CHAPTER 1: INTRODUCTION

Sights and sound are all around us, in both real and virtual worlds. At times, it is useful to unmute our
speakers or put on earphones so we can not only see what looks real but also hear how it sounds. By mod-
eling how objects and fluids should behave and sound, we can generate impact sounds of a user striking an
object, colliding sounds of objects interacting with one another, and other object and environment sounds.
While visual information provides a great amount of context for what one can expect, auditory cues can
assist with complementary data; for example, by differentiating between visually similar materials or the
type and amount of liquid in an opaque container. Audio can also provide primary data when vision is
unavailable; for example, unlit scenes or sounds outside the current field of view. Whether modeling by
physically based phenomena or training a multimodal neural network, both audio and visual information
play an important role in learning and processing of data for scene and object understanding.

Not only can additional modes of data provide more information, they can also reaffirm one another.
For example, if we only read the captions of a video, we may miss context of the scene or speakers. Infor-
mation from auditory cues may be lost. Furthermore, we can also use the sound to verify the visual and
textual data based on the synchronization between modes. We learn this through experience and under-
standing. The uncanny valley effect is also described in terms of visual resemblance; however, the same
can be applied to our perception of sound, though likely not as pronounced. The effect of audio and visual
together matters as well. Individual modes and their interplay represent research areas in multimodal learn-
ing, cross-modal self supervision, and transfer learning, to name a few. This dissertation contributes to the
simulation of sound for rigid body objects, with and without liquid, and uses both real and synthetic audio

as an additional mode to visual data for learning and processing tasks.

1.1 Motivation

“ The screen is a window through which one sees a virtual world. The challenge is
to make that world look real, act real, sound real, feel real. ’ (Sutherland, 1965)



Virtual environments: as the excitement and economic potential for interactive virtual reality (VR) and
augmented reality (AR) increases, modeling of the physical world is imperative to realism of an immersive
experience, a sense of being there. In addition to sight, sound is also integral to the level of immersion
and sense of presence in virtual and augmented reality (Cummings and Bailenson, 2015). This interest
has motivated prior work in 3D sound synthesis, particularly in real-time. Audio has been used to guide
user attention and highlight parts of a scene outside current field of view. In the case of redirected walking,
sound can also serve as a distraction. The virtual scene can be manipulated in such a way that the user
can travel through a virtual world that is larger than the physical working space without the user noticing.
Whether or not audio and visual information are processed together in a single pipeline or separately, the
presentation of the modes should be synergistic to prevent a distraction from any of the senses which can

cause a 'break in presence’ (Sanchez-Vives and Slater, 2005).

Sound synthesis: traditionally, sounds have been added post-production by Foley artists who recreate
sounds for film and other media. However, today’s virtual environments expect real-time interactivity.
Therefore, game engines and VR systems are incorporating physically-based graphics and sound simula-
tion algorithms for interactive and realistic effects to help users remain immersed in the experience. This
real-time modeling of a user interacting with objects in a virtual environment can be done based on the
vibration and deformation of an object when it is struck or colliding with another surface. The surrounding
air rapidly compresses (compression) and expands (rarefaction or decompression) as the object vibrates
outward and inward respectively, As it oscillates periodically, pressure waves are created and air pressure
amplitude changes up and down over time. This periodic pattern of compression and rarefaction is known
as harmonic motion. Although we may not see the vibrations or deformations, our ears hear the variation

in air pressure as sound. This harmonic motion can be modeled as an underdamped spring mass system.

ma” +dx’ + kx =0 (1.1)

where m is mass, d is damping, k is stiffness, and x is displacement. For a volumetric object, the system

can be modeled by the sound dynamics equation:

My +Du + Ku=f (1.2)



where M is the mass matrix, where mass is located on the object, u is the displacement of each element, D
is the viscous damping matrix (i.e. how velocity decays over time), K is the stiffness matrix (i.e. defining
the connectivity of the elements) and f is the vector of forces (i.e. inducing vibrations). Note that upper
case denotes matrices, lower case denotes vectors or scalars, and M, D, and K are size 3n x 3n sparse
matrices for n tetrahedral mesh nodes. Stiffness is based on the objects mesh and Poisson’s ratio; mass,
construction method Consistent Mass Matrix (CMM); and damping, Rayleigh damping (also known as

linearly proportional damping).

D=a1*M+asx K (1.3)

where ) and alphas are real-value parameters. Given these parameters, we can simulate the vibration of
the solid volume body object in response to an impulse.

Sound synthesis and physically-based sound synthesis for rigid bodies as well as liquids have been
previously studied. A few other major categories include fractures, fire, and thin shell. Since both sound
and graphics can be physics-based, the graphics pipeline can be naturally extended to generate sound.
Humans can hear frequencies from between 20 Hz to about 22 kHz, requiring applications to sample at
a rate of 44 kHz based on the Nyquist Theorem, doubling the frequency we can sense. Rigid body sound
has been modeled using modal analysis to decouple the problem into n independent, damped vibration
equations. By performing modal analysis to precompute frequency and damping for a given object and
material, real-time sound synthesis can be achieved (O’Brien et al., 2002; Ren et al., 2013a; van den Doel
et al., 2001). This is important such that the audio and visual information rendered from interactions of
virtual objects with other objects, liquids, and the user reflect the current state of the virtual environment.
At runtime, sounds are dynamically created with modal synthesis based on hit (or contact) point where the
object is struck and impulse direction. Typically, we simulate an impulse direction normal to the contact
point but could synthesize tangentially to the object like (0,1,0) for (x,y,z) impulse direction. The solution

to the sound dynamics equation is damped sinusoidal waves.
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where ¢; is the displacement, a; depends on run-time impulse, and d; along with f; depend on geometry
and material properties. Precomputing features, clustering sources, decoupling equations, and simplifying
the computational model are techniques that have been used to achieve real-time performance and are

contributions to this dissertation.

Fluid-structure interactions: solid-fluid interfaces may be referred to as elasto-acoustic coupling. It in-
volves the interactions between the vibrations of an elastic structure and the sound field in the surrounding
fluid. However, previous sound synthesis research focuses on single systems only, either solid or liquid but

not both. Furthermore, the coupling of systems needs to meet no-penetration and no-slip conditions.

(== —v)-n=0 (1.7)

The no-penetration condition (Equation 1.1) occurs at the fluid-structure boundary where u is the deforma-
tion of the solid, v is the velocity of the fluid, and n is the outward normal.
ou

(G —v)xn=0 (1.8)

The no-slip condition (Equation 1.1) holds that the tangential velocity components have to be equal. If
both independent boundary conditions hold, we have % = .

While the dynamic sound model may be generalized to any object represented by a tetrahedral mesh
and fluid by Lagrangian particles, it needed to be extended to meet these conditions and account for the
coupling of these objects that contained a liquid and in real-time. Each mode can perform in real-time
separately but the coupling of fluid-structure interactions can be compute intensive, so the problem was

simplified to a single system by assuming:

1. Solid object is impermeable

2. Fluid is incompressible



3. Fluid motion coincides with structure motion (also known as a non-moving domain)
4. Fluid is at rest in hydrostatic equlibrium

5. Fluid is inviscid

By assuming that the structural vibration must move the liquid along with the structure, the weight of
the surrounding liquid can be added to the system as an added mass effect by modifying the mass matrix of
the structure object. This is referred to as a rigid double body where the added mass is the additional drag
force resulting from fluid acting on a structure. In reality, the fluid will be accelerated but for simplicity,

liquid is modeled as a volume moving with the object.

Mu" + Du' + Ku = f(t) — mg *u” (1.9)

The resting forces along the boundary of the fluid-structure interface are calculated and included as an
added mass to the sound dynamics equation, extending the sound synthesis pipeline to objects containing a

liquid. Using an added mass operator simplified a coupled problem into a single fluid-structure system.

Multimodal learning: explores relationships between different modalities. Many learning-based methods
often primarily rely on visual feedback and human interaction; for example, state-of-the-art vision-based
techniques for image classification (Deng et al., 2009) and object detection (Liu et al., 2016; Redmon

et al., 2016; Ren et al., 2015a) in images and video, to name a few. Prior work for the liquid pouring task
in robotics have also used visual sensing for volume estimation and tracking. With many of these methods
using video as an input, sound may readily be available for multimodal learning with both audio and visual
data which can improve processing and performance. Fused modalities also cover edge cases that can be a
challenge for a single model such as noise from blur, poor illumination, or occlusions can cause error for
visual data. On the other hand, environmental noise, varying room acoustics, or mixed audio from other
sound sources can prove difficult with only audio inputs.

Various techniques have been used to fuse multiple modalities of data. Natural Language Processing
(NLP) has demonstrated the use of multimodal learning for visual question and answering systems (Fukui
et al., 2016; Ilievski and Feng, 2017), video captioning (Pasunuru and Bansal, 2017; Wang et al., 2018).
Audio-visual have also been used for speech separation (Zhao et al., 2018) and object classification (Anusha

and Roy, 2015). Rather than using extra sensors such as contact microphones (Clarke et al., 2018) or ther-



mal imaging cameras (Schenck and Fox, 2017), frames of audio and visual data may be used from the
recorded video. In addition to merge layers of concatenation, addition, and multiplication to combine in-
put streams, bilinear modeling has also been used to learn multiplicative interactions of differing input
types (Gao et al., 2015; Yu et al., 2017b; Park et al., 2016). A simple multi-modal bilinear model is defined

as:

= 2T Wiy (1.10)

where x and y are mode features, W; € R™*" is a projection matrix, and z is the output bilinear model.

In addition to multimodal learning in NLP and audio-visual learning, it has also been demonstrated
to aid in localization, object, and material classification based on impact sounds of meshed geometries.
Furthermore, reconstruction methods also benefit from audio for enhanced reconstruction and material
inference. While vision-based methods may have difficulty detecting textureless or glass surfaces, echoes
of reflecting sounds from a sound source may be used to estimate the depth of these surfaces and inpaint to

fill holes in the reconstructed geometry.

3D reconstruction: a number of algorithms exist to generate 3D shape from 2D and other sensory infor-
mation. A common processing pipeline involves capture, point generation, meshing and texturing, and
temporal mesh processing. During capture, the setup often includes some level of calibration, preprocess-
ing, bias correction, and background subtraction. Passive methods use sensors (e.g. camera) to capture
details (e.g. RGB) about an object for reconstruction without any interference or projections into the scene.
On the other hand, active reconstruction techniques (e.g. RGB-D) use infrared projectors to illuminate
and detectors to measure the radiance on the object’s surface. Using commodity sensors such as the Mi-
crosoft Kinect and GPU hardware allow for both static (Golodetz* et al., 2015; Izadi et al., 2011) and
dynamic (Dai et al., 2017b; Newcombe et al., 2015) scenes to be scanned in real-time. 3D scene recon-
structions have also used sound such as time of flight sensing (Crocco et al., 2016). Meshing and texturing
may include topology denoising, island removal, hull-constrained PSR, occlusion detection, and texturing
Results of reconstruction of 3D geometries can also serve inputs to other learning based algorithms.
For instance, 3D point clouds from depth maps, multimodal MVS, or iterative surface estimation have
been used as inputs to train neural networks for other downstream tasks such as object classification, seg-

mentation, and tracking (Qi et al., 2016a). Reconstruction research has generated large amounts of 3D



scene (Silberman et al., 2012a; Song et al., 2017) and object (Lai et al., 2011; Singh et al., 2014; Wu et al.,
2015b) data that can be used for training vision-based neural networks for classification, segmentation, and

other downstream tasks.

1.2 Scope of this dissertation

There are a number of training datasets, neural network architectures, technologies, and active research
areas for multimodal learning, especially in the area of audio and visual data from video. Applications in
these areas range from Virtual and Augmented Reality, e.g., sound synthesis, reconstruction, inference, etc.
to expanding methods to handle a wider variety of surfaces and scenes, such as illumination, reflectivity,
texture, and occlusion. This dissertation focuses on coupling fluid-structure (chapter 2) and audio-visual
classification (chapter 3), tracking (chapter 4), and reconstruction (chapter 5 and chapter 6) with demon-

strations in multimodal learning and virtual reality.

1.3 Thesis Statement

My thesis statement is as follows:

Coupling multimodal information enhances task performance and processing of audio-visual learning
based methods for fluid-structure sound synthesis, liquid pouring sequences, object tracking, and 3D
reconstructions while also allowing for single mode application for special cases.

To support this thesis, I present four methods; one method to efficiently synthesis sound of objects
containing a liquid, two methods to accurately estimate liquid pouring sequences and track objects using
audio-visual neural networks, and one method to use audio to enhance scene and object reconstructions

using mobile devices.

1.4 Main Results

1.4.1 Sound Synthesis for Fluid-Structure Coupling

Previous sound synthesis research has focused on single systems only, either solid or liquid but not
both. Since not all single mode, sound simulations achieve real-time performance, modeling the variation

in sound from a coupled vibrating fluid-structure system could be computationally expensive. This work



was the first to synthesize sound for a system containing both a rigid body object and liquid (referred to as
a fluid-structure coupling).

In chapter 2, I present a fast and practical method for simulating the sound of rigid body objects that
contain liquid. To maintain real-time, interactive performance, we modify the existing modal synthesis
pipeline by adding pre-processing steps. Those steps are to identify mesh nodes of the object that bound
the liquid and to then modify the mass matrix of the structural object by an amount proportional to the
liquid density and volume.

The main contributions of my work are:

1. Transforming the problem into a single fluid-structure system using the added mass operator;

2. Enhancing the sound synthesis pipeline with pre-processing steps for objects containing a liquid;
3. demonstrating the proposed method in interactive 3D VR applications.

Actual recordings versus synthesized frequencies were compared for varying amounts of liquid and
results were less than 5% relative error. The interactivity of the algorithm was demonstrated with VR appli-

cations of a simulated liquid xylophone and kitchen scene of different containers, liquids, and volumes.

1.4.2 Analyzing Liquid Pouring Sequences via Audio-Visual Neural Networks

Prior work to estimate liquid poured amounts often require predefined amounts in the source container
or rely on visual data. To compensate for vision-based challenges such as occlusion and transparency, this
work uses audio from the pouring sequence to augment audio and visual only methods.

In chapter 3, I introduce audio and audio-visual neural networks in the form of multimodal convolu-
tional neural networks (CNN5s) to perform weight estimation, overflow detection, and content and con-
tainer classification for robots pouring liquids.

The main contributions are:

1. Training, validation, and test data generated from audio recordings and video images with ground

truth measurements from a digital scale

2. Audio-based CNN for multiclass weight estimation and binary classification for overflow detection

by robotic systems



3. Audio-augmented neural network enhancing the audio only based method with fused visual inputs

for robots pouring contents into various target containers
4. Pouring content and target container classification for robots, based on pouring sequence audio data

Upto 91.5% of the audio intervals for the robot pouring sequences were classified within 0.4 oz using
audio-visual data. This resulted in an average error of 0.2 oz. The sound from pouring the liquid was also

used to predict the type of liquid and target container.

1.4.3 Audio-Visual Object Tracking of Multiple Objects

Visually based object trackers can run into challenges when object collide, occlude, or appear similar
but differ in material. By using audio of the impact sounds from object collisions, rolling, etc., an audio-
based technique may be used in conjunction with other neural networks to augment visually based object
detection and tracking methods. In chapter chapter 4, I describe the first use of an audio-visual neural
network for tracking tabletop sized objects and enhancing visual object trackers.

The key contributions of this work include:

1. An end-to-end, jointly trained audio-visual object tracker (AVOT) to enhance visual object tracking

2. Ground truth bounding boxes for virtual scenes from the Sound-20K audio-visual dataset with 1, 2,

and 3 objects

3. Scheduler for object detection re-initialization based on audio onset detection when using multi-

modal tracking

By fusing audio with visual data, the audio-visual object tracker (AVOT) achieves upto 78% inter-
section over union (IoU) post-collision tracking accuracy compared to 69% using state-of-the-art deep

learning visual trackers.

1.4.4 Audio-Augmented Scene and Object Reconstruction

In chapter 5, I introduce echoreconstruction, an audio-visual method that uses reflecting sounds to aid
in geometry and audio reconstruction. Scenes containing open and reflective surfaces often lead to existing

techniques reconstructing objects behind (in the case of transparent glass) or in front of (in the case of



mirrors) the object. By using pulsed audio from a mobile device, inferences from a convolutional network

can detect and estimate depth to the reflecting surface. Key results include:

1. EchoCNN, a fused audio-visual CNN architecture for classifying open/closed surfaces, their depth,

and material

2. EchoReconstruction, a staged audio-visual 3D reconstruction pipeline that uses mobile phones to
enhance scene geometry containing windows, mirrors, and open surfaces with depth filtering and

inpainting based on EchoCNN inferences

3. Semantic rendering of window and mirror in audio-augmented reconstructions based on point of

view (e.g. environment outside of the window or reflected view of a TV)

4. Real and synthetic audio-visual ground truth data for multiple scenes containing windows and mir-

rors in addition to reflection separation data (direct, early, or late reverberations)

Overall, 71.2% of hold out reflecting sounds were correctly classified as an open or closed boundary
and 71.8% of 1 second audio frames were correctly classified as 1 ft, 2 ft, or 3 ft away from the surface
based on audio alone; 89.5% when fused with its corresponding image. Pulsed sounds were emitted a
maximum of 3 feet away to remain in the free field. Beyond that, there will be less noise reduction due to
reflecting sounds in the reverberant field (Egan, 1988).

In chapter 6, I detail a multimodal single and multi-frame LSTM autoencoder for 3D reconstruction
using audio-visual input. Existing methods may experience difficulties in cluttered environments with
multiple objects causing occlusion. To address such limitations, the method adds audio as another input,
specifically impact sounds resulting from object to object or scene interactions. The main contributions of

this work can be summarized as:

1. A multimodal LSTM autoencoder neural network for geometry and material reconstruction from

audio and visual data

2. The resulting implementation has been tested on voxel, audio, and image datasets of objects over a

range of different geometries and materials

3. Experimental results of our approach demonstrate the reconstruction of single sounding objects and

multiple colliding objects in a virtual scene
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4. Audio-augmented datasets with ground truth object tracking bounding boxes

Single view ShapeNet resulted in IoU metrics of 21.2% for audio and 32.6% for audio-visual. 10

Sound20K views resulted in 37.15% and 69.8% IoU for audio and audio-visual respectively.

1.5 Contributions of this dissertation

For sound synthesis: (1) Transforming the problem into a single fluid-structure system using the added
mass operator. (2) Enhancing the rigid-body sound synthesis pipeline with pre-processing steps for objects
containing a liquid. (3) Demonstrating the proposed method in interactive 3D VR applications.

For analyzing pouring sequences: (1) Training, validation, and test data generated from audio record-
ings and video images with ground truth measurements from a digital scale. (2) Audio-based convolutional
neural network for multi-class weight estimation and binary classification for overflow detection by robotic
systems. (3) Audio-augmented neural network enhancing the audio only based method with fused visual
inputs for robots pouring contents into various target containers. (4) Pouring content and target container
classification for robots, based on pouring sequence audio data.

The broad contributions of this dissertation are new real-time fluid-structure coupling methods, new
audio-visual classification and tracking, and prototype audio-augmented object and scene reconstruction

on mobile devices.

1.6 Organization

The remainder of this dissertation is organized as follows. The discussion of fluid-structure coupling
begins with the sound synthesis of objects containing a liquid using the added mass operator in chapter 2.
This is followed by my work on analyzing liquid pouring sequences using audio-visual neural networks
in chapter 3. Next, I cover my method for audio-visual object tracking in chapter 4. Finally, I discuss a
model for using audio on mobile devices to enhance 3D reconstructions of scenes (chapter 5) and objects
(chapter 6). I conclude my dissertation in chapter 7 by presenting a summary of this work, its contribu-

tions, and a discussion of future work.
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