CHAPTER 4: ANALYZING LIQUID POURING SEQUENCES VIA AUDIO-VISUAL'

This chapter presents novel audio-based and audio-augmented, multimodal convolutional neural net-
works (CNNGs), to estimate poured weight, perform overflow detection, and classify liquid and target con-
tainer. Our Pouring Sequence Neural Networks (PSNNs) use the sound from a pouring sequence—a liquid
being poured into a target container to improve classification accuracy for different environments, con-
tainers, and contents of the robot pouring task. They are trained and tested using the Rethink Robotics
Baxter Research Robot. To the best of our knowledge, this is the first use of audio-visual neural networks

to analyze liquid pouring sequences by classifying their weight, liquid, and receiving container.

4.1 Introduction

For robots to perform tasks individually or collaboratively, their ability to sense objects and substances
in their environment is critical, especially when pouring liquids. Robots are increasingly performing more
complicated human tasks, such as household activities, warehouse placements (e.g. Amazon Picking Chal-
lenge (43)), and other detection, recognition, and motion-planning tasks. Many methods for performing
these robotic tasks use, and often primarily rely on, visual feedback and human interaction.

In this work, we propose using auditory cues to enhance learned feedback for robots in liquid pouring
tasks. Audio has been used in robotics for localization of the spatial position of a sound source (180),
navigation (89), autonomous systems (139), sensorimotor learning (25), and locomotion control (165),
to name a few. Here, we investigate using sound to enhance a robot’s ability to estimate poured weights
and types of liquids and containers. Humans are able to roughly sense a change in pitch when filling up
a container (116), and we demonstrate that robots can learn to do the same. With audio-visual neural

networks, we classify weight, pouring contents, and containers for robot pouring tasks.

! This chapter previously appeared as an article in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
The original citation is as follows: Wilson, J., Sterling, A., and Lin, M. (2019a). Analyzing liquid pouring sequences via
audio-visual neural networks. pages 7702—-7709
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Figure 4.1: Our audio-augmented approach performs weight estimation, overflow detection, and content
and container classification in bright environments (left) whereas our audio only based approach can be
used in dark and occluded environments (right). Pouring sequences are recorded using either a smart-
phone or Microsoft Kinect’s built-in microphone array. Training data is generated by assigning digital
scale measurements to discrete audio intervals and tested in experiments using Baxter robot and human
experimenter pouring sequences. Various contents (water, rice, soda, and milk) and target containers (glass
measuring cup, metal cup, Polyphenylsulfone (PPSU) bottle, plastic bottle, plastic cup, and square bowl)
were evaluated.

Until recently, pouring tasks have often used predefined source amounts of a liquid. Now, (42) demon-
strates flow and weight estimation from audio-frequency mechanical vibrations of a robot scooping up and
pouring granular materials and (201) controls pouring with closed-loop visual feedback. Our motivation is
to use audio to augment a robot’s visual sensing, thereby enabling the use of learned audio-visual feedback.
To the best of our knowledge, this is the first use of learned audio-visual feedback to estimate the weight of
poured liquids and classify liquid type and container.

The key contribution of this work is a novel, multimodal CNN for weight estimation, overflow de-
tection, and liquid and container classification. We analyze liquid pouring sequences using audio and
audio-visual variants of our neural network. We demonstrate their ability to compensate for vision-based
challenges such as occlusion and transparency by evaluating on pairs of liquids and containers with hold
out pouring sequences for both robot and human experimenter pouring. Our contributions are summarized

as follows:

1. Training, validation, and test data generated from audio recordings and video images with ground

truth measurements from a digital scale;
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2. Audio-based convolutional neural network for multi-class weight estimation and binary classifica-

tion for overflow detection by robotic systems;

3. Audio-augmented neural network enhancing the audio only based method with fused visual inputs

for robots pouring contents into various target containers;

4. Pouring content and target container classification for robots, based on pouring sequence audio data.

4.2 Related Work

In this section, we discuss some of the state-of-the-art audio and video based classification techniques,
focusing on temporal classification methods, motion planning, and learned estimation methods for the
robot pouring task.

Temporal classification methods: these methods model the dependency, causality, and sequential na-
ture of time series data such as audio. A number of temporal models have been introduced to represent this
history and predict the likelihood of consecutive actions. Typical techniques include Hidden Markov Mod-
els (HMMs) (177), Conditional Random Fields (CRFs) (114), Recurrent Neural Networks (RNNs) (95),
and Long Short-Term Memory (LSTM) (83) networks.

Convolutional filters have also been used for temporal consistency; for example, WaveNet’s (232)
dilated causal convolutions and Temporary Convolutional Networks’ (TCNs) (118) dilated and encoder-
decoder implementations. These models have in common the notion of convolution filters across time,
computational speedup by updating time steps simultaneously rather than sequentially like recurrent net-
works, and frame-based classifications as a function of receptive fields (i.e. fixed-length periods of time).
TCNs replace fully-connected layers with causal convolutional layers and sequential processing with paral-
lel processing given the same filter in each layer. These characteristics along with state-of-the-art accuracy
make TCNs a top choice for audio and visual classification tasks (15).

Motion planning and monitoring: while our work assumes specific robot and container placements,
motion planning for pouring liquids focuses on motion going from start to end targets (166). To monitor
pouring motion, sensory inputs from a chest-mounted camera and a wrist-mounted IMU sensor have been
used (250). Related work has also categorized objects based on size, material, and other features (70). For

example, whether a container is fillable can be determined by using state sequences and a hierarchical spec-
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tral clustering algorithm (236). This work is also relevant to our research by combining two modalities-
sound and proprioception-to improve categorization accuracy.

Learning based methods for pouring liquids: (42) is an audio based method that estimates the
weight of granular material scooped. The technique is also used for pouring a desired material amount.
The approach uses a recurrent neural network with convolutional layers and audio spectrogram input. A
benefit of our multimodal approach is that the audio augments the visual data and sample intervals of
the pouring sequence are evaluated independently (Table 4.2 for baseline comparisons). Analyzing the
marginal benefit of recurrent layers in our neural networks is future work. Other learning based meth-
ods are based on human demonstrations (257; 258). These methods model a variety of pouring motions

involving shaking and using both robot arms.

Spectrogram of a plastic bottle filling up with water -

Frequency (kHz)

Time (s)
Figure 4.2: Spectrogram from a recorded pouring sequence. The frequency of a container filling up can
be modeled based on its Helmholtz resonance (also referred to as a resonant cavity) (240). This resonant
frequency increases over time as an object fills up with water as its cavity volume V. decreases, supporting
the use of an audio-based feature for the robot pouring task.

Visual control for pouring liquids: estimate liquid levels by identifying which pixels contain a liquid.
(201) uses a convolutional network to identify liquid pixels from RGB images and a second stage recurrent
CNN-LSTM to estimate liquid volume. (53) is a probabilistic approach using RGB-D to detect liquid lev-
els. These estimation methods allow for the source container to carry amounts greater than that which the

target container can receive because they can be used to control pouring without the need for specialized

S€Nnsors.
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4.3 Technical Approach

Our neural networks use audio and image data for weight estimation, overflow detection, and poured
content and container classification, enhancing learning with sound alone or in conjunction with visual
data. By augmenting visual data with sound, we can enhance a robot’s ability to detect and perform tasks
with transparent or highly reflective containers and liquids in challenging and cluttered environments. To
the best of our knowledge, this is the first use of an audio-augmented neural network to analyze liquid
pouring sequences in robotics by estimating the weight of a pouring task and classifying poured contents
and containers.

Our method allows for a source container to contain amounts greater than the capacity of the target
container, as our Pouring Sequence Neural Networks (PSNNs) perform multiclass liquid, container, and
weight classification and binary classification for overflow detection. Our audio-based approach uses a
microphone for input, which can be found in any modern smartphone or Microsoft Kinect. Intervals of
recorded audio are assigned a discrete weight class based on digital scale measurements for ground truth
labeling. Training is performed offline, while classifications and overflow detection are the results of our
neural network predictions.
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Figure 4.3: As the Baxter robot pours liquid from source to target container, a microphone records the
audio of the target object filling up with liquid and a camera captures video images. The audio is split
into 0.2 second intervals to match the digital scale sampling rate. These audio intervals are converted
into mel-scaled spectrograms and passed through a multimodal CNN Pouring Sequence Neural Network
(we refer to as PSNN) comprised of 2D convolutional, max pooling, fully connected, and softmax layers.
Multi-class classification is used for discrete weight estimation (classes of 0.2 oz increments) and liquid
and container prediction while binary classification is used for overflow detection. The network’s output
may be used as a very simple stop command for the robot pouring task. Our method is trained on specific
target container and content pairs.
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4.3.1 Task Overview

Our task is to use a mel-scaled? spectrogram of sound and video images of the target container to
predict weight, liquid, and container at a point in time during a pouring sequence. A spectrogram is a two-
dimensional representation of acoustic energy over frequency and time. Once target weight is reached or
overflow detected, the robot can be signaled to stop pouring and return to its initial position. This task is
more difficult than previous work in that it pours a specific amount rather than simply pouring the entire
contents of the source. Moreover, our networks utilize audio information to augment a robot’s visual data.
The use of audio features are reinforced by the change in audible frequency during a pouring sequence,

known as the Helmholtz resonance.

4.3.2 Audio Feature Analysis: Helmholtz Resonance Frequency

As depicted in Fig. 4.2, the audio frequency increases as a container fills up with liquid, forming the
basis of an audio-based feature for weight estimation and overflow detection. This increase in frequency

can be modeled based on the Helmholtz resonance (also referred to as a resonant cavity) (240). This reso-
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where f.. is proportional to the speed of sound in a gas ¢ and square root of the cross section area s;, of

nant frequency, f,es is calculated as:

the container neck, divided by cavity volume V. and neck length /,,. When an object or liquid of volume V},
is placed/poured into the container, the cavity volume V. decreases by that amount. By substituting V. — V),

for V., then we can solve for poured volume V), given V., f.s, and corrected port l;, (181).

V=V, - —P (4.2)
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While the resonant frequency adds justification for an audio-based network feature, it assumes the

container itself will be symmetric, uniform width, and of a similar shape. Thus, we implement neural
network based classifications that are trained on specific container and liquid pairs with holdout pouring

sequences to relax some of these constraints.

2 The mel scale is a perceptually linear scale of pitch.
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Example pouring sequence
Weight Est Overflow
Audio Truth Pred Truth Pred
0.2s 0.0 0.0 NotFull NotFull
0.4s 0.0 0.0 NotFull NotFull
0.6s 0.0 0.0 NotFull NotFull
0.8s 0.0 0.0 NotFull NotFull
1.0s 0.1 0.0 NotFull NotFull
1.2s 04 0.2  NotFull NotFull
1.4s 1.0 0.8 NotFull NotFull
1.6s 1.5 1.6 NotFull NotFull
1.8s 2.7 2.4 NotFull NotFull
2.0s 4.2 4.2  NotFull NotFull
2.2s 5.8 6.4  NotFull NotFull
2.4s 7.0 7.2 NotFull Full
2.6s 9.0 8.6 NotFull Full
2.8s 11.0 10.6 Full Full
3.0s 11.8 114 Full Full
3.2s 11.8 11.8 Full Full

Table 4.1: Ground truth and predicted labels for a pouring sequence with intervals of 0.2, 0.5, and 1 sec-
ond; 0.2 sec performed best. As length increases, there’s a larger variation of weight and frequencies for
each training example.

4.3.3 Dataset Generation

We recorded 500 pouring sequences in total, for six target containers of varying material and geometry,
each with three liquids and rice. Each container-liquid combination consisted of 20 pouring sequences.

3 hours of audio and video was captured to use 22,239 samples of 0.2 sec. Data was captured using an
iPhone, Android, and Microsoft Kinect. Both robot and human experimenter pouring was performed.

For poured weight estimation, digital scale measurements were captured at a rate of 5 readings per
second and synchronized to the audio and video recordings. The audio sampling rate was 256 kb/s and the
video frame rate was 30 per second. Digital scale readings were visible in the video and used for ground
truth verification. However, since these video images were also an input into our audio-augmented net-
work, they were cropped to remove the digital scale display and robot arm as to not influence training. For
overflow detection, pouring sequences used for training were stopped at the time of overflow to assign full
labels to the last few seconds of audio and the remaining intervals as not full. For both weight and overflow
prediction, ground truth labels were assigned to discrete 0.2 sec intervals (or frames) for audio and visual

data. Fig. 4.3 describes our neural network structure and Table 4.1 shows an example pouring sequence.
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Figure 4.4: Audio-visual inputs 2D mel-scaled spectrogram (a) and cropped grayscale image (b). For
opaque objects (c), visual information may be occluded. In these cases, PSNN-A outperforms PSNN-V
and PSNN-AV. For transparent containers (d-e), our PSNN-V and PSNN-AV networks are able to detect
visual deviations for both opaque (d) and transparent (e) pouring contents. The robot arm and digital scale
LED are cropped out of images as to not influence network learning (b).

4.3.4 Neural Network Architecture of Audio-based Method

Our audio-based neural network model, also referred to as Pouring Sequence Neural Network (PSNN-
A) shown in Fig. 4.3, is trained on mel-scaled spectrograms for audio intervals at the digital scale sampling
rate of 0.2 seconds. A single convolutional layer followed by two dense layers with feature normalization
performs optimally on our classification tasks (Table 4.2). We use consecutive full classification labels
to indicate when to stop pouring for overflow detection. Section 4.4 covers our experiments and results
against baseline methods. Section 4.5 offers analysis and insights into our audio-based (PSNN-A) and
audio-augmented (PSNN-AV) convolutional neural networks.

Audio input: two audio input forms were considered — they are a 1D raw audio data and a 2D mel-
scaled spectrogram. Using spectrograms as audio input has been shown to reduce over-fitting and improve
accuracy (91). They are computed using a short-time Fourier transform with a Hann window of 2048 sam-
ples and an overlap of 25%. Frequency and time axes are downsampled and mapped into 64 mel-scaled
frequency bins and 25 time bins to match the logarithmic perception of frequency (220). We downsample
the mel-spectrogram audio input and use a convolution kernel with an increased frequency resolution to

reduce over-fitting.

4.3.5 Neural Network Architecture of Audio-Visual Method

The input size for audio and visual data have equivalent sizes (25 by 64 pixels). The inputs were de-

signed this way to highlight the importance of estimating weight by changing vertical dimensions of fre-
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Water Pouring Sequence into Glass Bottle by Baxter Robot
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Figure 4.5: Demo video of liquid weights predicted by our PSNN neural network for a robot pouring
sequence. (Left) video. (Top Right): actual versus predicted weights over time. (Bottom Right): audio and
visual neural network inputs. Supplemental materials available at http://gamma.cs.unc.edu/PSNN/

quency for audio and height for images respectively. Visualizations of inputs that maximize activation
illustrate these distinguishing features (Fig. 4.9). Equivalence by concatenating inputs or fusing based on a
bilinear model (261) also allows the network to appropriately weight audio, visual, and audio-visual, given
transparent or opaque target containers and contents.

Visual input: for our visual and audio-augmented networks, video images from a mobile device were
assigned to corresponding audio intervals and digital scale recordings. To improve training and the ef-
fectiveness of our classification, visual data was augmented using techniques discussed in (169) such as
cropping. Correctly aligning the multimodal inputs with different sampling rates was also important as to

not degrade neural network performance.

4.3.6 Implementation Details

All models were implemented with Tensorflow (2) and Keras (38). Parameters were learned using cate-
gorical cross entropy loss with Stochastic Gradient Descent. Training was performed using ADAM (105)
and run with a batch size of 64, with remaining hyperparameters tuned manually based on a separate vali-
dation set before final test set evaluation. Only audio-based methods were evaluated for overflow detection

as incorporating visual information oversimplifies the task. Since there are fewer Full examples in a pour-
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Weight Estimation by Method for Robot and Human Experimenter Water Pouring Sequences
PPSU Bottle, Robot Pour, N=20 PPSU Bottle, Human Pour, N=20
Method Input | +/-0.40z AveErr Overflow | +/-0.40z Ave Err  Overflow

kNN (44) A 66.4% 1.9 oz 71.9% 54.2% 2.7 oz 62.5%
Linear SVM (23) A 4.6% 3.8 0z 50.0% 13.6% 430z 50.0%
SoundNet5 (12) A 46.0% 190z 50.0% 42.4% 3.6 oz 50.0%
SoundNet8 (12) A 11.2% 330z 50.0% 29.2% 4.7 oz 50.0%
TCN (118) A 78.4% 0.9 oz 50.0% 40.1% 370z 50.0%
PSNN-A (Ours) A 88.0% 0.5 0z 78.1% 75.8% 1.9 oz 64.3%
ImageNet (51) A" 83.8% 0.3 oz —* 71.2% 0.4 oz —*
PSNN-V (Ours) A% 79.9% 0.6 oz —* 66.5% 0.6 oz —*
PSNN-AV Cat (Ours) AV 91.5% 0.2 oz —* 86.4% 0.2 oz —*
PSNN-AV MFB (Ours) | AV 88.8% 0.2 oz —* 71.2% 2.10z —*

Table 4.2: Multiple models (ours is PSNN) and baselines were evaluated for audio and audio-visual based
liquid pouring analysis. PSNN-AV correctly classified weight within 0.4 oz for up to 91.5% for robot and
86.4% of the human pouring sequences, outperforming all audio- and visual-only methods. This resulted
in an average error of 0.2 oz and 0.2 oz respectively. * Only audio-based neural networks were evaluated
for overflow as visual information oversimplified the task.

ing sequence, audio data was balanced by randomly selecting an equal number of Full/Not Full audio

intervals. Our datasets are available to aid future research in this area.

4.4 Results

We compared our method against baselines by conducting quantitative experiments on a variety of
target containers, liquids, and rice. All baselines are trained on the same input data in order to provide a
fair comparison. Deep network SoundNet (12) is included as a commonly known sound-based classifier
but it requires much more data to train. Pouring sequences were randomly divided into 80% training and
20% test sets. All target containers and pouring contents were included in training. Test data was based on

hold out pouring sequences, which were removed from training and used only for testing.

4.4.1 Data Capture and Training

Video was recorded using a Samsung Galaxy Note 4 running Android 6.0.1, iPhone 6, and Microsoft

Xbox 360 Kinect Sensor. Training was performed using a TITAN X GPU running on Ubuntu 16.04.5 LTS.

34



Combined Robot and Human Experimenter Pouring Sequences

Combined Container Dataset, N=40

Method Input | +/-0.40z Ave Err Overflow
kNN (44) A 58.8% 2.4 0z 77.1%
Linear SVM (23) A 12.7% 4.0 oz 60.4%
SoundNet5 (12) A 21.2% 330z 50.0%
SoundNet8 (12) A 35.4% 4.4 oz 50.0%
TCN (118) A 49.6% 2.6 0z 50.0%
PSNN-A (Ours) A 80.8 % 1.3 0z 83.3%
ImageNet (51) A% 68.1% 1.1 oz —*
PSNN-V (Ours) \" 78.0% 0.4 oz —*
PSNN-AV Cat (Ours) AV 82.0% 030z —*
PSNN-AV MFB (Ours) | AV 86.7 % 0.2 oz —*

Table 4.3: Evaluation results for the combined container dataset.
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Figure 4.6: PSNN-AV: confusion matrix comparing actual to predicted poured amounts by classes of 0.2
oz (about 6 ml) weight increments. Class O represents empty; Class 1, 0.2 oz; and so on. Using audio
and visual improves accuracy, especially at the beginning and end of the pouring sequence. Our system
achieves up to 91.5% (Table 4.2) and 91.2% (Table 5.2) classification accuracy to within +/- 0.4 oz using
PSNN-AV.
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4.4.2 Pouring Sequence Experiments

Our experiments contained both human experimenter and robot pouring sequences. While robot pour-
ing was varied by adjusting source container volume, experimenter pouring sequences offered additional
variability, e.g. unfixed starting positions. All of our robot experiments were performed on a Rethink
Robotics Baxter Research Robot, shown in Fig. 4.1. Pouring consisted of experimenters using both hands
to hold the source container for human pouring and the Baxter robot’s 7 DOF left arm for robot pouring
sequences. We used the Dymo Digital USB Postal Scale for ground truth weight estimates and a Samsung
Galaxy Note 4 for video recording.? According to the digital scale’s user guide, its accuracy is +/- 0.2 oz
when under and +/- 0.4 oz when over half its capacity respectively.

For robot experiments, the target container rests on a tabletop, positioned slightly to the side and below
the source container. The source container is fixed to the robot gripper and is pre-filled with an amount not
known to the robot but greater than the amount required to fill the target container.

After a pouring sequence is initiated, audio from the target container filling up is recorded with a smart-
phone. Each audio interval is transformed into a mel-scaled spectrogram and input into our neural network
model for weight and overflow classification. Once the desired pour amount is classified or overflow is

detected, the robot can be signaled to stop the pouring sequence and return to its initial position.

4.4.3 Our PSNN Accuracy vs. Baseline Results

As illustrated in Table 4.2 and Fig. 6.8, up to 91.5% of the audio intervals for the robot pouring se-
quence into a PPSU bottle were classified to a weight class within 0.4 0z using our audio-augmented
convolutional neural network (PSNN-AV); likewise, 86.4% of the human pouring sequence. This resulted
in an average error of 0.2 oz and 0.2 oz respectively. We also performed an evaluation on a combined pour-
ing dataset containing both robot and human pouring sequences to explore the opportunity for transfer
learning. A detailed analysis of these results will be discussed in Section 4.5.

Table 4.4, Table 5.2, and Fig. 4.7 demonstrate our method’s ability to be trained on different liq-
uids and types of containers, including asymmetric objects. First, our audio-based PSNN-A network

outperforms all baseline methods for audio only input. Second, when pouring content is visible, audio-

3 Audio and video was also captured using an iPhone 6 and Microsoft Xbox 360 Kinect Sensor with built-in microphone array for
comparison.
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augmented (PSNN-AV) outperforms audio-based (PSNN-A). This is especially true for more viscous

liquids, such as milk, which make less noise during a pouring sequence.

Classification Accuracy for Plastic Bottle Weight
Estimates via PSNN-AV and Human Pouring

Pl. Bottle | +/-0.20z +/-040z +/-0.60z
Milk 57.8% 63.9% 68.4%
Rice 49.1% 64.4% 73.0%
Soda 73.0% 82.9% 88.4%
Water 69.6% 77.2% 84.0%

Table 4.4: Various pouring contents were evaluated. Rice was most difficult to precisely predict within +/-
0.2 oz.

100%
— g Fa .
B = = S _K_%*

Ev .
a" 6% £
@ . 3%
LAk
8]
& 20%
0%
Milk Rice Soda Water

M +/-02cz B+/-040z @ +/-060z

Figure 4.7: Various pouring contents evaluated with PSNN-AV. This graph displays the percentage of
classified weights within +/- 0.2 oz (blue), 0.4 oz (orange), and 0.6 oz (gray) of ground truth. For instance,
soda and water weights were easier to estimate than rice and milk.

We should note, however, that due to the relatively small size of the training set, our neural networks
work well for target container and pouring content pairs that are described in this paper. Since all liquid-
container pairs are included in training with hold-out pouring sequences, future work is needed for general-

ization to unseen and untrained target containers or pouring contents.

4.4.4 Liquid and container classification

Table 4.7 highlights PSNN-A’s ability to classify liquid and target container from pouring sequence
audio. Higher accuracy can be achieved by excluding intervals before and after pouring when audio is not
present, or by using PSNN-AV. For future work, we plan to investigate if accuracy varies over time. For

instance, is content classification accuracy higher in the beginning of a pouring sequence?
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Accuracy by Method, Input, and Target Container for Robot Pouring Sequences

Transparent Transparent Opaque
Plastic Cup Glass Meas. Cup Porcelain Bowl
Water Water Water
Method In +/-0.4 oz/Err +/-0.4 oz/Err +/-0.4 oz/Err
kNN A | 347% /3.4 0z 259% /3.6 oz 48.1% /2.2 oz
Linear SVM A 5.4% /3.4 oz 8.0% /4.8 oz 8.9% /3.3 oz
SoundNet5 A | 14.0%/3.40z 53% /4.2 oz 6.4% /4.4 oz
SoundNet8 A | 11.6%/3.20z 20.5% /6.1 oz 9.4% /3.5 0z
TCN A | 50.0%/1.50z 39.5% /1.9 oz 43.0% /2.0 oz
PSNN-A (Ours) A [591% /120z 468% /120z 60.9% /1.3 0z
ImageNet V | 645%/060z 51.7%/1.20z 29.4% /3.9 oz
PSNN-V (Ours) V [798% /030z 639% /050z 36.2% /2.7 oz
PSNN-AV Cat (Ours) AV | 79.0% / 030z 70.0% /0.4 oz 40.0% / 3.4 oz
PSNN-AV MFB (Ours) | AV | 69.2%/040z 449%/170z 42.6% /2.6 oz

Table 4.5: Multiple network models and baselines were evaluated. Ours is PSNN. Headings indicate
distinguishing properties being evaluated. The PSNN networks outperform baseline networks on the same
type of inputs, while the multimodal PSNN-AV network outperformed each independent modality.

Classification Accuracy and Average Error Continued

PSNN-V (Ours)

25.3% /4.6 oz

68.9% /0.4 oz

83.7% /0.4 oz

PSNN-AV Cat (Ours)

48.5% /1.9 oz

71.8% /0.4 oz

91.2% /0.2 oz

Opaque Transparent Transparent
Metal Cup PPSU Bottle PPSU Bottle
Water Milk Rice
Method In +/-0.4 oz/Err +/-0.4 oz/Err +/-0.4 oz/Err
kNN A | 41.0%/250z 382%/270z 484%/1.70z
Linear SVM A 70%/410z 332%/3.50z 12.8% /2.3 0z
SoundNet5 A 4.4% /4.7 oz 9.7% /3.0 oz 9.6% /2.4 0z
SoundNet8 A | 13.1%/420z 13.4%/580z 8.8%/3.40z
TCN A | 51.5%/1. 70z 34.0%/390z 52.7%/1.70z
PSNN-A (Ours) A | 659% /0.70z 45.0% /1.80z 74.1% /1.0 0z
ImageNet V | 200%/6.10z 651%/0.40z 77.0% /0.4 0z
A"
AV
AV

PSNN-AV MFB (Ours)

65.5% /1.2 oz

82.4% /0.2 oz

81.8% /0.3 oz

Table 4.6: Varying type of liquid poured, multiple network models and baselines were evaluated for weight
estimation of robot pouring sequences.
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Classification Accuracy for Pouring Content via Human
Pouring and Target Container via Robot Pouring

Pl. Bottle Content % | Water Container %
Milk 86.5% Plastic Bottle (0) 99.6%
Rice 79.6% Metal Cup (1) 88.4%
Soda 72.4% PPSU Bottle (2) 69.2%
Water 97.9% Glass Measuring Cup (3) 64.2%
Porcelain Square Bowl (4) 61.3%
Plastic Cup (5) 78.5%

Table 4.7: PSNN-A predicts pouring content and target container with high accuracy, learning features
from audio to correctly classify liquid and container from pouring sequence data.

We concluded our testing with an ablative analysis for hyper-parameter optimization (e.g. training
epochs, interval length, etc.). Our pouring sequence dataset with audio and visual data is made available to

support future research and evaluation in this area of robotics.

1.0

Actual Target Container

Predicted Target Container
Llo.0

Figure 4.8: Confusion matrix of actual and predicted container classifications based on audio-only pouring
sequences. It shows PSNN-A learning to classify between objects of the same material (e.g. Plastic Bottle
and Cup) and same type (Plastic Bottle and PPSU Bottle). 0-5 labels in Table 4.7.

4.5 Analysis

In this work, we implement multimodal neural networks based on audio and visual data to the robotic
task of weight estimation for pouring a liquid, overflow detection, and liquid and container classification.

Our PSNN neural networks outperform existing methods in the experiments that we have performed. Our
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contributions include new audio-visual datasets and multimodal neural network architectures designed for

the robot pouring task. In this section, we analyze the improved performance of using our methods.

Frequency (bin)

(©) (d)

Figure 4.9: Audio activations: example pouring sequence spectrograms (a). Audio inputs that would max-
imize our audio-based neural network activation for a couple of specific weights (b). This demonstrates
PSNN-A’s ability to learn changes in frequency to distinguish between weight classes. Visual activations:
example grayscale, cropped visual input (c). Visual input that would maximize the activation of our visual
neural network (d). This shows PSNN-V’s ability to learn visual features for distinguishing between
classes for visible pouring contents (Fig. 4.4).

4.5.1 Activation Maximization Visualizations

We analyzed activation maximizations to visualize the spectrogram audio and visual input which
would produce the highest activation for a given volume class. Fig. 4.9 shows activation maximization
for the audio-based PSNN-A network as additional volume is poured (a-b) and the visual-based PSNN-V

network (c-d). Both highlight the importance of audio (frequency) and visual (height) respectively.

4.5.2 Model Comparisons

For opaque target containers, the audio only PSNN-A performs the best compared to PSNN-V and
PSNN-AV due to occlusion. For transparent target containers, multimodal PSNN-AV provides the maxi-
mum classification accuracy and minimum average error. Even for a quiet, viscous liquid like milk, aug-
menting visual data with audio outperformed audio or visual only with 82.4% accuracy and 0.2 oz average

error compared to 45.0% and 68.9% respectively. (Table 5.2).
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4.5.2.1 PSNN-A Normalized

Normalizing the features allows for a more symmetric optimization between frequency and time given
a mel-scaled spectrogram input. Scaling is important to normalize the differences in feature scale. When
feature scaling is not applied, then gradient descent may require a smaller learning rate to ensure that the

optimization converges and does not over step the minimum.

4.5.2.2 PSNN-A and Temporal Convolutional Networks (TCN)

Our methods outperform time distributed baselines because while the pouring task is sequential, it
does not rely as heavily on previous inputs since each 0.2 second spectrogram encodes the current state.
Furthermore, time distributed methods may overfit and fail to cover more general and inconsistent pouring
behavior. PSNN can evaluate inputs independently since each mel-scaled spectrogram already encodes

historical information given a frame-based interval.

4.5.2.3 Robot and Human Poured

Given an equal number of training examples and epochs, robot pouring sequences are more accurate
than human poured (Table 4.2). In other words, robot pouring sequences require less data and training time
because of more uniform pouring sequences, producing more consistent audio and visual data for each
weight class. Additional analysis of the impact pouring rates have on accuracy will be further investigated

in future work.

4.5.2.4 Combined Pour Dataset

For TCN and PSNN, the combined dataset of robot and human pouring sequences mostly performs
medially as compared to each separately (Table 4.2). For PSNN-V, however, additional visual data of a
combined dataset performs better with 0.4 oz average error compared to 0.6 oz for both robot and human
pouring. This implies visual data is less affected by pouring consistency than audio, benefiting from addi-

tional yet mixed data.
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4.5.2.5 Interval Length

Audio sampling intervals of 0.2, 0.5, and 1 second were evaluated. 0.2 is the minimum based on the
digital scale sampling rate. Faster intervals performed better, which is to be expected since the interval
is assigned a single ground truth weight and smaller time intervals would represent a smaller change in
poured amount over that time. As the length increases, the interval likely has a larger variation of frequen-

cies for each training example.

4.6 Conclusion and Future Work

We present novel, audio-based and audio-augmented neural networks to estimate poured weight, per-
form overflow detection, and classify pouring liquid and target container based on pouring sequence audio-
visual data. By recording the sound of the pouring sequence as the target container fills up, an audio-based
feature can be applied to different containers and liquids for the robot pouring task. Our method is trained
on specific target container and content pairs using both human and robot pouring sequences and is tested
on the Baxter robot. We also evaluate our dataset on a combined container dataset and make our audio-
visual data available for future research. To our knowledge, this is the first use of audio-visual neural
networks to analyze liquid pouring sequences by classifying weight, liquid, and target container.

Future Directions: to increase accuracy beyond current performance, we plan to analyze augmentations
of our audio data with environmental, room acoustics, and other alterations. As the task involves temporal
data, sequential layers can be introduced into the neural network model. This may be especially helpful
for audio only PSNN-A classification at the beginning and end of pouring sequences when there are no
pouring sounds. In addition, we can compare against lower-dimensional parameterizations of the sound
such as audio features like spectral centroid, skew, kurtosis, and rolloff. Comparison with model-based
methods when target container geometry is known may shed new insight as well.

Our current neural networks do not generalize to unseen target containers or pouring contents. We plan
to research ways to generalize our approach, which may involve multitask learning, increasing the size
of our training set, adding more audio and visual data augmentations, or incorporating synthetic pouring
sequences. Using a multiple output neural network rather than separately trained neural networks for
poured weight, content, and target container classification may also help as well as using a ratio of volume

over the target container volume or a combination of all of the above.
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Finally, we will explore if our approach can be applied to other granular materials and liquids in ad-
dition to rice and the liquids that we’ve tested to date. Furthermore, we plan to evaluate if container size
and function (e.g. fillable or not) can be determined by using the spectral hierarchical clustering algo-

rithm (236) or PSNN to categorize objects based on size, material, and other features (70).
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