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Sights and sounds are all around us

.

- -

1Sound20K [Zhang et al. 2017]
2 Example-Guided Physically Based Modal Sound Synthesis [Ren et al. 2013]




,I|\

Audio-Visual Research Areas

* Sound synthesis and acoustics

* Sound separation (e.g. speech or noise filtering)
* 3D reconstruction

* Fluid-structure interactions

= Cross-modal biometrics

 Seeing Voice and Hearing Faces!

= Deep fake detection?

' Seeing Voice and Hearing Faces: Cross-modal biometric matching [Nagrani et al. 2018]
2 Emotions Don't Lie: A Deepfake Detection Method using Audio-Visual Affective Cues [Mittal et al. 2020]



e Sound Synthesis and Propagation in
| Virtual Environments

Game Benchmark

100,619 triangles

Source:
metal barrel

Modes: 9

Source: SynCoPation: Interactive Synthesis-
Coupled Sound Propagation [Rungta et al. 2016]



S—  Audio-Visual Separation, Zooming,
Localization, and More
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Source: Audio-Visual
Zooming?

Source: Looking to Listen at the Cocktail Party’

"Looking to Listen at the Cocktail Party: A Speaker-Independent Audio-Visual Model for Speech Separation [Ephrat et al. 2018]
2 Audiovisual Zooming: What You See Is What You Hear [Nair et al. 2019]
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2§ Enhanced Scene Reconstructions using
Acoustic Optimization

Benchmark: Room 216

Source: Acoustic Classification and Optimization for Multi-
Modal Rendering of Real-World Scenes [Schissler et al. 2017]



Coupling Fluid-Structure Interactions

Wall Tension
(x10* dyn/em®)
360
288
216
144
72

0

Flow Speed
(em/s)

o 90
72

Source: Computational Vascular Fluid—
Structure Interaction [Bazilevs et al. 2010]
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Thesis Statement

= Coupling multimodal information enhances
task performance and processing of audio-
visual learning based methods for fluid-
structure sound synthesis, liquid pouring
sequences, object tracking, and 3D
reconstructions while also allowing for
single mode application for special cases.
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Part 11

< Fluid-Structure Sound Synthesis

—
“Glass half full: sound synthesis for fluid-structure coupling using added mass

operator.” Justin Wilson, Auston Sterling, Nicholas Rewkowski, Ming C. Lin.
Computer Graphics International (CGl) 2017, The Visual Computer.
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Motivation for Sound Synthesis

= Animating fire with sound
« Chadwick et al. 2011

* Sounding liquids
« Moss et al. 2010

* Animating clastic rods with
sound

« Schweickart et al. 2017

11
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Challenges

= Previous research focuses on

single systems only, either
solid or liquid but not both

= Not all sound simulations
achieve real-time performance

= Computationally expensive to
model the variation in sound
pressure waves from a
coupled vibrating fluid-
structure system

12
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Background: Sound Waves

When an object 1s struck, it vibrates and deforms

Sound 1s generated by the vibration of pressure waves through
a medium (e.g. air) and perceived by the ears as sound

This harmonic motion can modeled as an underdamped spring
mass system with mx" + dx" + kx =0

" m = mass
" d =damping
= k = stiffness

= x = displacement
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Source: digitalsoundandmusic.com

13



Background: Sound Dynamics Equation and
. Object Representation
] p

= Object 1s a volumetric solid body represented by a finite

element mesh

Single tetrahedron of

= Tetrahedral mesh has n nodes where i=1...n e
finite element mesh

= Mu”+ Du’ + Ku = {(t)
= High-dimensional equivalent to spring-mass
mx”’(t) + dx’(t) + kx(t) = f(t)
= M, D, and K are size 3n X 3n sparse matrices o

= M = mass matrix

T

= u = displacement vector of each element

= D = viscous damping matrix

K = stiffness matrix

f = vector of forces Source: SIGGRAPH 2016 Course Notes

14



Related Work: Modal Analysis and
Sound Synthesis

= Solution of sound dynamic equation i1s damped sinusoids
= q; = aq;e”%tsin(2nf;t + 6;) where a; depends on run-
time impulse and d; and f; depend on the

eometry/material
- Y Sound

Geometry, Material, and Hit Point

N\
/ QA \ ::. \
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0 5 10 15 20

' Example-Guided Physically Based Modal Sound Synthesis [Ren et al. 2013]
Source: SIGGRAPH 2016 Course Notes
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http://gamma.cs.unc.edu/AUDIO_MATERIAL/

Contribution: Added Mass Operator
B :

= Since the liquid must
move with the same phase

Mu+ Du+ Ku= f— myu

as the structure’s motion, (M + my)ii + D+ Ku = f
this may be referred to as
a rigid double body" Ma = Pfluid - VOIUME fiuia /2

" Added Mass 1s the
additional (drag) force
resulting from fluid acting
on a structure

1 Marine Hydrodynamics [Newman 1977]

16
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Water Xylophone
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Simulated Water Xylophone
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Validation Results < 5% Relative Error

Pitch decreases as volume increases Pitch decreases as liquid density increases

32 185

:&E", ? Lo - — ;%, 18 : =g Actual Freq.

g gg Hater Hater Water Water *ﬁ(i;a e g 117? Olive Oil Boiling W;'(er\\ (k)

3 24 2 1.65 Water Milk o oneszed

£ 22 —e—Syntheszed £ 16 req. (kHz)

= 2 Freq. (kHz) = 1.55

t 18 t 15

£16 £ 145

214 2 14

= Empty 1/4 1/3 1/2 = 825 875 925 975 1025 1075

Liquid Volume in Porcelain Bowl Liquid Density in Wineglass (kg/m*3)
Vol Syn freq Act freq Rel error Vol Syn freq Act freq Rel error
(kHz) (kHz) (%) (kHz) (kHz) (%)

Empty 2.9419 2.9709 0.98 Milk 1.7037 1.6823 1.27
1/4 2.9389 2.9597 0.70 Water 1.7176 1.7607 2.45
1/3 2.8816 2.9453 2.16 Hot water 1.7297 1.7771 2.67
1/2 2.7810 2.8759 3.30 Olive oil 1.7597 1.7824 1.28

20



System Demonstration in VE

21



Part 111

Analyzing Liquid Pouring
< — Sequences with Audio-Visual

—
“Analyzing liquid pouring sequences via Audio-Visual Neural Networks.” Justin

Wilson, Auston Sterling, Ming C. Lin. International Conference on Intelligent
Robots and Systems (IROS) 2019.



Outline
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[ = [II: Liquid Pouring Sequences }
= [V: Audio-Visual Object Tracking
= V: Audio-Augmented 3D Reconstruction

= VI: Conclusions
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Liquid Pouring

Motion planning

+ Robot Motion Planning for Pouring
Liquids, Pan et al. 2016

Learning based methods

« Learning Audio Feedback for

Estimating Amount and Flow of
Granular Material, Clarke et al. 2018

Visual control

 Visual Closed-Loop Control for
Pouring Liquids, Schenck et al. 2017
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Extensions to Existing Work

__

= In addition to RGB and contact microphones, how
can we also use audio from pouring sequences to
estimate poured amount?

= How can we augment audio based learning by fusing
with 1ts associated visual data?

= How can we generate audio-visual ground truth data
that 1s easy to replicate and available for future
research?

25



Example Spectrogram of Liquid
Pouring Sequence

Frequency (kHz)

Spectrogram of a plastic bottle filling up with water

20

10 F

26



Helmholtz Resonance Frequency

Audio frequency increases as a container fills up with liquid

This increase 1n frequency can be modeled based on the
Helmholtz resonance (also referred to as a resonant cavity)

Sp
This resonant frequency f., and sortl |1
[ 'p
placed/poured volume
c |s, V,=Vc — S \ ©
fres = 5 , ZT[f’I‘eS § chamber
2 |V, ', N\ \
C % N
\R A
%
| poured |
\ \
W S
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Analyzing Liquid Pouring Sequences via
Audio-Visual Neural Networks

Audio Network Structure

Sound Softmax
InTut E PSNN-A ™ (Overflow)
S I I I R ,
__4‘/': E Concatenae(+) B
" o
| MFB (V) 1
| 1
Pouring Task E PSNN-AV E Weight & Overflow
Video ——— ' e mmo e e e Classification
Input E PSNN-V or |, Softmax
H (Weight)
ImageNet

28



K Pouring Sequence Neural Network —
Audio-Visual (PSNN-AV)

Weight
Overflow
Liquid Type
Container Type

Q ) Audio i \4NTE
B

PSNN-AV



PSNN-AV Robot Pouring Sequence (Water)

Water Pouring Sequence into Glass Bottle by Baxter Robot

Actual
~Predicted

N~
2,
c
o
=
©
£
=
7]
wl
—
£
20
s

10.0
Time (s)

PSNN-AV
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Our Results vs. Baseline

Results

= Audio only PSNN-A correctly classified 88.0% for
robot and 75.8% for human sequences respectively

= Audio-augmented PSNN-AV correctly classified poured

weight within 0.4 oz for up to 91.5% for robot and

86.4% for human pouring sequences

Weight Estimation and Overflow Detection Accuracy by Method for Robot and Human Experimenter Water Pouring Sequences

Glass Bottle, Robot Pour, N=20

Glass Bottle, Human Pour, N=20

Combined Container Dataset, N=40

Method Input | +/-040z AveEr Overflow | +/-040z Ave Er Overflow | +/-04 0z Ave Er  Overflow
kNN [11] A 66.4% 1.9 oz 71.9% 54.2% 27 oz 62.5% 58.8% 24 oz 77.1%
Linear SVM [5] A 4.6% 3.8 oz 50.0% 13.6% 43 oz 50.0% 12.7% 4.0 oz 60.4%
SoundNet5 [3] A 46.0% 1.9 oz 50.0% 42.4% 3.6 oz 50.0% 21.2% 330z 50.0%
SoundNet8 [3] A 11.2% 33 0z 50.0% 20.2% 4.7 oz 50.0% 35.4% 44 oz 50.0%
TCN [26] A 8. 4% 0.9 oz 50.0% 40 3.7 oz 50.0% 49.6% 2.6 oz 50.0%
PSNN-A (Ours) A 0.5 oz 78.1% 1.9 oz 64.3% 80.8% 1.3 oz 83.3%
ImageNet [23] N 83.8% 0.3 oz —* 71.2% 0.4 oz —* 68.1% 1.1 oz —*
PSNN-V (Ours) \Y 79.9% 0.6 oz —* _66.5% 0.6 oz —* 78.0% 0.4 oz —*
PSNN-AV Cat (Ours) AV LLs "'; 0.2 oz —* 186.4%]) 0.2 oz —* 82.0% 03 o0z —*
PSNN-AV MFB (Ours) | AV 88.8% 0.2 oz —* T1.2% 2.1 oz —* 86.7 % 0.2 oz —*

10z =29.5735 ml

* Only audio-based neural networks were evaluated for overflow as visual information oversimplified the task

31



Example Confusion Matrices

Results

Actual Poured Weight Class

10

PSNN-A Confusion Matrix

llllllllllllllllllllllllllllllllllllllllllllllllllllll

0 10 20 30 40

Predicted Poured Weight Class

1.0

— 0.0

Actual Poured Weight Class

PSNN-AV Confusion Matrix

0 10 20 30
Predicted Poured Weight Class

40

1.0

—0.0
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Activation Maximizations

= Inputs that would
maximize PSNN
activations

...................
.........
------
-----
=

quency (bin)

Fre

- Demonstrates ability oy
to learn changes in Activation input _ Activation
Maximization Maximization
frequency and l ' , —
h el ght . Audio Visual
£ 8% s Vi - 5
; 60% 3¢ **- *
= Various pouring 3
< 70
contents evaluated with 0% |
Milk Rice Soda Water
PSNN M +/-020z M +/-040z M +/-0.60z2
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PSNN-A Pouring Sequence Demo

Water Pouring Sequence into Metal Cup by Baxter Robot
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PSNN-AV Robot Pouring Sequence (Rice)

Rice Pouring Sequence into Glass Bottle by Baxter Robot

Actual

Predicted

N
0
c
o
S
o
E
1%
w
P
-
E
o
o
>

Time (s)

PSNN-AV
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Part IV

< Audio-Visual Object Tracking

NS

—
“AVOT: Audio-Visual Object Tracking of Multiple Objects for Robotics.” Justin

Wilson and Ming C. Lin. International Conference on Robotics and Automation
(ICRA) 2020.

36



Outline

" [: Introduction
= [I: Fluid-Structure Sound Synthesis
= [II: Liquid Pouring Sequences

[ " [V: Audio-Visual Object Tracking}
= V: Audio-Augmented 3D Reconstruction

= VI: Conclusions
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Motivation

= Object
tracking
methods are
used for:

« Autonomous
driving!

- Mobile
robotics?

* Speaker
recognition?

' Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite [Geiger et al. 2012]
38 2 Tracking multiple moving objects with a mobile robot [Schulz 2001] 38
3 Multi-speaker tracking from an audio-visual sensing device [Qian et al. 2019]
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Challenges

<
" el

| POLICE CHASING STOLEN VEHICLE ™ .

= Tracking the S RN
challenging £l
cases of:
+ Colliding or
occluding
objects

 Similar object
categories

« Smaller objects

Top: hitps://www.pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/
39 Middle: https://www.learnopencv.com/object-tracking-using-opencv-cpp-pythost
Bottom: CSRT algorithm based on a virtual scene from Sound-20K [Zhang et al. 2017]



https://www.pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/
https://www.learnopencv.com/object-tracking-using-opencv-cpp-python/
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Object Tracking A
= Frame skipping! EE NG BH HE
- AT il

- Deep Leamlng leL:_-::“T:-' _(k;(—:—: A('('.z'.('y.‘u’.h)—
conf: (cy,¢o,--- .('1,)

Related Work: Object Detection and
Tracking

. FaSter R- CNN (a) Image with GT boxes (b) 8 x 8 feature map (c¢) 4 x 4 feature map

*YOLO?

= SSD*
Audio-Visual

Estimated sound components for each location

Audio-visual |
sounds source| Sou ™ ¥
separation

and
localization

TW. Detect or Track: Towards Cost-Effective Video Object Detection/Tracking [Luo et al. 2018]

2 Faster R-CNN: Towards Realtime Object Detection with Region Proposal Networks [Ren et al. 2015]

3You Only Look Once: Unified, Real-Time Object Detection [Redmon et al. 2015]

4 SSD: Single Shot MultiBox Detector [Ren et al. 2015]

5The Sound of Pixels [Zhao et al. 2018] 40
6 Look, Listen, and Learn [Arandjelovic et al. 2017]



Audio-Visual Object Tracker
(AVOT)

! 1 . L}
| Base Network i 1 Predictor Layers
I L}
| roo | : '
| 22 Pool 'y '
i T <22 Pool V) predr : .
! 2x2  Pool Pool Pool) | | : '
H = i1 xd ixit | ' =
| 'y Pred2 ] . |
E E B o E
| ' b Preds | - £
I ' Mel-scaled pool : : 1 : : : : . =
|} spectrogram o ) ! : ; o '
' ' ] -
P e e e s B : =
- ' | ConvAv ' v 2D 20 2D 20 20 20 : | : ﬂ
Sound : : : : : Cormw2 Corw3 Comwd Conys Comé Comw? : '
' ' [ b M .
:, ' Ix3x48-51: Conv2, Conw, Conve 3x3xdx|Classes+d) Conv: Pred

3Ix3x64-51: Conv3, Convd
3x3x32-51: Conw?

Speakerl

y We define an object based on its geometry and material

(e.g. glass, wood, etc.) to track objects with the same

geometry but different materials




Annotated Audio-Visual Dataset

&
" Qur experiments consist of
bounding box annotated virtual
scenes from the Sound20K

audio-visual dataset Ground truth bounding boxes

I \ l

v

= 1,752 audio-visual segments .p

= 18 objects (geometry/mat) .

= 103 frames per 3-sec video

* Training and test data

Mel-scaled Image frame
spectrogram

42



Evaluation Metrics

1]

= Frames per Second
(FPS)

Predicted

= Intersection over Union
(IoU)

« IoU = Area of Overlap =
Area of Union

Ground Truth

43



Example frame after collision

A\
* In this ex., AVOT
maintains tracking

CSRT SSD AVOT

— B —
loU: 0.00
loU: 0.00

 CSRT does not recover

» SSD temporarily loses = ﬁ ﬁ

tracking during collision
An Example Frame After Collision

mloU Moving Average over Time by Method

100%
90% : ! : . |
. o 1"
80% | / ’\ - ! " C !
a N ™y, - l

70% ,v' \V) | " : I
\ h 1 I
—_ I n 1
< 60% | 1 // 1 n : !
5, S0% v / —AVOT 1 n 1 |
S '\ | \ / ——CSRT ! I : i
£ 40% ‘ \ / Y 1 | : : |
30% I/ : " | :

| X I |
v i | | 1
20% | 1 - " 7 | 1
[ ' Audio Input " Visual Input | I
10% | ! 5 R | | !

0,
0% AVOT
0.0 20.0 40.0 60.0 80.0

Time (Frame #) 14



)8 1 Object Free-Falling: Different Geometry
| & Materials

mloU Moving Average over Time by Method

40.0 60.0
Time (Frame #)

Audio Input
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X 2 Objects Free-Falling: Same Geometry &
Different Materials

mloU Moving Average over Time by Method

Audio Input




AVOT Neural Network Results

Best
Baseline

AVOT

Ground
Truth

mloU / mFPS Object Tracking Accuracy by Method

Method

AVOT (Ours)
CSRT [40]
KCF [26]
MIL [6]
MOSSE [8]
SSD- [39]

13.5% / 24.9
43.0% / 2.5
7.6% 1 70.4
55.5% 1 108.7

2 Objects

65.9% / 103.8

mloU = mean Intersection over Union
mFPS = mean frames per second

After Collsion

=g CSRT
MOSSE

Collision 4, 5 t+10  t+15  t+20
timet
¥
= Q‘-i » L L )
'/ ‘ 2
b~ y b
" N I /
| = N - -
-
Nd Vi P%Z
‘ AN“ P
mloU After Collision

100% 100%
90% 90%
3 Objects :g +Audio 32
¥ 60% g 60%
A% 1 4.7 %' 50% o 3 50%
1.7% / 38.6 E :g E fgf-f
70 | e ———— ] U
21.6% /1.6 20% 20%
1.0% / 74.5 " o,

0%

s KCF o ML
= SSD-- =l AVOT

Collision mloUvs

AVOT

V

150
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Audio-Visual Object Reconstruction

Audio-Visual Object Tracking (AVOT)

HE

Visual
Data

2D
decoder ‘

Visual frame aggregation

_
2D

encoder

Sound Source Separation (SSS)

A

4§

(/‘/(l\\

<

Audio
Data

Encoder

Mel-scaled
spectrogram

Softmax

Ground Truth
Voxels

3D decoder

aggregation

Concatenate (+) r
or :
MFB (V)

Conv3D
Transpose

Predicted 3D
Shape

Predicted 3D
Shape and
Material

Pool

2D Conv (Materia[) i

Audio network for material classification
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Part V

Audio-Augmented 3D
s Reconstruction

Main publication: Under review

Related publication: “UISNN: Impact Sound Neural Network for Audio-Visual
Object Classification” (ECCV 2018)

49



Outline
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= [V: Audio-Visual Object Tracking
[ = V: Audio-Augmented 3D Reconstruct@)n

= VI: Conclusions
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Related Work: 3D Reconstruction

RGB-D RGB

'1441'” ;
Sourcé: InfiniTAM [Kahler et al. 2015], Source: Live Metric 3D Reconstruction on Mobile
KinectFusion [Izadi et al. 2011] Phones [Tanskanen et al. 2013]
Photogrammetry Audio-VisuaI

Source: Agisoft Source: 3D Room Geometry Reconstruction
Metashape Using Audio-Visual Sensors 51
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Top smartphone (e.g. Samsung
Galaxy Note 4) records video
for audio and visual input to

enhance bottom reconstruction

via EchoCNN classifiers

Bottom smartphone (e.g.
iPhone 6) performs a live, RGB-
based 3D reconstruction
[Astrivis] and emits pulsed
audio




System Overview and EcChoCNN

Window

A 4

l Video

recording

— Astrivis’
el RGB-
= based 3D

reconstruction

Pulsed audio

1 second
mel-scaled
spectrogram

Eﬂ 1 second

keyframe
image

wFER 3p oby

download

E Audio Network Structurei

2D Conv  Pool

VGG16 (4 blocks)

!
!
!
!
!
!
!
!
[
1
I
I
I
I
1
I
I
I
I
|
1

filtering

R Softmax
' (Open/Closed)

Concatenate (+) : _

or , L

MFB (V) o, 'm
Softmax

EchoCNN (Depth)

"]
'm
Softmax

> -
(Material)

Planar
hole filled
in 3D scene

Enhanced 3D echoreconstruction via EchoCNN inferences from audio-visualﬂ':g
Y




EchoCNN Classifiers

Ground Truth Predicted
Closed Open/CI(.)sed Closed
Glass Material Glass
2.6 ft Pepth 3 fit

\ af

EchoCNN

Audio-Visual EchoCNN performs surface detection (open/closed), depth

estimation, and material classification -4



Filter Visualizations and Activation
. Maximization

Sample of Filters Depth Activation Maximization
1 ft 2 ft 3 ft

a
gt

05101520 05101520 05101520

Time Bin

6

0
50
0

4
30
2

0
10

0

EchoCNN learning longer reverberation times tend to occur at lower frequencies
(3 ft) than at higher frequencies (1 and 2 ft) due to typical high frequency
damping and absorption
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Extensions to Existing Work

" Our approach uses commodity hardware
(smartphones)
" QOutputs for EChoCNN neural network are
(1) surface and sound source detection;
* (2) depth estimation,
 (3) and material classification
* We enhance state-of-the-art visual reconstructions

by detecting discontinuities using open/closed
inferences from our pre-trained EchoCNN

56



EchoReconstruction Results

) Open/Closed = Top Closed, Bottom Open
' Material = Gl
Echoreconstruction L] EchocNN D:p;:': ‘ : e
“Mobile Prototype” .
4 — Audio-Augmented

Planar Filling w/

Initial 3D Depth : - Rendar
Reconstruction Filtering emantic Rendering
~
Video
recording

J
N
RGB-
based 3D
reconstruction

J

Experimental Setup

Before (Prior Work) After (Ours)
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G

VR Demo of Audio-Augmented Scene and
Audio Reconstructions

Original Mixed Recording
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Thesis Statement Revisited

= Coupling multimodal information enhances task performance and processing
of audio-visual learning based methods for{fluid-structure sound synthesis,

liquid pouring sequences, object tracking, and 3D reconstructions while
also allowing for single mode application for special cases.

60



E

Conclusions / Contributions
II: Fluid-Structure Sound Synthesis

* Transforming the problem
into a single fluid-structure
system using the added mass
operator

= Enhancing the rigid-body
sound synthesis pipeline
with pre-processing steps for
objects containing a liquid

= Demonstrating on real-time
VR applications

61



II: Fluid-Structure Sound Synthesis

__

= Limitations

 Assumes that the liquids are inviscid, remain steady,
and are not mixed

« Assumes a non-moving domain; that is, the structural
vibration must move the liquid along with the structure

« Limited by the granularity of the solid mesh
discretization since modifications to the mass matrix
occur at the mesh nodes

= Future Work
* Investigation of acoustic transfer
 User evaluation on auditory perception

« Acquire model of the object using 3D reconstruction

62



Thesis Statement Revisited

A\
= Coupling multimodal information enhances task performance and processing
of audio-visual learning based methods for fluid-structure sound synthesis,

liquid pouring sequencesjobject tracking, and 3D reconstructions while
also allowing for single mode application for special cases.

Milk Pouring Sequence into Plastic Bottle by Human

Actual

——Predicted

-
o

~
=
c
S
2
©
E
=
o
i
@
£
3
]
=

10.0
Time (s)

PSNN-AV



N Conclusions / Contributions
o | III: Liquid Pouring Sequences

= Audio-visual pouring dataset

= Audio PSNN-A for multiclass

weight estimation and binary
overflow detection

" Audio-augmented PSNN-AV
neural network enhancing the
audio based method with
fused visual inputs

= Pouring content and container
classification

PSNN-AV
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G . .
III: Liquid Pouring Sequences

* Limitations
 Liquids are not mixed

= Future Work

+ Evaluate effectiveness of augmenting with
synthetic data

- Explore 1f approach can be applied to other
containers, liquids, and granular materials

65



=

= Coupling multimodal information enhances task performance and processing
of audio-visual learning based methods for fluid-structure sound synthesis,

liquid pouring sequencesfobject tracking] and 3D reconstructions while
also allowing for single mode application for special cases.

/ 00N

Thesis Statement Revisited
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Conclusions / Contributions
IV: Audio-Visual Object Tracking

= An end-to-end, jointly
trained audio-visual object

tracker (AVOT) to enhance
visual object tracking

= Ground truth bounding box
annotations for Sound-20K
audio-visual dataset with 1,
2, and 3 object scenes

= Experimental results against
baselines for mloU and
mFPS
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An Example Frame After Collision
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IV: Audio-Visual Object Tracking

__

* Limitations
- Few audio-visual object tracking datasets

- Dataset contains 18 objects varying geometry &
materials

= Future Work
- Evaluate alternative audio-visual fusion methods
« Augment audio data and test audio-only object tracker

+ Research on generative models and classifying
material per voxel using both audio and visual data
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Thesis Statement Revisited

Coupling multimodal information enhances task performance and processing
of audio-visual learning based methods for fluid-structure sound synthesis,
while

liquid pouring sequences, object tracking, an

3D reconstructions

also allowing for single mode application for special cases.




$ Conclusions / Contributions
2. V: Audio-Augmented Reconstruction

= EchoCNN, a fused audio-visual
CNN architecture for classifying
open/closed surfaces, depth, and
material

= EchoReconstruction, a staged
audio-visual 3D reconstruction
pipeline using mobile phones to
enhance scene geometry ey T B
containing windows, mirrors, and o By -
open surfaces with depth filtering
and inpainting
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V: Audio-Augmented Reconstruction

= Limitations
* EchoCNN’s depth estimation inference in
increments of 6 and 12 inches
- Staged approach for audio-augmentation instead of
an integrated pipeline

= Future Work

 Perform audio emission, receiving, and 3D
reconstruction simultaneously and in real-time

* Investigate the impact of live audio for training and
testing
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Thank You
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