and inertial navigator use a Kalman filter to improve overall 
navigation performance 
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Figure 7.The Kalman filter algorithm involves four steps: gain computation, state estimate update, 
covariance update, and prediction. 
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