CHAPTER 6: AUDIO-AUGMENTED SCENE RECONSTRUCTION ON MOBILE DEVICES!

This chapter describes echoreconstruction, an audio-visual method that uses the reflections of sound to
aid in geometry and audio reconstruction. The mobile phone prototype emits pulsed audio while recording
video for RGB-based 3D reconstruction and audio-visual classification. Reflected sound and images from
the video are input into our audio (EchoCNN-A) and audio-visual (EchoCNN-AV) convolutional neural
networks for surface and sound source detection, depth estimation, and material classification. The infer-
ences from these classifications enhance scene 3D reconstructions containing open spaces and reflective

surfaces by depth filtering, inpainting, and placement of unmixed sound sources in the scene.

6.1 Introduction

Reconstruction techniques have enabled significant contributions in detection (117), segmentation (67;
9), and semantic understanding (217). They have also been used to generate large-scale, labeled datasets
of object (252) and scene (48) geometric models to further aid training and sensing in a 3D environment.
However, scenes containing open and reflective surfaces, such as windows and mirrors, can present a

unique set of challenges. First, they are difficult to detect and reconstruct due to their transparency and

! This chapter is currently under review.

Figure 6.1: Left: ground truth image. Before (Middle) and after (Right) audio-augmented rendering of an
indoor scene with open and closed reflective surfaces. The reconstruction is enhanced by EchoCNN infer-
ences of surface detection, depth estimation, and material classification based on audio-visual reflecting
sound and image inputs.
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high reflectivity. Distinguishing between glass (e.g. window) and an opening in the space is an important
part of the audio-visual experience. Finally, illumination, background objects, and min/max depth ranges
can be confounding factors. While advances have been made to account for these challenging surfaces
(213; 242; 33), our work augments these state-of-the-art visual methods by adding an audio context of
surface detection, depth, and material estimation.

Previous work has used sound to better understand objects in scenes. For instance, impact sounds from
interacting with objects in a scene to perform segmentation (9) and neural networks to emulate the sensory
interactions of human information processing (268). Audio has also been used to automatically compute
material (191), object (268), scene (202), and acoustical (224) properties. Better still, using both audio and
visual sensory inputs has been shown to be even more effective; for example, multi-modal learning for
object classification (220; 246) and object tracking (244).

Fusing multiple modalities, such as vision and sound, provide a wider range of possibilities than ei-
ther single modality alone. In this work, we demonstrate that augmenting vision-based techniques with
audio, referred to as “EchoCNN,” can detect open and reflective surfaces, its depth, and material, thereby

enhancing 3D object and scene reconstruction. We highlight some key results below:

EchoCNN, a fused audio-visual CNN architecture for classifying open/closed surfaces, their depth,

and material;

* EchoReconstruction, a staged audio-visual 3D reconstruction pipeline that uses mobile phones to
enhance scene geometry containing windows, mirrors, and open surfaces with depth filtering and

inpainting based on EchoCNN inferences;

* Semantic rendering of window and mirror in audio-augmented reconstructions based on point of

view (e.g. environment outside of the window or reflected view of a TV);

* Real and synthetic audio-visual ground truth data for multiple scenes containing windows and mir-

rors in addition to reflection separation data (direct, early, or late reverberations).

6.2 Related Work

Previous research in 3D reconstruction, audio-based classifications, and echolocation are discussed in

this section in addition to existing techniques for reconstructing open and reflective surfaces.
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Figure 6.2: Top row: closed window in winter. Bottom row: opened in spring. Column I: mobile echore-
construction prototype; the bottom phone emits pulsed audio and performs a RGB-based 3D reconstruc-
tion (live (225) or photogrammetric (144)); the top phone records video. Column 2: initial reconstruction
based on state-of-the-art commercially available Astrivis app. Column 3: our audio-visual EchoCNN
convolutional neural network classifies open or closed surface, depth, and material. Column 4: semantic
reconstruction of the window accounting for EChoCNN inferences.

6.2.1 3D reconstruction

Object and scene reconstruction methods generate 3D scans using RGB and RGB-D data. For example,
Structure from Motion (SFM) (241), Multi-View Stereo (MVS) (205), and Shape from Shading (264)
are all techniques to scan a scene and its objects. Static (154; 67) and dynamic (155; 49) scenes can also
be scanned in real-time using commodity sensors such as the Microsoft Kinect and GPU hardware. 3D
scene reconstructions have also been performed with sound based on time of flight sensing (46). Not only
has this previous research generated large amounts of 3D scene (209; 217) and object (212; 115; 252)
data, they also benefit from these datasets by using them for training vision-based neural networks for
classification, segmentation, and other downstream tasks. Depth estimation algorithms (57; 4; 33) also

create 3D reconstructions by fusing depth maps using ICP and volumetric fusion (93).

6.2.1.1 Glass and mirror reconstruction

Reflective surfaces produce identifiable audio and visual artifacts that can be used to help their de-

tection. For example, researchers have developed algorithms to detect reflections in images taken through
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Example 3D Reconstruction Methods
Type Methods
Active (RGB-D) KinectFusion, DynamicFusion, BundleFusion
Passive (RGB) SLAM, SFM, (225), ScanNet, (242)

Stereo MVS, StereoDRNet
Lidar (100)
Ultrasonic (265)

Time of flight  (46)

Table 6.1: 3D reconstruction methods by type such as passive (RGB), active (RGB-D), or other sensor (e.g.
ultrasound, lidar, etc.); single or multiple views; and static or dynamic scenes.

glass using correlations of 8-by-8 pixel blocks (208), image gradients (108), and two layer renderings (213). (222)
used ultrasonic sensor logic to track continuous wave ultrasound and (265) to detect obstacles such as

glass and mirrors by using frequencies outside of the human audible range. More recently, reflective sur-
faces have been detected by utilizing a mirrored variation of an AprilTag (163; 237). (242) use the reflec-

tive surface to their advantage by recognizing the AprilTag attached to their Kinect scanning device when

it appears in the scene. Depth jumps and incomplete reconstructions have also been used (136). However,
vision based approaches require the right illumination, non-blurred imagery, and limited clutter behind

the surface that may limit the reflection. We show that sound creates a distinct audio signal, providing
reconstruction methods complementary data about the presence of windows and mirrors without additional

SEnsors.

6.2.2 Acoustic imaging and audio-based classifiers

We begin with an introduction into sound propagation, room acoustics, and audio-visual classifiers.

Acoustics: various models have been developed to simulate sound propagation in a 3D environ-
ment, such as wave-based (142), ray tracing based (195), sound source clustering (228), multipole equiv-
alent source methods (98), and single point multipole expansion (272), representing outgoing pressure
fields. (66) uses acoustics and a smartphone for an app to detect car location and distance from walking
pedestrians using temporal dynamics. (20) further discusses theory and applications of machine learning
in acoustics. Computational imaging approaches have also used acoustics for non-line-of-sight imag-
ing (127), 3D room geometry reconstruction from audio-visual sensors (101), and acoustic imaging on a
mobile device (137). To reconstruct windows and mirrors, our work uses room acoustics given the surface

materials of the room (202) and distance from sound source. However, prior work and downstream pro-
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Figure 6.3: Staged approach to enhance scene and object reconstruction using audio-visual data. Our
echoreconstruction prototype consists of two smartphones - one recording (top) and one emitting/recon-
structing (bottom). As the bottom smartphone moves to reconstruct the scene and emits 100 ms pulsed
audio (Section 6.3.3), the top smartphone is used to record video of the direct and reflecting sound. The
receiving audio is split into 1.0 second intervals to allow for reverberation. These audio intervals are con-
verted into mel-scaled spectrograms and passed through a multimodal echoreconstruction convolutional
neural network (we refer to as EchoCNN) comprised of 2D convolutional, max pooling, fully connected,
and softmax layers. EchoCNN classifications inform depth filtering and hole filling steps to resolve planar
discontinuities in scans caused by reflective surfaces, such as windows and mirrors. Binary classification
is used to predict if a window is open or closed. Multi-class classification is used for depth and material
estimation.

cesses often require a watertight reconstruction which can be difficult to generate in the presence of glass.
Our approach addresses these issues using an integrated audio-visual CNN that can detect discontinuity,
depth, and materials.

Audio-based classification: using principles from sound synthesis, propagation, and room acoustics,
audio classifiers have been developed for environmental sound (64; 170; 198), material (9), and object
shape (268) classification. Audio input can take the form of raw audio, spectral shape descriptors (145; 45;
215), or frequency spectral coefficients that we also adopt in our method.

Audio-visual learning: similar to its applications in natural language processing (NLP) and visual
questing & answering systems (103; 102; 74), multi-modal learning using both audio-visual sensory inputs
has also been used for classification tasks (220; 246), audio-visual zooming (152), and sound source sep-
aration (59; 120) which have also isolated waves for specific generation tasks. Although similar in spirit,
our audio-visual method, “Echoreconstruction” differs from the existing methods by learning absorption

and reflectance properties to detect a reflective surface, its depth, and material.
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6.3 Technical Approach

In this work, we adopt “echolocation” as an analog for our echoreconstruction method. According
to (56), echo is defined as distinct reflections of the original sound with a sufficient sound level to be
clearly heard above the general reverberation. Although perceptible echo is abated because of precedence
(known as the Haas effect) (131), returning sound waves are received after reflecting off of a solid surface.
We use these distinct, reflecting sounds to design a staged approach of audio and audio-visual convolu-
tional neural networks. EchoCNN-A and EchoCNN-AV can be used to estimate depth based on reverber-
ation times (Fig. 6.9), recognize material based on frequency and amplitude, and handle both static and
dynamic scenes with moving objects based on Doppler shift. All of which enhance scene and object recon-
struction by detecting planar discontinuities from open or closed surfaces and then estimating depth and

material.

6.3.1 Echolocation

Echolocation is the use of reflected sound to locate and identify objects, particularly used by animals
like dolphins and bats. According to (223), bats emit ultrasound pulses, ranging between 20-150 kHz, to

catch an insect prey with a resolution of 2-15 mm. This involves signal processing such as:

1. Doppler shift (the relative speed of the target),
c
Af=fp—fo= foc—zcosw) 6.1)

2. time delay (distance to the target), and

3. frequency and amplitude in relation to distance (target object size and type recognition);

where the Doppler shift (or effect) is the perceived change in frequency (Doppler frequency fp minus
transmitted frequency fp) as a sound source with velocity ¢ moves toward or away from the listener/ob-

server with velocity ¢, and angle 6.
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Figure 6.4: Mel-scaled spectrograms of recorded impulses of different sound sources used. From left
to right: narrow to disperse spectra. Not shown are other pure tone frequencies, chirp, pink noise, and
brownian noise. Horizontal axis is time and vertical axis is frequency.

6.3.2 Staged classification and reconstruction pipeline

As depicted in Fig. 6.3, we take a staged approach to enhance scene and object reconstruction using
audio-visual data. Our echoreconstruction prototype consists of two smartphones - one recording (top) and
one emitting/reconstructing (bottom). Each audio emission is 100 ms of sound followed by 900 ms of si-
lence to allow for the receiving microphone to capture reflections and reverberations (Section 6.3.3). After
the 3D scan is complete, an .obj file containing geometry and texture information is generated. 1 second
frames are extracted from the recorded video to generate audio and visual input into the EchoCNN neural
networks (Section 6.3.4). These networks are independently trained to detect whether a surface is open
or closed, estimate depth to the surface from the sound source, and classify the material of the surface.

Using mobile accelerometer data and coarse audio with fine visual data to augment depth estimation will

be explored as future work.

6.3.3 Sound source

A smartphone emits recordings of human experimenter voice, whistle, hand clap, pure tones (ranging
from 63 Hz to 16 kHz), chirps, and noise (white, pink, and brownian). All of which can be generated
as either pulsed (PW) or continuous waves (CW). PW is preferred for theoretical and empirical reasons.

First, the transmission frequency fo may experience considerable downshift as a result of absorption and
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diffraction effects (223). Therefore, using pulsed waves independent for each emission is theoretically
better than continuous waves compared to fo. Furthermore, Section 7.5 shows superior PW results over
CW for the given classification tasks.

Pure tones were generated with default 0.8 out of 1 amplitudes using the Audacity computer pro-
gram and center frequencies of 63 Hz, 125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz, 8 kHz, and 16 kHz.
Human voice ranges from about 63 Hz to 1 kHz (131) (125 Hz to 8 kHz (56)) and an untrained whistler
between 500 Hz to 5 kHz (159). Chirps were linearly interpolated from 440 Hz to 1320 Hz in 100 ms. A
hand clap is an impulsive sound that yields a flat spectrum (131). All sound sources were recorded and
played back with max volume (Fig. 6.4). While recorded sounds were used for consistency, we plan to add
live audio for augmentation and future ease of use during reconstruction. Please see our supplementary
materials for spectrograms across all sound sources.

Audio input: audio was generated in pulsed waves (PW). One smartphone to emit the sound while
performing a RGB-based reconstruction and the second smartphone to capture video. As future work, a
single mobile device or Microsoft Kinect paired with audio chirps could be used for audio-visual capture
and reconstruction instead of two separate devices. Each pulsed wave emitted into the scene was a total
of 1 second consisting of an 100 ms impulse followed by silence. 1 second audio frames is based on the

Sabine Formula of reverberation time for a compact room of like dimensions calculated as:

1% 1% 1,296 ft3
T =0.05— = 0.0 = (0.05) = —
a 69.23 fc

S Sa i = 0.94 sec (6.2)

where 1" is the reverberation time (time required for sound to decay 60 dB after source has stopped), V is
room volume (ft*), and « is the total room absorption at a given frequency (e.g. 250 Hz). For the bathroom
scene, V' = 9 ft % 16 ft + 9 ft = 1,296 ft> and a = 69.23 ft2, which is the sum of sound absorption from the
materials in Table 6.2.

Visual input: images were captured from the same smartphone video as the audio recordings. Each
corresponding image was cropped and grayscaled for illumination invariance and data augmentation.
Image dimensions were 64 by 25 pixels. Visual data served as inputs for visual only and audio-visual

model variation ECchoCNN-AV.
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Total room absorption a using a = . S« at 250 Hz

Real bathroom scene S « a (sabins)
Painted walls 432x 0.10= 43.20
Tile floor 175x  0.01 = 1.75
Glass 60x 0.25= 15.00
Ceramic 39x  0.02= 0.78
Mirror 34x  0.25= 8.50

Totala= 69.23 sabins

Table 6.2: According to the Sabine Formula (Eq. 6.3.3), reverberation time can be calculated as room
volume V divided by total room absorption a. For an indoor sound source in a reverberant field, a is the
total room absorption at a given frequency (sabins), S is the surface area (ft?), and « is the sound absorp-
tion coefficient at a given frequency (decimal percent). At 250 Hz, the total room absorption a for our
real-world bathroom scene is 69.23 sabins.

6.3.4 Model Architecture

To augment visually based approaches, we use a multimodal CNN with mel-scaled spectrogram and
image inputs. First, we perform surface detection to determine if a space with depth jumps and holes is
in error or in fact open (i.e. open/closed classification). In the event of error, we estimate distance from
recorder to surface using audio-visual data for depth filtering and inpainting. Finally, we determine the
material. All of these classifications are performed using our audio and audio-visual convolutional neural
networks, referred to as EchoCNN-A and EchoCNN-AV (Fig. 6.3).

TO BE UPDATE, uncomment out this table

Audio sub-network: our frame-based EchoCNN-A consists of a single convolutional layer followed
by two dense layers with feature normalization. Sampled at F; = 44.1 kHz to cover the full audible range,
audio frames are 1 second mel-scaled spectrograms with STFT coefficients x (Eq. 7.3.2). Each audio
example is classified independently and 1 second intervals to reflect an estimated reverberation time based
on a compact room size (Eq. 6.3.3). With a 2048 sample Hann window (N), 25% overlap, and hop length
(H = 2048/4), this results in a frequency dimension of 21.5 Hz (Eqn. 6.3.4) and temporal dimension of
12 ms (Eqn. 6.3.4) or 12% of each 100 ms pulsed audio. Each spectrogram is individually normalized and
downsampled to a size of 62 frequency bins by 25 time bins.

We define the frequency spectral coefficients (148) as:

N-1

x(m, k) = Z x(n+mH)w(n)exp(—2mikn/N) (6.3)

n=0
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for m!" time frame and k*" Fourier coefficient with real-valued DT signal z : Z — R, sampled window

function w(n) forn € [0 : N — 1] — R of length N € N, and hop size H € N (148). R denotes continuous
time and Z denotes discrete time. Equal to |y (m, k)|?, spectrograms have been demonstrated to perform
well as inputs into convolutional neural networks (CNNs) (92). Their horizontal axis is time and vertical

axis is frequency.

kF, 441
Fcoef(k) = NS :ka; =k=x21.5Hz (64)
H 2048 % 0.2
Teoef(m) = T —m 018+0.25 _ m * 0.012 seconds (6.5)

Fy 44100

A hop length of H = N/2 achieves a reasonable temporal resolution and data volume of generated
spectral coefficients (148). Temporal resolution is important in order to detect when a reflecting sound
reaches the receiver. Therefore, we decided to use a shorter window length N = 2048 instead of N =
4096 for instance. This resulted in a shorter hop length and accepting the trade-off of a higher temporal
dimension for increased data volume.

Visual sub-network: while audio information is generally useful for all three classifications tasks
(Table 4.2) visual information is particularly useful to aid material classification. We use ImageNet (113)
as a visual-based baseline to compare to our audio and audio-visual methods. It also serves as an input into
our audio-visual merge layer. Future work will explore whether or not another image classification method
is better suited as a baseline and to fuse with audio.

Merge layer: we evaluated concatenation and multi-modal factorized bilinear (MFB) pooling (262) to
fuse audio and visual fully connected layers. Concatenation of the two vectors serves as a straightforward
baseline. MFB allows for additional learning in the form of a weighted projection matrix factorized into

two low-rank matrices.

z=x' Wiy =2"UV"y =170z o Vi'y) (6.6)
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Figure 6.5: Sample visualizations of the filters for the two convolutional layers in the audio-based
EchoCNN-A neural network. The model learns filters for octave bands, frequencies, reflections, re-
verberations, and damping.

where k is the factor or latent dimensionality with index i of the factorized matrices, o is the Hadmard

product or element-wise multiplication, and 1 € RF is an all-one vector.

6.3.5 Loss Function

Categorical cross entropy loss is used for EchoCNN inferences. For open/closed predictions, cate-
gorical cross entropy loss is used instead of binary if estimating the extent of the surface opening (e.g.
all the way open, halfway open, or closed). A regression model is not used for depth estimation because
ground truth data is collected in 1 foot increments within the free field for better noise reduction (56). The

Softmax function is used for output activations.

6.3.6 Depth filtering and planar inpainting

The outputs of our EchoCNN inform enhancements for 3D reconstruction (Algorithm ??). If depth
jumps in the reconstruction are first classified as an open surface, then no change is required other than
filtering loose geometry and small components. Otherwise, there is a planar discontinuity (e.g. window or
mirror) that needs to be filled. With depth estimated by EchoCNN, we filter the initial 3D mesh to within a
threshold of that depth. This gives us the plane size needed to fill. Finally, EchoCNN classifies its surface

material.
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Figure 6.6: Spectrograms from a recorded hand clap in front of an interior glass shower door and exterior
glass window. For the interior door, reflected sounds experience intensified damping as we go from opened
(left) to closed (middle) and then from 3 feet to 1 foot depth (right). Damping increases with fewer late
reverberations and intensity increases with more early reflections. For the exterior window, closing it
decreases outside noise up to a distance.

6.4 Datasets

Our audio-based EchoCNN-A and audio-visual EChoCNN-AV convolutional neural networks are
trained across nine octave bands with center frequencies 63 Hz, 125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4
kHz, 8 kHz, and 16 kHz. Training is done using these pulsed pure tone impulses along with experimenter
hand clap. The hold out test data is comprised of sound sources excluded from training - white noise,
experimenter whistle, and voice. The test set contains sound sources not in the training set to evaluate

generalization.

6.4.1 Real and synthetic datasets

Real: training data is comprised of 1 second pulsed spectrograms (Fig. 6.6) from recorded pure tones,
experimenter hand claps, brownian noise, and pink noise (N=857). Training and test examples were col-
lected via video recordings and labeled for material, open/closed, and in 1 ft depth increments based on the
distance from the surface. Nine octaves of pure tones, hand claps, and white noise cover a disperse range
of frequencies and were thus used to train our models.

The hold out test dataset consists of 1 second pulsed spectrograms from recorded experimenter voice,

whistle, chirp, and white noise (N=227). Voice and whistle recordings were chosen for the hold out test
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Figure 6.7: Listener at different distances of 1, 2, 3 ft from sound source (red dot) in a virtual environment
used to generate synthetic audio-visual data. In addition to open/closed, depth, and material, we make
synthetic, unmixed reflection separation data (direct, early, or late) available for future research.

set to ease future transition to live and hands-free emitted sounds during reconstruction. Hold out test data
is excluded from training and only evaluated during testing. While the same hold out sets were used for
visual and audio-visual evaluation, unheard is not the same as unseen. Unheard audio can have the same
visual appearance between training and test. Other new training and test datasets for visual and audio-
visual methods will be future work.

Synthetic: we employ a ray-based geometric sound propagation approach (203). Given scene mate-
rials (e.g. carpet, glass, painted, tile, etc.), a sound source (e.g. voice), and listener position, we generate
impulse responses for a given scene of varying sizes. From each listener, specular and diffuse rays are
randomly generated and traced into the scene. The energy-time curve for simulated impulse response S (t)

is the sum of these rays:

Spt) = 6(t—t;)Iy (6.7)

where [; ¢ is the sound intensity for path j and frequency band f, ¢; is the propagation delay time for path j,
and 0(t — t;) is the Dirac delta function or impulse function. As these sound rays collide in the scene, their
paths change based on absorption and scattering coefficients of the colliding objects. Common acoustic
material properties can be referenced in (56). We assume a sound absorption coefficient, & = 1.0 for open
windows.

Along with sound intensity S (t), a weight matrix 1 is computed corresponding to materials within
the scene. Each entry wy , is the average number of reflections from material m for all paths that arrived

at the listener. It is defined as:

2 Lirdim

Wy m = ZIj,f (6.8)
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Figure 6.8: EchoCNN-A (Left) Confusion matrix to classify open/closed for an interior glass shower door.
Open predictions (86%) were more accurate than closed (56%). (Right) Confusion matrix to classify depth
from same interior glass door. Notice that our EChoCNN is learning to differentiate distance based on
reflecting sounds from pulsed ambient waves of a smartphone.

where d; ;,, is the number of times rays on path j collide with material m, weighted according to the sound
intensity I; ¢ of the path j. To mirror our real-world data, sound source directivity was disabled. Future
work is needed to compare ambient and directed sound sources. This data may also be used for material

sound separation.

6.5 Experiments and Results

Overall, 71.2% of hold out reflecting sounds and 100% of audio-visual frames were correctly classified
as an open or closed boundary in the home (Table 4.2). 71.8% of 1 second audio frames were correctly
classified as 1 ft, 2 ft, or 3 ft away from the surface based on audio alone; 89.5% when concatenating with
its corresponding image. Finally, 77.4% of audio and 100% of audio-visual inputs correctly labeled the
surface material.

ImageNet, a visual only baseline, is higher at 78.1% than audio-only EchoCNN-A for open/closed clas-
sification. This is partly due to the fact that the hold out set was to test audio generalization (i.e. unheard
sound sources). But unheard sound sources does not guarantee unseen visual data. Images similar to those
found in training are present in test. A proper hold out set based on image (e.g. different depths) should be

evaluated as future work.
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6.5.1 Experimental setup

Listener (top smartphone, e.g. Galaxy Note 4) and sound source (bottom smartphone, e.g. iPhone 6)
are separated vertically by 7 cm. Pulsed sounds are emitted 3 feet, 2 feet, and 1 feet away from the recon-
structing surface. Three feet was selected to remain in the free field. Beyond that, there will be less noise
reduction due to reflecting sounds in the reverberant field (56). Within a few feet of the reconstructing
surface also create finer detail reconstructions.

We labeled our data based on scene, sound source, and surface properties - type of surface, material,
and depth from sound source. The training set included pulsed sounds of pure tone frequencies, a single
hand clap, brownian noise, and pink noise. The hold out test set consisted of voice, whistle, chirp, and
white noise. For rooms with different sound-absorbing treatments, our real-world recordings include a

bedroom (e.g. carpet and painted) and bathroom (e.g. tiled).

6.5.2 Implementation details

We implemented all EchoCNN and baseline models with Tensorflow (1) and Keras (39). Training was
performed using a TITAN X GPU running on Ubuntu 16.04.5 LTS. We used categorical cross entropy
loss with Stochastic Gradient Descent optimized by ADAM (104). Using a batch size of 32, remaining
hyperparameters were tuned manually based on a separate validation set. We make our real-world and

synthetic datasets available to aid future research in this area.

6.5.2.1 Initial 3D Reconstruction

We evaluated the following smartphone-based reconstruction applications to obtain an initial 3D ge-
ometry for which our method would enhance. The Astrivis application, based on (225), generates better
live 3D geometries for closed object rather than scene reconstructions since it limits feature points per
scan. On the other hand, Agisoft Metashape produces scene reconstructions offline from smartphone video.
Enabling the software’s depth point and guided camera matching features further improved reconstructed

geometries.
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Figure 6.9: From left to right: audio input (i.e. mel-scaled spectrogram) which would produce the highest
activation for a given depth class from 1 ft, 2 ft, and 3 ft away from an object. Longer reverberation times
tend to occur at lower frequencies (3 ft) than at high frequencies (1 and 2 ft) due to typical high frequency
damping and absorption.

6.5.3 Results by source frequency and object size

We will evaluate dynamic source frequencies based on the physical size of the objects, since sound
wave behavior relates to wavelength. For example, if an object is much smaller than the wavelength, the

sound flows around it rather than scattering (131).

\ = (6.9)

<
f
where ) is wavelength (ft) of sound in air at a specific frequency, f is frequency (1 Hz), and c is speed of

sound in air (ft/s).

6.5.4 Activation Maximization

The objective of activation maximization is to generate an input that maximizes layer activations for
a given class. This provides insights into the types of patterns the neural network is learning. Fig. 6.9

shows the different inputs that would maximize EchoCNN activations for depth estimation. Notice lower
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Figure 6.10: We evaluated our method on real and virtual scenes. Column I: we used the off-the-shelf
MagicPlan app to obtain 3D models and dimensions to calculate estimated reverberation time based on
room size and materials. Our experimental setups consists of a two smartphone prototype. One phone
performs an initial reconstruction using state-of-the-art commercial Astrivis application and also emits
pulsed audio. The second phone captures video for audio-visual input data into our EchoCNN. We tested
glass, mirror, and other objects and surfaces within each scene at different depths, materials, and open/-
closed. Using audio, we noticed noise reduction between winter and spring due to more foliage on the
trees. We also observed flutter echoes, which can be heard as a “rattle” or clicking” from a hand clap and
have been simulated in spatial audio (72). They became more pronounced the closer to the wall surface in
the bathroom scene. Background UV textures are placed at a fixed 1 ft (0.3 m) behind estimated surface
depth. Audio unable to augment failure cases of the shower from initial RGB-based reconstructions using
either (225) or (144). We leave calculating the background depth as future work. We compare our 3D
reconstructions to depth estimates based on related work.
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Experimental Setup Before After

Figure 6.11: Echoreconstruction of a TV on a dresser. (From left to right) Photo of prototype system
in action, initial 3D reconstruction, depth filtering applied, and resulting echoreconstruction. Semantic
rendering is applied post-processing during the render stage of the pipeline.

frequencies tend to occur at 3 ft (longer reverberation times) than at 1 and 2 ft (high frequencies) due to

typical high frequency damping and absorption.

6.5.5 Applications

When using a head mounted display (HMD) users are alerted within the virtual environment, when
they approach the physical space boundaries established during room setup. However, if room setup does
not accurately reflect these boundaries or changes occur after setup, a user risks walking into unseen real-
world objects such as glass and walls. Using our method, transmitted sound from the HMD could be used
to locate physical objects and appropriately notify the user as an added safety measure. Depth estimation
from audio can also be used to unmix and place unseen but heard sound sources from video into a virtual

environment. In addition to scene reconstruction, echoreconstruction also reconstructs audio (Fig. 6.12).

6.6 Conclusion and Future Work

To the best of our knowledge, these are the first audio and audio-visual techniques introduced for
enhancing scene reconstructions that contain windows and mirrors. Our multi-smartphone prototype and
staged echoreconstruction pipeline emits and receives pulsed audio from a variety of sound sources for
surface detection, depth estimation, and material classification. These classifications enhance scene and

object 3D reconstruction by resolving planar discontinuities caused by open spaces and reflective surfaces
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Figure 6.12: EchoCNN may also be used to reconstruct the audio of a scene from video. Instead of depth
estimation, our method can be trained to approximate sound source position, which is especially useful
for objects that are outside of the camera field of view. Ground truth (green dots) and estimated (red

dots) sound source placements. Seen and heard sound source (TV) from the video capture placed more
accurately than unseen but heard sound sources (cradle and laptop). Audio-visual compared to audio only.
Please see our supplementary video for a VR demo and improved sound source placement as future work.

using depth filtering and planar filling. Our prototype performs well compared to baseline methods given
our experiment results for multiple real-world and virtual scenes containing windows, mirrors, and open
surfaces. We make publicly available our real and synthetic audio-visual ground truth data in addition to
reflection separation data (direct, early, or late reverberations) for future research.

Future Work: To further extend this research, performing audio emission, reception, and 3D reconstruc-
tion simultaneously and in real-time instead of having a staged approach would be one possible alternative
to explore. This approach could possibly enable mapping classifications to 3D geometry more densely
than fusing RGB-D, tracking, or Iterative Closest Point (ICP) (93). An integrated approach may not only
be more efficient but also more effective by using audio feedback as part of the reconstruction code. An-
other possible avenue of exploration is to investigate the impact of live audio for training and/or testing our
neural network variations. With a defined set of output classes for EchoCNN, alternative baselines such as
Non-Negative Matrix Factorization (NMF), source separation techniques, and the pYIN algorithm (141) to
extract the fundamental frequency fo, i.e. the frequency of the lowest partial of the sound, are suggested
as future work. Finally, our current implementation holds out voice and whistle data, which is different

from the audio used during training. However, unheard sounds does not equate to unseen images. There-
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fore, some insights can be possibly gained by experimenting with a different training dataset for testing

audio-only, visual-only, and audio-visual methods.
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