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SCAAT TrackingSCAAT Tracking

The ProblemThe Problem

camera fixture

electronics



Estimation in GeneralEstimation in General

8 The scientific aspect
• Control and estimation theory
• Man-made and natural systems
• Systematic methods

8 The numerical aspect
• Stochastic approach
• Uses a computer numerically
• KF developed for a computer
• Affects of design and numerical error



The Kalman FilterThe Kalman Filter

Predictor-CorrectorPredictor-Corrector

8 Seminal paper by R.E. 
Kalman, 1960

8 Set of mathematical 
equations

8 Optimal estimator (min. 
mean-square error)

8 Estimation, filtering, 
prediction, fusion

8 Predictor-corrector
8 Recursive

predictpredict correctcorrect



The Kalman FilterThe Kalman Filter

Maintains First Two MomentsMaintains First Two Moments
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The Kalman FilterThe Kalman Filter

Needs Two ModelsNeeds Two Models

measurement
model

dynamic
model

previous state next state

state
measurement

image plane
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PredictPredict

Use the Dynamic ModelUse the Dynamic Model

state

error covariance



Correct (1 of 3)Correct (1 of 3)

Predict the MeasurementPredict the Measurement
(with measurement model and predicted state)

LED
( u , v ) HiBall camera



Correct (2 of 3)Correct (2 of 3)

Compute Measurement ResidualCompute Measurement Residual

image plane

( u , v )

(u ’ ,v ’ )



Correct (3 of 3)Correct (3 of 3)

Correct State and CovarianceCorrect State and Covariance
state = predicted + Kalman gain x residual



The Kalman GainThe Kalman Gain

 Kalman gain = ~
P + R

P

P = estimate uncertainty

R = measurement uncertainty

Incorporates a notion of

direct ion of measurement information

Where

state = predicted + Kalman gain x residual



Intra-estimate SummaryIntra-estimate Summary

State & Covariance ChangesState & Covariance Changes

state

error covarianceprevious
predict
correct

previous
predict
correct



The Kalman FilterThe Kalman Filter

8 www.cs.unc.edu/~welch
• Dissertation (appendix)
• Kalman filter web page



SCAAT VideoSCAAT Video



The SCAAT Kalman FilterThe SCAAT Kalman Filter

8 Constraints == Equations
• Single constraint == single equation

8 Compare with Gauss-Seidel
• Standard vs. SCAAT
• Jacobi vs. Gauss-Seidel
• Successive vs. simultaneous displacment
• But stochastic not deterministic!



PredictPredict
System DynamicsSystem Dynamics

8 Use dynamic model
8 Predict state
8 Predict error covariance



Kalman GainKalman Gain
Geometric InterpretationGeometric Interpretation

8 Project state unertainty into 
measurement space

• uses Jacobian
• error magnification viewpoint

8 Combine with measurement 
uncertainty

• added uncertainty
8 Re-project normalized term
8 Ratio (weight)



CorrectCorrect
With Actual MeasurementWith Actual Measurement

8 Predict measurement
• lower dimension than state
• incomplete information

8 Measure
8 Compute residual
8 Correct state
8 Correct error covariance



SCAAT Error and StabilitySCAAT Error and Stability

(† denotes special concern)(† denotes special concern)



ErrorError
Some Sources & EffectsSome Sources & Effects

8 Measurement error
• improper model structure

• non-white, non-normal

• derivation depends on it!
8 Dynamic error

• improper model structure
• improper parameters

8 Linearization error
• an extension to the KF



DivergenceDivergence
Roundoff (Steady State)Roundoff (Steady State)

8 Problem
• P must remain positive definite
• No driving noise...semidefinite...

8 Solutions
• High-precision operations
• Avoid completely deterministic systems
• Factor P (square-root, U-D)



DivergenceDivergence
Modeling ErrorModeling Error

8 Problem
• You model a random constant
• Actually a random ramp

8 Solutions
• System identification is hard!
• Analyze residuals
• A priori system knowledge
• Minimize estimate interval



DivergenceDivergence
Observability †Observability †

8 Observability test
8 (Controllability test)
8 Local vs. global observability



StabilityStability
General ConditionsGeneral Conditions

8 Uniformly completely observable †
8 Bounded dynamic & measurement 

noise models
8 Bounded dynamic behavior



StabilityStability
Complete ConditionsComplete Conditions

8 See equations 5.2 and 5.3
8 Bounded dynamics over time

• Q finite but !=0
8 Bounded measurement noise

• Reasonable for systems of interest
8 Sufficient constraints over time †

• met by design or at run-time
• Ironically SCAAT helps (fast)

8 Sufficient sample rate †



Cold StartCold Start
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Blocked CamerasBlocked Cameras
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Steady-State StabilitySteady-State Stability

8 Steady-state not always reached
8 KF is a linear operator

• transforms inputs into outputs
• transfer function

8 Characteristic function
• denominator of transfer function
• roots provide information about stability

— discrete: within unit circle in z  plane

— continuous: left half of s plane



General ApplicationGeneral Application
SCAAT and Systems of EquationsSCAAT and Systems of Equations

8 Similar to Gauss-Seidel
• successive vs. simultaneous
• always use latest estimate

8 Trade-off accuracy for work
• Single constraints until “certain”
• P matrix indicates certainty

8 Small noise for stability
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