CHAPTER 8: SUMMARY AND CONCLUSIONS

This dissertation was motivated by the advances in computer vision and the possibility of realizing the
potential benefits of single model audio and multimodal audio-visual learning. Whether by coupling a fluid
and structure to form a rigid double body for sound synthesis or fusing audio and visual inputs for object
classification, tracking, and reconstruction, audio is readily available for use along with its corresponding
images when datasets are generated from video.

Certain conditions also lend themselves more preferably to one modality or a combination of multiple
modes. For example, vision-based methods are sufficient for most static objects and scenes. However,
reflective and textureless surfaces may be better suited for audio methods since visual data may be ambigu-
ous or changing over time and viewpoint. Finally, audio-visual techniques can use scheduling to use the
appropriate inputs given the current state, account for drift error of dynamic objects and scenes, and handle

occlusions from cluttered scenes.

8.1 Summary of Results

I have presented a fast and practical method for simulating the sound of non-empty objects containing
fluids. This work is enhanced the sound synthesis equation in the rigid body audio pipeline method and
was demonstrated for use in interactive 3D systems, where live sound synthesis is important. The key con-
tribution was to account for the fluid force on an object at the fluid-structure boundary. This was achieved
by adding pre-processing steps to identify the mesh nodes of a tetrahedralized object that are in contact
with the liquid and to apply an added mass operator to those structural boundary nodes and adjacent solid
domain nodes. The added mass is applied to the bounding elements in the mass matrix proportional to
the liquid’s volume and density, which may vary with temperature and/or type of fluid. The technique
generalizes to any impermeable tetrahedral mesh representing the rigid objects and inviscid liquids.

To estimate the weight of a liquid poured into a target container, perform overflow detection, and

classify liquid and target container, I introduced a novel audio-based and audio-augmented techniques,
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Fluid-structure
coupling used added
mass operator for
sound synthesis

Pouring Sequence
Neural Network
(PSNN) for weight
estimation of liquid

Audio-Visual Object
Tracker (AVOT)

Echo-Reconstruction:
audio-augmented
scene reconstruction
on mobile devices

3D-MOV:
audio-visual LSTM
autoencoder for 3D
reconstruction of
multiple objects from
video

Table 8.1: Summary of contributions

in the form of multimodal convolutional neural networks (CNNs). The audio-based neural network uses
the sound from a pouring sequence—a liquid being poured into a target container. Audio inputs consist
of converting raw audio into mel-scaled spectrograms. Our audio-augmented network fuses this audio
with its corresponding visual data based on video images. Only a microphone and camera are required,
which can be found in any modern smartphone or Microsoft Kinect. Our approach improves classification
accuracy for different environments, containers, and contents of the robot pouring task. Our Pouring Sound
Neural Networks (PSNN) are trained and tested using the Rethink Robotics Baxter Research Robot. To
the best of our knowledge, this is the first use of audio-visual neural networks to analyze liquid pouring
sequences by classifying their weight, liquid, and receiving container.

Existing state-of-the-art object tracking can run into challenges when objects collide, occlude, come
close to one another, or appear similar but are of different materials. By using audio of the impact sounds
from object collisions, rolling, etc., I presented an audio-visual object tracking (AVOT) neural network
that can reduce tracking error and drift. AVOT is trained end to end and uses audio-visual inputs over all

frames. Our audio-based technique may be used in conjunction with other neural networks to augment

102



visually based object detection and tracking methods. It is evaluated in terms of runtime frames-per-second
(FPS) performance and intersection over union (IoU) performance against OpenCV object tracking imple-
mentations and a deep learning method. Experiments include using the synthetic Sound-20K audio-visual
dataset and demonstrating that AVOT outperforms single-modality deep learning methods, when there is
audio from object collisions. A proposed scheduler network to switch between AVOT and other methods
based on audio onset maximizes accuracy and performance over all frames in multimodal object tracking.

I proposed ”Echoreconstruction”, an audio-visual method that uses the reflections of sound to aid in
geometry and audio reconstruction. This system aids in reconstructing reflective and textureless surfaces
such as windows, mirrors, and walls that are often poorly reconstructed and filled with depth discontinu-
ities and holes. The mobile phone prototype emits pulsed audio, while recording video for RGB-based 3D
reconstruction and audio-visual classification. Reflected sound and images from the video are input into
our audio (EchoCNN-A) and audio-visual (EchoCNN-AV) convolutional neural networks for surface and
sound source detection, depth estimation, and material classification. The inferences from these classifica-
tions enhance scene 3D reconstructions containing open spaces and reflective surfaces by depth filtering,
inpainting, and placement of unmixed sound sources in the scene.

I proposed a multimodal single- and multi-frame neural network for 3D reconstructions using audio-
visual inputs. The trained reconstruction LSTM autoencoder 3D-MOV accepts multiple inputs to account
for a variety of surface types and views. The neural network produces high-quality 3D reconstructions
using voxel representation. Based on Intersection-over-Union (IoU), it is evaluated against other baseline
methods using synthetic audio-visual datasets ShapeNet and Sound20K with impact sounds and bounding
box annotations. To the best of our knowledge, our single- and multi-frame model is the first audio-visual

reconstruction neural network for 3D geometry and material representation.

8.2 Limitations and Future Work

Overall, the immediate next research steps to further enhance audio-visual performance and processing
is further analysis of tasks that can capture audio in their datasets and benefit from its signal (e.g. inference,
tracking, reconstruction), gating or scheduling of when single or multiple modalities are used, more neural

network architectures, loss functions, and fusion models, and augmenting with even more modes.
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Sound synthesis for fluid-structure coupling has limitations in the form of simplifications to maintain
interactive performance in VR applications. First, while the work assumes that liquids are inviscid, re-
main steady, and are not mixed, it should be extensible to handle mixed fluids. This remains future work to
evaluate. Next, the granularity of the solid mesh discretization also influences the results since the modifi-
cations to the mass matrix occur at the level of the mesh nodes. Finally, investigation of acoustic transfer,
harmonic pressure, and user evaluation on auditory perception would offer additional insight.

Future directions for analyzing liquid pouring sequences include data augmentation to improve classifi-
cation accuracy and generalization. As the task involves temporal data, sequential layers can be introduced
into the neural network model, such as recurrent, LSTM, or GRU layers or HMM filtering and evaluated
for performance. This may be especially helpful for audio only PSNN-A classification at the beginning
and end of pouring sequences. Using a multiple output neural network rather than separately trained neural
networks for poured weight, content, and target container classification may also help as well as using a
ratio of volume over the target container volume or a combination. Finally, further research can explore if
this approach can be applied to other granular materials.

Future work for audio-visual object tracking may consist of expanding the size of the training set by
annotating more objects in the Sound-20K dataset, increasing the number of object classes that we are pre-
dicting, evaluating alternative fusion methods, and performing sensitivity analysis on scaling factors and
aspect ratios. This object tracking has been used for audio-visual input for 3D reconstruction of tracked
objects. Further investigations can examine how the error introduced by object tracking propagates to re-
construction error. Also, while audio helps classify the material of the reconstructed geometry, we assume
a single material classification based on audio alone and apply that to all voxels. Research on classifying
material per voxel using both audio and visual data could expand part segmentation research into recon-
structing objects with different materials.

In addition to object reconstruction, I also presented enhanced scene reconstruction. To further extend
this particular area of audio-visual research, a primary focus could be on the reception, and 3D reconstruc-
tion simultaneously and in real time instead of having a staged approach. An integrated approach may
prove not only to be more efficient but also more effective by using audio feedback as part of the recon-
struction code. Another possible avenue of exploration is to investigate the impact of live audio for training

and/or testing our neural network variations.
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8.3 Conclusion

In research and practice, sound is a key contributor to the level of immersion and sense of presence in
virtual and imaginative environments. A distraction from any of the senses can cause a ‘break in presence’.
A goal in computer graphics is to continue to enhance rendering pipelines with new technology, methods,
and data. While vision-based methods cover many use cases, alternate modalities such as audio can aug-
ment the level of detail and coverage of tasks in computer vision, graphics, augmented, and virtual reality.
Since many sound models are physics-based and training data generated from video, established visual
pipelines and datasets can be extended to generate and use sound based on the same physics and video cap-
ture used for visual data. Much of the research conducted on visual data is also relevant to sound sources.
This presents opportunities for audio-based research to advance quickly based learnings from decades of

vision research as well as novel directions for fusing audio, visual, and other data for multimodal learning.
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