
APPENDIX
A. Sabine Formula

1 second audio frames was based on the Sabine Formula
of reverberation time for a compact room of like dimensions.
For the bathroom scene, V = 9 ft ∗ 16 ft ∗ 9 ft = 1, 296 ft3

and a = 69.23 ft2, which is the sum of sound absorption
from the materials in Table ( I).

TABLE I
SABINE FORMULA : REVERBERATION TIME CAN BE CALCULATED AS

ROOM VOLUME V DIVIDED BY TOTAL ROOM ABSORPTION A. FOR AN

INDOOR SOUND SOURCE IN A REVERBERANT FIELD, A IS THE TOTAL

ROOM ABSORPTION AT A GIVEN FREQUENCY (SABINS), S IS THE

SURFACE AREA (ft2), AND α IS THE SOUND ABSORPTION COEFFICIENT

AT A GIVEN FREQUENCY (DECIMAL PERCENT).

Total room absorption a using a =
∑

Sα at 250 Hz
Real bathroom scene S α a (sabins)
Painted walls 432 x 0.10 = 43.20
Tile floor 175 x 0.01 = 1.75
Glass 60 x 0.25 = 15.00
Ceramic 39 x 0.02 = 0.78
Mirror 34 x 0.25 = 8.50

B. Synthetic Data

The automated synthetic data collection was performed
in Unreal Engine 4.25, where SteamAudio employs a ray-
based geometric sound propagation approach, with support
for dynamic geometry using the Intel Embree CPU-based
ray-tracer. We describe similar prior work GSoundhere for
more details on this approach. Given scene materials (e.g.
carpet, glass, painted, tile, etc.), a sound source (e.g. voice),
environmental geometry, and listener position, we generate
impulse responses for a given scene of varying sizes. From
each listener, specular and diffuse rays are randomly gen-
erated and traced into the scene. The energy-time curve for
simulated impulse response Sf (t) is the sum of these rays:

Sf (t) =
∑
j

δ(t− tj)Ij,f (1)

where Ij,f is the sound intensity for path j and frequency
band f, tj is the propagation delay time for path j, and
δ(t − tj) is the Dirac delta function or impulse function.
As sound rays collide in the scene, their paths change based
on absorption and scattering coefficients of the colliding
objects [?]. We assume a sound absorption coefficient, α =
1.0 for open windows.

Along with sound intensity Sf (t), a weight matrix Wf is
computed on materials within the scene. Each entry wf,m

is the average number of reflections from material m for all
paths that arrived at the listener. It is defined as:

wf,m =

∑
Ij,fdj,m∑
Ij,f

(2)

where dj,m is the number of times rays on path j collide with
material m, weighted according to sound intensity Ij,f of the
path j. To mirror real-world data, sound source directivity
was disabled.

Given a 720p 30fps video walkthrough of the 3D envi-
ronment with the camera moving along a keyframed spline,
we reconstruct the virtual scene by extracting the individual
frames of the video and using Agisoft Metashape (v1.7)’s
reconstruction pipeline to solve for each image’s camera
transform. Metashape, previously known as PhotoScan, is
considered state-of-the-art in commercial photogrammetry
software. The general process is: create a sparse point cloud
containing only keypoints and solve for the transforms of
cameras that can see the keypoints, create a dense cloud
by matching more features between keypoint-seeing cameras
and the rest, project the dense cloud depth data to each
camera to build per-camera depth maps, use the depth maps
to build a mesh, and create a texture map by projecting the
image frames that best see each polygon onto the mesh.

We disable motion blur of the camera in order to have
more usable frames, but real camera data generally requires
blurry frames to be removed to avoid noisy reconstructions,
especially at low framerates. For accurate visual feedback
of the specular surfaces, we also enable UE4’s DirectX12
ray-tracing for reflective and translucent surfaces. We used a
PC with the following specs for reconstruction: GTX 1080
GPU, i9-9900k CPU, 64gb RAM, Windows 10 x64, taking
about 2 hours to process a 720p sequence of 2,000 images
from start to finish with this setup. We use three sections
of the ”HQ Residential House” environment on the Unreal
Marketplace for synthetic data. The kitchen and bathroom
result in about 2,000 images when extracted from the video
at a step size of 3, and the master bedroom about 4,000.

C. Scene and Audio Reconstruction for VR Systems

When using a head mounted display (HMD) users are
alerted when approaching the boundaries in physical space.
However, if room setup does not accurately reflect these
boundaries or changes occur after setup, a user risks walking
into unseen real-world objects such as glass and walls. Using
our method, transmitted sound from the HMD could be used
to locate physical objects and appropriately notify the user
as an added safety measure. Audio directly from the real-
world environment could also be used for depth estimation.
The sounds unmixed and placed in the virtual environment,
reconstructing both the scene geometry and sound sources
(Fig. 2). Finally, seasonal variations in the 3D sound and
visual reconstruction of a window open in the spring and
closed in the winter also enhance the AR/VR experience.
See supplementary demo video.

We evaluated the smartphone based reconstruction ap-
plications to obtain an initial 3D geometry for which our
method would enhance. Astrivis application generates better
3D geometries for closed object rather than scene reconstruc-
tions, since it limits feature points per scan. On the other
hand, Agisoft Metashape produces scene reconstructions
offline from smartphone video. Enabling the software’s depth
point and guided camera matching features further improved
reconstructed geometries.



Fig. 1. Listener at different distances from sound source (from 0.5 to 3 m) in a virtual environment (left: bathroom, middle: kitchen, right: bedroom)
used to generate synthetic audio-visual data. This dataset is comprised of multiple 12-second video clips in front of reflective surfaces at increments from
0.5 m to 3 m for 15 different sound sources. Absorption and transmission coefficients were set on materials (e.g. mirror, thick glass, ordinary glass) inside
and outside of rooms in the virtual scenes. These scenes are used in controlled experiments summarized in Table II.

Accuracy of Reflecting Sounds used for Classification in Controlled Experiment (Gl = Glass)
Open/Closed Depth Est. (+/- 0.5 m) Sound

Method Input Thick Gl Thin Gl Thick Gl Thin Gl Material Est
kNN [?] A 53.8% 64.1% 11.5% 21.4% 66.5%
Linear SVM [?] A 54.7% 63.2% 11.5% 20.5% 61.1%
SoundNet5 [?] A 60.0% 40.1% 18.8% 19.1% 67.4%
SoundNet8 [?] A 60.0% 42.6% 25.0% 19.1% 34.0%
EchoCNN-A (Ours) A 61.1% 65.1% 44.4% 44.6% 68.1%
AlexNet [?] V 95.8% 80.8% 83.3% 66.7% 87.5%
Acoustic Classification [?] AV N/A N/A N/A N/A – 48% * –
EchoCNN-AV Cat (Ours) AV 98.9% 100% 99.4% 92.2% 76.6%
EchoCNN-AV MFB (Ours) AV 100% 100% 100% 99.0% 100%

TABLE II
MULTIPLE MODELS (OURS IS ECHOCNN) AND BASELINES WERE EVALUATED FOR AUDIO AND AUDIO-VISUAL BASED SCENE

RECONSTRUCTION ANALYSIS IN CONTROLLED EXPERIMENTS OF VIRTUAL ENVIRONMENTS.

Fig. 2. EchoCNN may also be used to reconstruct the audio of a
virtual scene from a video of a room in a real scene. Instead of depth
estimation, our method can be trained to approximate sound source
position, which is especially useful for objects that are outside of
the camera field of view. Ground truth (green dots) and estimated
(red dots) sound source placements are shown (top). Seen and heard
sound source (TV) from the video capture is placed more accurately
than unseen but heard sound sources (cradle and laptop).

D. Results by Source Frequency and Object Size

We evaluate a range of source frequencies to account
for different sound wave behavior based on the size of the
reconstructing objects. For example, if an object is much
smaller than the wavelength, the sound flows around it rather
than scattering [?]. Dynamically setting source frequency
based on object size could use λ = c

f where λ is wavelength
(ft) of sound in air at a specific frequency, f is frequency (1
Hz), and c is speed of sound (ft/s).

Fig. 3. Left to right: audio input produces the highest activation for a given
depth class from 1 ft, 2 ft, and 3 ft away from an object. Longer reverberation
times tend to occur at lower frequencies (3 ft) than at high frequencies (1
and 2 ft) due to typical high frequency damping and absorption.

Fig. 4. EchoCNN-A (Left) Confusion matrix to classify open/closed for an
interior glass shower door. Open predictions (86%) were more accurate than
closed (56%). (Right) Confusion matrix to classify depth from same interior
glass door. Notice that our EchoCNN is learning to differentiate distance
based on reflecting sounds from pulsed ambient waves of a smartphone.


