
Audio-Visual Depth and Material Estimation for Robot Navigation

Justin Wilson1 and Nicholas Rewkowski2 and Ming C. Lin2

https://cs.unc.edu/%7Ewilson/EchoCNN/

Abstract— Reflective and textureless surfaces such as win-
dows, mirrors, and walls can be a challenge for scene recon-
struction, due to depth discontinuities and holes. We propose
an audio-visual method that uses the reflections of sound to
aid in depth estimation and material classification for 3D scene
reconstruction in robot navigation and AR/VR applications.
The mobile phone prototype emits pulsed audio, while recording
video for audio-visual classification for 3D scene reconstruction.
Reflected sound and images from the video are input into our
audio (EchoCNN-A) and audio-visual (EchoCNN-AV) convolu-
tional neural networks for surface and sound source detection,
depth estimation, and material classification. The inferences
from these classifications enhance 3D scene reconstructions
containing open spaces and reflective surfaces by depth filtering,
inpainting, and placement of unmixed sound sources in the
scene. Our prototype, demos, and experimental results from
real-world with challenging surfaces and sound, also validated
with virtual scenes, indicate high success rates on classification
of material, depth estimation, and closed/open surfaces, leading
to considerable improvement in 3D scene reconstruction for
robot navigation.

I. INTRODUCTION
Scenes containing open and reflective surfaces, such as

windows and mirrors, are central to robot simultaneous
localization and mapping (SLAM). They can also enhance
AR/VR immersion in terms of both graphics and sound.
However, they present a unique set of challenges. First,
they are difficult to detect, map, and reconstruct due to
their transparency and high reflectivity. Distinguishing be-
tween glass (e.g. window) and an opening in the space
is an important part of the audio-visual experience for
robot navigation, but also AR/VR engagement. In addition,
illumination, background objects, and min/max depth ranges
can be confounding factors.

Scene reconstructions for robot navigation and SLAM
have led to advances in detection [1], segmentation [2], [3],
and semantic understanding [4] and they are used to generate
large-scale, labeled datasets of object [5] and scene [6], [7]
geometric models to further aid training and sensing in a
3D environment. Advances have also been made to account
for challenging surfaces [8], [9], [10]. Yet, scenes containing
open and reflective surfaces, such as windows and mirrors,
remain an open research area. Our work augments existing
vision-based methods by adding audio context of surface
detection, depth, and material estimation for recreating a
digital scene from a real one.

Previous work has used sound to better understand objects
in scenes. For instance, impact sounds from interacting
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with objects in a scene to perform segmentation [3] and
to emulate the sensory interactions of human information
processing [11]. Audio has also been used to compute
material [12], object [11], scene [13], and acoustical [14]
properties. Moreover, using both audio and visual sensory
inputs has proven more effective; for example, multi-modal
learning for object classification [15], [16] and object track-
ing [17].

Previous work has used sound to better understand objects
in scenes. For instance, impact sounds from interacting
with objects in a scene to perform segmentation [3] and
to emulate the sensory interactions of human information
processing [11]. Audio has also been used to compute
material [12], object [11], scene [13], and acoustical [14]
properties. Moreover, using both audio and visual sensory
inputs has proven more effective; for example, multi-modal
learning for object classification [15], [16] and object track-
ing [17].

Fusing multiple modalities, such as vision and sound,
provide a wider range of possibilities than either single
modality alone. In this work, we show that augmenting
vision-based techniques with audio, called “EchoCNN,” can
detect open or reflective surfaces, its depth, and material,
thereby enhancing 3D object and scene reconstruction for
robots and AR/VR systems. We give an overview of our
system pipeline in Sec. III and highlight key results below:

• EchoCNN, a fused audio-visual CNN architecture for
classifying open/closed surfaces, their depth, and mate-
rial or sound source placement (Section IV);

• Automated data collection process and audio-visual
ground truth data for real-world (and synthetic) scenes
containing windows and mirrors (Section V);

• Application demonstration using a staged audio-visual
3D reconstruction pipeline that uses EchoCNN to en-
hance scene geometry containing windows, mirrors, and
open surfaces with depth filtering and inpainting based
on EchoCNN inferences (Section VI).

Using EchoCNN, we have been able to achieve con-
sistently higher accuracy in classification of open/closed
surfaces, depth estimation, and materials in both real-world
scenes and controlled experiments, resulting in considerably
improved 3D scene reconstruction with glass doors, windows
and mirrors (see Fig. 1).

II. RELATED WORK

We discuss recent work in audio-based classifications,
echolocation, and existing techniques for reconstructing open
and reflective surfaces here.



Fig. 1. Left: ground truth image. Before (Middle) and after (Right) audio-augmented rendering of an indoor scene with open and closed reflective surfaces.
EchoCNN enhances scene reconstruction through more accurate surface detection, depth estimation, and material classification based on audio-visual
reflecting sound and image inputs. Green arrows highlight areas enhanced by our method.

A. Acoustic Imaging and Audio-based Classifiers

We begin with an introduction into sound propagation,
room acoustics, and audio-visual classifiers.

Acoustics: various models have been developed to simu-
late sound propagation in a 3D environment, such as wave-
based [19], ray tracing based [20], sound source cluster-
ing [21], multipole equivalent source methods [22], and a sin-
gle point multipole expansion method [23], representing out-
going pressure fields. [24] uses acoustics and a smartphone
for an app to detect car location and distance from walking
pedestrians using temporal dynamics. [25] further discusses
theory and applications of machine learning in acoustics.
Computational imaging approaches have also used acous-
tics for non-line-of-sight imaging [26], 3D room geometry
reconstruction from audio-visual sensors [27], and acoustic
imaging on a mobile device [28]. To reconstruct windows
and mirrors, our work uses room acoustics given the surface
materials of the room [13] and distance from sound source.
However, prior work and downstream processes often require
a watertight reconstruction which can be difficult to generate
in the presence of glass. Our approach addresses these issues
using an integrated audio-visual CNN to detect discontinuity,
depth, and materials.

Audio-based classification and reconstruction: using
principles from sound synthesis, propagation, and room
acoustics, audio classifiers have been developed for envi-
ronmental sound [29], [30], [31], material [3], and object
shape [11] classification. For audio-based reconstruction,
Bat-G net uses ultrasonic echoes to train an auditory encoder
and 3D decoder for 3D image reconstruction [32]. Audio
input can take the form of raw audio, spectral shape descrip-
tors [33], [34], [35], or frequency spectral coefficients that
we also adopt. Our method uses reflecting sound to perform
surface detection, depth, and material estimation.

Audio-visual learning: similar to its applications in natu-
ral language processing (NLP) and visual questing & answer-
ing systems [36], [37], [38], multi-modal learning using both
audio-visual sensory inputs has also been used for classifi-
cation tasks [15], [16], [39], material estimation [40], audio-
visual zooming [41], and sound source separation [42], [43].
The latter having also isolated waves for specific generation

tasks. Although similar in spirit, our audio-visual method
differs from the existing methods by learning absorption and
reflectance properties to detect a reflective surface, its depth,
and material.

B. Glass and Mirror Reconstruction

Reflective surfaces produce identifiable audio and visual
artifacts that can be used to help their detection. For example,
researchers have developed algorithms to detect reflections
in images taken through glass using correlations of 8-by-8
pixel blocks [44], image gradients [45], mirror edges based
on content differences inside and outside of mirror [46], [47],
two layer renderings [8], polarization imaging reflectome-
try [48], and diffraction effects [49]. Adding hardware, [50]
uses ultrasonic sensor logic to track continuous wave ultra-
sound, [51] to detect obstacles such as glass and mirrors by
using frequencies outside of the human audible range, and
Amazon Echo [52] and Google Nest [53] use ultrasound
sensing for motion detection. More recently, reflective sur-
faces have been detected by utilizing a mirrored variation
of an AprilTag [54], [55]. [9] uses the reflective surface
to their advantage by recognizing the AprilTag attached to
their Kinect scanning device when it appears in the scene.
Depth jumps and incomplete reconstructions have also been
used [56]. However, vision based approaches require the right
illumination, non-blurred imagery, and limited clutter behind
the surface that may limit the reflection. We show that sound
creates a distinct audio signal, providing complementary
data about the presence of windows and mirrors without
additional sensors.

III. OVERVIEW

Echo is defined as distinct reflections of the original sound
with a sufficient sound level to be clearly heard above
the general reverberation [57]. Although perceptible echo
is abated because of precedence (known as the Haas ef-
fect) [58], returning sound waves are received after reflecting
off of a solid surface. We use these distinct, reflecting sounds
to design a staged approach of audio and audio-visual con-
volutional neural networks. EchoCNN-A and EchoCNN-AV
can be used to estimate depth based on reverberation times,
recognize material based on frequency and amplitude, and



Fig. 2. Staged approach to estimate depth and materials for enhancing 3D scene and object reconstruction using audio-visual data. A smartphone emits and
receives audio-visual signals for material/depth classification. It emits 100 ms pulsed audio and records video of the direct and reflecting sound. The receiving
audio is split into 1.0 second intervals to allow for reverberation. Audio intervals are converted into mel-scaled spectrogram bins to reflect a logarithmic
perception of frequency [15], [18]. They are passed through a multimodal convolutional neural network, EchoCNN, comprised of 2D convolutional, max
pooling, fully connected, and softmax layers. EchoCNN informs hole filling steps to resolve planar discontinuities in scans caused by reflective surfaces,
such as windows and mirrors. Binary classification is used for surface detection and multi-class classification is used for depth and material estimation.

handle both static and dynamic scenes with moving objects.
All of which enhance scene and object reconstruction by
detecting planar discontinuities from open or closed surfaces
and then estimating depth and material.

A. Echolocation

Echolocation is the use of reflected sound to locate and
identify objects, particularly used by animals like dolphins
and bats [59]. This involves signal processing such as:

1) Doppler shift (the relative speed of the target),

∆f = fD − f0 = f0
cs
c0

cos(θ) (1)

2) time delay (distance to the target), and
3) frequency and amplitude in relation to distance (target

object size and type recognition).
where the Doppler effect is the perceived change in fre-
quency (Doppler frequency fD minus transmitted frequency
f0) as a sound source with velocity cs moves toward or away
from the listener with velocity co and angle θ.

B. Staged Classification Pipeline

As depicted in Fig. 2, we take a staged approach to
perform depth and material estimation for transparent sur-
faces, thereby enhancing scene and object reconstruction
using audio-visual data. Our prototype system transmits and
receives audio signals. Each audio emission is 100 ms of
sound followed by 900 ms of silence to allow for the re-
ceiving microphone to capture reflections and reverberations
(Subsection III-C). After the 3D scan is complete, an .obj file
containing geometry and texture information is generated.
1 second frames are extracted from the recorded video to
generate audio and visual input into the EchoCNN neural
networks (Section IV). These networks are independently
trained to detect whether a surface is open or closed, estimate
depth to the surface from the sound source, and classify the
material of the surface.

C. Sound Source
A smartphone emits recordings of human experimenter

voice, whistle, hand clap, pure tones (ranging from 63 Hz
to 16 kHz), chirps, and noise (white, pink, and brownian).
All of which can be generated as either pulsed (PW) or
continuous waves (CW). PW is preferred for theoretical and
empirical reasons. First, the transmission frequency f0 may
experience considerable downshift as a result of absorption
and diffraction effects [59]. Therefore, using pulsed waves
independent for each emission is theoretically better than
continuous waves compared to f0. Section VI-B shows
superior PW results over CW for given classification tasks.

Pure tones were generated with default 0.8 out of 1
amplitudes using the Audacity computer program and center
frequencies of 63 Hz, 125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz,
4 kHz, 8 kHz, and 16 kHz. These octave bands were used
for training to model the experimenter whistle and voice in
our simulation tests so live instead of recorded sound may be
used. Human voice ranges from about 63 Hz to 1 kHz [58]
(125 Hz to 8 kHz [57]) and an untrained whistler between
500 Hz to 5 kHz [60]. Chirps were linearly interpolated from
440 Hz to 1320 Hz in 100 ms. A hand clap is an impulsive
sound that yields a flat spectrum [58]. All sound sources were
recorded and played back with max volume. While playback
of recorded sounds were used for consistency, live audio
for augmentation and ease of use may also be used. Please
see our supplementary materials for spectrograms across all
sound sources.

Audio input: audio was generated in pulsed waves (PW).
A smartphone emits sound and captures video which is used
offline to perform a RGB-based reconstruction. 1 second
audio frames is based on the Sabine Formula [61], [57] of
reverberation time for a compact room calculated as:

T = 0.05
V

a
= 0.05

V∑
Sα

= (0.05
sec
ft

)
1, 296 ft3

69.23 ft2
= 0.94 sec

(2)



Fig. 3. Mel-scaled spectrograms of recorded impulses of different sound
sources used. From left to right: narrow to disperse spectra. Not shown
are other pure tone frequencies, chirp, pink noise, and brownian noise.
Horizontal axis is time and vertical axis is frequency.

where T is the reverberation time (time required for sound
to decay 60 dB after source has stopped), V is room volume
(ft3), and a is the total room absorption at a given frequency
(e.g. 250 Hz). For the bathroom scene, V = 9 ft∗16 ft∗9 ft =
1, 296 ft3 and a = 69.23 ft2, which is the sum of sound
absorption from the materials.

Visual input: images were captured from the same smart-
phone video as the audio recordings. Each corresponding
image was cropped and grayscaled to reduce computational
requirements. Image dimensions were 64 by 25 pixels. Visual
data served as inputs for visual only and audio-visual model
variation EchoCNN-AV.

IV. MODEL ARCHITECTURE
To augment visually based approaches, we use a multi-

modal CNN with mel-scaled spectrogram and image inputs.
First, we perform surface detection to determine if a space
with depth jumps and holes is in error or in fact open (i.e.
open/closed classification). In the event of error, we estimate
distance from recorder to surface using audio-visual data
for depth filtering and inpainting. Finally, we determine the
material. All of these classifications are performed using
our audio and audio-visual convolutional neural networks,
EchoCNN-A and EchoCNN-AV (Fig. 2). A CNN architec-
ture was used for distinct audio-visual features.

Audio sub-network: our frame-based EchoCNN-A con-
sists of a single convolutional layer with 262 filters and
3x5 kernel size followed by two dense layers with feature
normalization. Sampled at Fs = 44.1 kHz to cover the
full audible range, audio frames are 1 second mel-scaled
spectrograms with Short-Time Fourier Transform (STFT)
coefficients χ (Eq. IV ). Mel-scale is a logarithmic transfor-
mation of a signal’s frequency and decibel scale such that it is
of equal distance to untrained humans ability to perceive and
distinguish that frequency. Mel-scale spectrograms have been
demonstrated to perform well as inputs into convolutional
neural networks (CNNs) according to comparison [62].

Each audio example is classified independently and 1
second intervals to reflect an estimated reverberation time
based on a compact room size (Eq. 2). With a 2048
sample Hann window (N), 25% overlap, and hop length
(H = 2048/4) for spectrogram parameters, this results in
a frequency dimension of 21.5 Hz (Eq. IV) and temporal
dimension of 12 ms (Eq. IV) or 12% of each 100 ms pulsed
audio. Each spectrogram is normalized and downsampled to
a size of 62 frequency bins by 25 time bins.

STFT divides a time signal into segments of equal length
and then compute the Fourier transform to determine fre-
quency and phase over time. We define these frequency
spectral coefficients [63] as:

χ(m, k) =

N−1∑
n=0

x(n+mH)w(n)exp(−2πikn/N) (3)

for mth time frame and kth Fourier coefficient with real-
valued DT signal x : Z → R, sampled window function
w(n) for n ∈ [0 : N−1] → R of length N , and hop size H ∈
N [63]. R denotes continuous time and Z denotes discrete
time. Equal to |χ(m, k)|2, a spectrogram’s horizontal axis is
time and vertical axis is frequency.

Fcoef (k) =
k · Fs

N
= k

44100

2048
= k ∗ 21.5 Hz (4)

Tcoef (m) =
m ·H
Fs

= m
2048 ∗ 0.25

44100
= m ∗ 0.012 seconds

(5)

A hop length of H = N/2 achieves a reasonable temporal
resolution and data volume of generated spectral coeffi-
cients [63]. Temporal resolution is important in order to
detect when a reflecting sound reaches the receiver. There-
fore, we decided to use a shorter window length N = 2048
instead of N = 4096 for instance. This resulted in a shorter
hop length and accepting the trade-off of a higher temporal
dimension for increased data volume.

Visual sub-network: while audio information is generally
useful for all three classifications tasks (Table I), visual infor-
mation is particularly useful to aid material classification. We
use AlexNet [64] as a visual-based baseline to compare to
our audio and audio-visual methods. It also serves as a visual
subnetwork and input into our audio-visual merge layer.
AlexNet was chosen as the visual baseline because of its
diverse set of classes and privacy-aware visual recognition,
according to image-net.org.

Merge layer: we evaluated concatenation and multi-modal
factorized bilinear (MFB) pooling [65] to fuse audio and
visual fully connected layers. Concatenation of the two
vectors serves as a straightforward baseline. MFB allows
for additional learning in the form of a weighted projection
matrix factorized into two low-rank matrices.

zi = xTWiy = xTUiV
T
i y = 1T (UT

i x ◦ V T
i y) (6)

where k is the factor or latent dimensionality with index
i of the factorized matrices, ◦ is the Hadmard product or
element-wise multiplication, and 1 ∈ Rk is an all-one vector.

A. Loss Function

For open/closed predictions, categorical cross entropy loss
(Eq. 7) is used instead of binary to allow for estimating
the extent of the surface opening (e.g. all the way open,
halfway, or closed). A regression model is not used for depth



Fig. 4. Several different real-world scenes used in data collection and testing our audio-visual classification system. Listener at different distances from
sound source (1 ft, 2 ft, and 3 ft). For more real-world scene figures and virtual scenes (from 0.5 m to 3 m), please see additional supplementary material
at https://cs.unc.edu/%7Ewilson/EchoCNN/

estimation because ground truth data is collected in discrete
0.5 m or 1 ft increments within the free field for better
noise reduction [57]. The Softmax function is used for output
activations.

−
M∑
c=1

yo,c log(po,c) (7)

where M is number of classes, y indicator for correct
classification, and p for predicted probability that observation
(o) is of class (c).

B. Depth filtering and planar inpainting

The outputs of our EchoCNN inform enhancements for 3D
reconstruction. If depth jumps in the reconstruction are first
classified as an open surface, then no change is required other
than filtering loose geometry and small components. Else,
there is a planar discontinuity (e.g. window or mirror) that
needs to be filled. With depth estimated by EchoCNN, we
filter the initial 3D mesh to within a user specified threshold
of that depth. This gives us the plane needed to fill. Finally,
EchoCNN classifies its surface material which can then be
applied to the filled plane.

V. DATASETS

We implemented all EchoCNN and baseline models with
Tensorflow [69] and Keras [70]. Training was performed
using a TITAN X GPU running on Ubuntu 16.04.5 LTS. We
used categorical cross entropy loss with Stochastic Gradient
Descent optimized by ADAM [71]. Using a batch size of 32,
remaining hyperparameters were tuned manually based on a
separate validation set. We make our real-world and synthetic
datasets available to aid future research in this area.

Our audio-based EchoCNN-A and audio-visual
EchoCNN-AV CNNs are trained with center frequencies 63
Hz, 125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz, 8 kHz,
and 16 kHz. Training uses these pulsed pure tone impulses
and experimenter hand clap. Some time shift of sound start
is allowed. The hold-out test data is comprised of sound
sources excluded from training - white noise, experimenter
whistle, and voice. While the test set contains sound sources
not in training to evaluate generalization, their frequencies
are covered given training across nine octave bands. Hold
out scenes are also tested (see supplemental video).

A. Real-World Data

Training data is comprised of 1 second pulsed spectro-
grams (Fig. 3) from recorded pure tones, experimenter hand
claps, brownian noise, and pink noise (N=857). Training and
test examples were collected via video recordings and labeled
for material, open/closed, and 1 ft depth increments based on
surface distance. Nine octaves of pure tones, hand claps, and
white noise cover a wide range of frequencies used to train
our models.

The hold-out test dataset consists of 1-second pulsed spec-
trograms from recorded experimenter voice, whistle, chirp,
and white noise (N=431). Voice and whistle recordings were
chosen for the hold out test set to ease future transition to live
and hands-free emitted sounds during reconstruction. Hold-
out test data is excluded from training and only evaluated
during testing. The same hold-out sets were used for visual
and audio-visual evaluation. Note that the train-test split
was based on audio since unheard sound from a different
sound source in test may have the same visual appearance
in training.

VI. IMPLEMENTATION & EVALUATION

A. Experimental setup

The listener and sound source device is a smartphone that
emits pulsed waves at 3 feet, 2 feet, and 1 feet away from the
reconstructing surface. Three feet was selected to remain in
the free field. Beyond that, there will be less noise reduction
due to reflecting sounds in the reverberant field [57]. Within
a few feet of the reconstructing surface also create finer detail
reconstructions.

We labeled our data based on scene, sound source, and
surface properties - type of surface, material, and depth from
sound source. The training set included pulsed sounds of
pure tone frequencies, a hand clap, brownian noise, and pink
noise. The hold-out test set consisted of voice, whistle, chirp,
and white noise. For rooms with different sound-absorbing
treatments, our real-world recordings include a bedroom (e.g.
carpet and painted) and bathroom (e.g. tiled).
Real-World Test Scenes: We validated the results against
the known ground truth through controlled experiments us-
ing synthetic scenes (see appendices posted at the project
website). We also tested our system on several real-world
scenes (see Fig. 1 and 4, and the supplementary video).



Accuracy of Reflecting Sounds used for Open/Closed, Depth Estimation, and Material Classification in Real Scenes
Open/Closed Depth Estimation Sound Material

Method Input Shower Window Overall 3 ft 2 ft 1 ft Overall Glass Mirror
kNN [66] A 56.5% 100% 21.3% 16% 21% 25% 44.0% 47.5% 52.4%
Linear SVM [67] A 61.5% 91.7% 37.6% 38% 32% 41% 51.9% 46.0% 57.1%
SoundNet5 [68] A 45.2% 46.6% 39.7% 40% 71% 8% 71.0% 98.4% 1.6%
SoundNet8 [68] A 50.7% 46.6% 42.5% 92% 0% 33% 44.4% 16.4% 85.7%
EchoCNN-A (Ours) A 71.2% 100% 71.8% 86% 54% 76% 77.4% 62.3% 92.0%
AlexNet [64] V 78.1% 96.1% 45.2% 52% 83% 0% 80.6% 60.7% 100%
Acoustic Classification [13] AV N/A N/A N/A N/A N/A N/A ———- 48% * ———-
EchoCNN-AV Cat (Ours) AV 100% 100% 89.5% 95% 100% 73% 100% 100% 100%
EchoCNN-AV MFB (Ours) AV 100% 100% 84.9% 54% 100% 100% 80.6% 60.7% 100%

TABLE I
MULTIPLE MODELS (OURS IS ECHOCNN) AND BASELINES WERE EVALUATED FOR AUDIO AND AUDIO-VISUAL ANALYSIS.

OVERALL, 71.2% OF HELD OUT REFLECTING SOUNDS AND 100% OF AUDIO-VISUAL FRAMES WERE CORRECTLY CLASSIFIED AS AN

OPEN OR CLOSED INTERIOR SURFACE (I.E. GLASS WINDOW). OPEN/CLOSED CLASSIFICATION IS EVEN HIGHER FOR EXTERNAL

FACING WINDOWS DUE TO OUTSIDE NOISE. 71.8% OF 1-SECOND AUDIO FRAMES WERE CORRECTLY CLASSIFIED AS 1 FT, 2 FT, OR 3
FT AWAY FROM SURFACE BASED ON AUDIO ALONE; 89.5% WHEN CONCATENATING WITH ITS CORRESPONDING IMAGE. FINALLY,

77.4% AND 100% OF AUDIO AND AUDIO-VISUAL INPUTS CORRECTLY LABELED THE SURFACE MATERIAL. * ACCORDING TO [13],
48% OF THE TRIANGLES IN ITS SCENES ARE CORRECTLY CLASSIFIED, WHERE ITS CLASSIFICATION IS MORE GRANULAR.

Activation Maximization Activation maximization gener-
ates an input that maximizes layer activations for a given
class. This provides insights into the types of patterns the
neural network is learning. Supplementary material shows
the different inputs that would maximize EchoCNN activa-
tions for depth estimation. Notice lower frequencies tend to
occur at 3 ft (longer reverberation times) than at 1 and 2 ft
(high frequencies) due to the typical high frequency damping
and absorption.

B. Results

Overall, 71.2% of hold out reflecting sounds and 100% of
audio-visual frames were correctly classified as an open or
closed boundary in the home (Table I). 71.8% of 1 second
audio frames were correctly classified as 1 ft, 2 ft, or 3 ft
away from the surface based on audio alone; 89.5% when
concatenating with its corresponding image. Finally, 77.4%
of audio and 100% of audio-visual inputs correctly labeled
the surface material (glass, mirror, wall).

AlexNet, a visual only baseline, is higher at 78.1% than
audio-only EchoCNN-A for open/closed classification. This
is partly due to the fact that the hold out set was to test audio
generalization (i.e. unheard sound sources). But unheard
sound sources does not guarantee unseen visual data. In other
words, different sound does not mean different appearance.
Therefore, images similar to those found in training are also
present in test which may help explain this observation.

C. Analysis

According to [58], 10 dB of exterior to interior noise
reduction can be attributed to closed compared to open win-
dows. Using audio, we also noticed noise reduction between
winter and spring due to more foliage on the trees. We also
observed flutter echoes, which can be heard as a ”rattle”
or ”clicking” from a hand clap and have been simulated in
spatial audio [72]. They became more pronounced the closer
to the wall surface in the bathroom scene. Audio is unable to
augment failure cases of the shower from initial RGB-based

reconstructions using either [73] or [74]. (Background UV
textures are placed at a fixed 1 ft (0.3 m) behind estimated
surface depth.) We compare our 3D reconstructions to depth
estimates based on related work (see Table I).

VII. CONCLUSION AND FUTURE WORK

This work introduces the first audio and audio-visual
techniques for enhancing robot localization, mapping and 3D
scene reconstruction with windows and mirrors. Our staged
pipeline emits and receives pulsed audio from a variety of
sound sources for surface detection, depth estimation, and
material classification. These classifications can assist in
resolving planar discontinuities caused by open spaces and
reflective surfaces using depth filtering and planar filling.
Our system performs well compared to baseline methods
given experiment results for real-world and virtual scenes
containing windows, mirrors, and open surfaces. We intend
to release our audio-visual data, in addition to reflection
separation data for future research.
Limitations: Instead of a staged pineline, an integrated, end-
to-end pipeline may further improve 3D scene reconstruction
and simultaneous localization and mapping. With a defined
set of output classes for EchoCNN, alternative baselines
such as Non-Negative Matrix Factorization (NMF), source
separation techniques, and the pYIN algorithm [75] may be
able to extract the fundamental frequency f0, i.e. the fre-
quency of the lowest partial of the sound, to further improve
the robustness of the results. The effects of ambient and
directed sound sources have not been understood and may
also enhance results for sound source separation. Finally,
our current implementation holds out voice and whistle data,
which is different from the audio used during training. Some
insights may be gained by experimenting with a different
training dataset for testing audio-only, visual-only, and audio-
visual methods.
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