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Sights and sounds are all around us

+ 
Audio

Video with visuals 
hidden

Video with visuals not 
hidden and information 

learned with visual

2

+ 
Visual

1 Sound20K [Zhang et al. 2017]
2 Example-Guided Physically Based Modal Sound Synthesis [Ren et al. 2013]



Audio-Visual Research Areas

§ Sound synthesis and acoustics
§ Sound separation (e.g. speech or noise filtering)
§ 3D reconstruction
§ Fluid-structure interactions
§ Cross-modal biometrics

• Seeing Voice and Hearing Faces1

§ Deep fake detection2

1 Seeing Voice and Hearing Faces: Cross-modal biometric matching [Nagrani et al. 2018]
2 Emotions Don’t Lie: A Deepfake Detection Method using Audio-Visual Affective Cues [Mittal et al. 2020]
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Sound Synthesis and Propagation in 
Virtual Environments

Source: SynCoPation: Interactive Synthesis-
Coupled Sound Propagation [Rungta et al. 2016] 4



1 Looking to Listen at the Cocktail Party: A Speaker-Independent Audio-Visual Model for Speech Separation [Ephrat et al. 2018]
2 Audiovisual Zooming: What You See Is What You Hear [Nair et al. 2019]

Audio-Visual Separation, Zooming, 
Localization, and More
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Source: Audio-Visual 
Zooming2

Source: Looking to Listen at the Cocktail Party1



Enhanced Scene Reconstructions using 
Acoustic Optimization
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Carl’s reconstruction work

Source: Acoustic Classification and Optimization for Multi-
Modal Rendering of Real-World Scenes [Schissler et al. 2017]



Coupling Fluid-Structure Interactions

7
Source: Computational Vascular Fluid–

Structure Interaction [Bazilevs et al. 2010]



§ Coupling multimodal information enhances 
task performance and processing of audio-
visual learning based methods for fluid-
structure sound synthesis, liquid pouring 
sequences, object tracking, and 3D 
reconstructions while also allowing for 
single mode application for special cases.
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Thesis Statement



Outline

§ I: Introduction
§ II: Fluid-Structure Sound Synthesis
§ III: Liquid Pouring Sequences
§ IV: Audio-Visual Object Tracking
§ V: Audio-Augmented 3D Reconstruction
§ VI: Conclusions
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“Glass half full: sound synthesis for fluid-structure coupling using added mass 
operator.” Justin Wilson, Auston Sterling, Nicholas Rewkowski, Ming C. Lin. 

Computer Graphics International (CGI) 2017, The Visual Computer.

Fluid-Structure Sound Synthesis

Part II



Motivation for Sound Synthesis
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§ Animating fire with sound
• Chadwick et al. 2011

§ Sounding liquids
• Moss et al. 2010

§ Animating elastic rods with 
sound
• Schweickart et al. 2017



Challenges

§ Previous research focuses on 
single systems only, either 
solid or liquid but not both

§ Not all sound simulations 
achieve real-time performance

§ Computationally expensive to 
model the variation in sound 
pressure waves from a 
coupled vibrating fluid-
structure system
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Background: Sound Waves

§ When an object is struck, it vibrates and deforms
§ Sound is generated by the vibration of pressure waves through 

a medium (e.g. air) and perceived by the ears as sound
§ This harmonic motion can modeled as an underdamped spring 

mass system with 𝑚𝑥!! + 𝑑𝑥! + 𝑘𝑥 = 0
§ m = mass
§ d = damping
§ k = stiffness
§ x = displacement

Pressure waves

Source: digitalsoundandmusic.com
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Background: Sound Dynamics Equation and 
Object Representation

§ Object is a volumetric solid body represented by a finite 
element mesh
§ Tetrahedral mesh has n nodes where i=1…n

§ Mu’’ + Du’ + Ku = f(t)
§ High-dimensional equivalent to spring-mass 

mx’’(t) + dx’(t) + kx(t) = f(t)

§ M, D, and K are size 3n x 3n sparse matrices
§ M = mass matrix
§ u = displacement vector of each element
§ D = viscous damping matrix
§ K = stiffness matrix
§ f = vector of forces
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Single tetrahedron of 
finite element mesh

Source: SIGGRAPH 2016 Course Notes



Related Work: Modal Analysis and 
Sound Synthesis

§ Solution of sound dynamic equation is damped sinusoids 
§ 𝑞" = 𝑎"𝑒#$!%sin(2𝜋𝑓"𝑡 + 𝜃") where	𝑎" depends on run-

time impulse and	d& and f& depend on the 
geometry/material

1 Example-Guided Physically Based Modal Sound Synthesis [Ren et al. 2013]
Source: SIGGRAPH 2016 Course Notes 15

Geometry, Material, and Hit Point
Sound

http://gamma.cs.unc.edu/AUDIO_MATERIAL/


Contribution: Added Mass Operator

§ Since the liquid must 
move with the same phase 
as the structure’s motion, 
this may be referred to as 
a rigid double body1

§ Added Mass is the 
additional (drag) force
resulting from fluid acting 
on a structure

1 Marine Hydrodynamics [Newman 1977]
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Existing Pipeline Steps

New Pipeline Steps Identify 
Structure’s 

Mesh Nodes 
Bounding the 

Liquid

Modify Mass Matrix 
M for Boundary 

Nodes Proportional 
to Force or Density

Create 3D 
model

Generate 
Tetrahedral
Mesh

Generate K, M, 
D Matrices

Run Modal 
Analysis

Runtime 
Modal 

Synthesis

System Overview
Offline Online
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Real Water Xylophone
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Simulated Water Xylophone
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Validation Results < 5% Relative Error

Vol Syn freq 
(kHz)

Act freq
(kHz)

Rel error 
(%)

Empty 2.9419 2.9709 0.98

1/4 2.9389 2.9597 0.70

1/3 2.8816 2.9453 2.16

1/2 2.7810 2.8759 3.30

Vol Syn freq 
(kHz)

Act freq
(kHz)

Rel error 
(%)

Milk 1.7037 1.6823 1.27

Water 1.7176 1.7607 2.45

Hot water 1.7297 1.7771 2.67

Olive oil 1.7597 1.7824 1.28
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System Demonstration in VE
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Part III
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“Analyzing liquid pouring sequences via Audio-Visual Neural Networks.” Justin 
Wilson, Auston Sterling, Ming C. Lin. International Conference on Intelligent 

Robots and Systems (IROS) 2019.

Analyzing Liquid Pouring 
Sequences with Audio-Visual



Outline

§ I: Introduction
§ II: Fluid-Structure Sound Synthesis
§ III: Liquid Pouring Sequences
§ IV: Audio-Visual Object Tracking
§ V: Audio-Augmented 3D Reconstruction
§ VI: Conclusions
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§ Motion planning
• Robot Motion Planning for Pouring 

Liquids, Pan et al. 2016

§ Learning based methods
• Learning Audio Feedback for 

Estimating Amount and Flow of 
Granular Material, Clarke et al. 2018

§ Visual control
• Visual Closed-Loop Control for 

Pouring Liquids, Schenck et al. 2017

Liquid Pouring

24



Extensions to Existing Work

§ In addition to RGB and contact microphones, how 
can we also use audio from pouring sequences to 
estimate poured amount?

§ How can we augment audio based learning by fusing 
with its associated visual data?

§ How can we generate audio-visual ground truth data 
that is easy to replicate and available for future 
research?
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Example Spectrogram of Liquid 
Pouring Sequence
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§ This resonant frequency fres and 
placed/poured volume 

Helmholtz Resonance Frequency

§ Audio frequency increases as a container fills up with liquid

§ This increase in frequency can be modeled based on the 
Helmholtz resonance (also referred to as a resonant cavity)

Vp

Vc

lp

sp

port

chamber

poured

𝑓𝑟𝑒𝑠 =
𝑐
2𝞹

𝑠𝑝
𝑉𝑐𝑙𝑝

𝑉𝑝 = 𝑉𝑐 −
𝑠𝑝

𝑙!𝑝
2𝝿𝑓𝑟𝑒𝑠

𝑐
"
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Analyzing Liquid Pouring Sequences via 
Audio-Visual Neural Networks
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Pouring Sequence Neural Network –
Audio-Visual (PSNN-AV)
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PSNN-AV Robot Pouring Sequence (Water)
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Our Results vs. Baseline

§ Audio only PSNN-A correctly classified 88.0% for 
robot and 75.8% for human sequences respectively

§ Audio-augmented PSNN-AV correctly classified poured 
weight within 0.4 oz for up to 91.5% for robot and 
86.4% for human pouring sequences

Results

1 oz = 29.5735 ml
* Only audio-based neural networks were evaluated for overflow as visual information oversimplified the task 31



Example Confusion Matrices

PSNN-AV Confusion MatrixPSNN-A Confusion Matrix

Results

32



Activation Maximizations

§ Inputs that would 
maximize PSNN 
activations
• Demonstrates ability 

to learn changes in 
frequency and 
height

§ Various pouring 
contents evaluated with 
PSNN

Inputs Activation
Maximization

Audio

Input Activation
Maximization

Visual
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PSNN-A Pouring Sequence Demo
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PSNN-AV Robot Pouring Sequence (Rice)
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Part IV

36

“AVOT: Audio-Visual Object Tracking of Multiple Objects for Robotics.” Justin 
Wilson and Ming C. Lin. International Conference on Robotics and Automation 

(ICRA) 2020.

Audio-Visual Object Tracking



Outline

§ I: Introduction
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§ III: Liquid Pouring Sequences
§ IV: Audio-Visual Object Tracking
§ V: Audio-Augmented 3D Reconstruction
§ VI: Conclusions
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§ Object 
tracking 
methods are 
used for:
• Autonomous 

driving1

• Mobile 
robotics2

• Speaker 
recognition3

Motivation

3838
1 Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite [Geiger et al. 2012]
2 Tracking multiple moving objects with a mobile robot [Schulz 2001]
3 Multi-speaker tracking from an audio-visual sensing device [Qian et al. 2019]



Challenges

3939

§ Tracking the 
challenging 
cases of:
• Colliding or 

occluding 
objects

• Similar object 
categories

• Smaller objects

Top: https://www.pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/
Middle: https://www.learnopencv.com/object-tracking-using-opencv-cpp-python/
Bottom: CSRT algorithm based on a virtual scene from Sound-20K [Zhang et al. 2017]

https://www.pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/
https://www.learnopencv.com/object-tracking-using-opencv-cpp-python/


Related Work: Object Detection and 
Tracking

§ Object Tracking
§ Frame skipping1

§ Deep Learning
§ Faster R-CNN2

§YOLO3

§ SSD4

• Audio-Visual

40

1 W. Detect or Track: Towards Cost-Effective Video Object Detection/Tracking [Luo et al. 2018]
2 Faster R-CNN: Towards Realtime Object Detection with Region Proposal Networks [Ren et al. 2015]
3 You Only Look Once: Unified, Real-Time Object Detection [Redmon et al. 2015]
4 SSD: Single Shot MultiBox Detector [Ren et al. 2015]
5 The Sound of Pixels [Zhao et al. 2018]
6 Look, Listen, and Learn [Arandjelovic et al. 2017]



Contribution: Audio-Visual Object Tracker 
(AVOT)

41

We define an object based on its geometry and material 
(e.g. glass, wood, etc.) to track objects with the same 

geometry but different materials

Speaker1

Speaker2



Annotated Audio-Visual Dataset

§ Our experiments consist of 
bounding box annotated virtual 
scenes from the Sound20K 
audio-visual dataset

§ 1,752 audio-visual segments
§ 18 objects (geometry/mat)
§ 103 frames per 3-sec video
§ Training and test data

42

Ground truth bounding boxes

Mel-scaled 
spectrogram

Image frame



Evaluation Metrics

§ Frames per Second 
(FPS)

§ Intersection over Union 
(IoU)
• IoU = Area of Overlap =                        

Area of Union

43

Ground Truth

Predicted



Example frame after collision
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§ In this ex., AVOT 
maintains tracking
• CSRT does not recover
• SSD temporarily loses 

tracking during collision



1 Object Free-Falling: Different Geometry 
& Materials

CSRT SSD AVOT

45



2 Objects Free-Falling: Same Geometry & 
Different Materials

CSRT SSD AVOT
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AVOT Neural Network Results

mIoU = mean Intersection over Union
mFPS = mean frames per second 47

AVOT



Audio-Visual Object Reconstruction

48



Part V
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Main publication: Under review

Related publication: “ISNN: Impact Sound Neural Network for Audio-Visual 
Object Classification” (ECCV 2018)

Audio-Augmented 3D 
Reconstruction
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Related Work: 3D Reconstruction

51

RGB-D

Source: InfiniTAM [Kahler et al. 2015], 
KinectFusion [Izadi et al. 2011]

RGB

Source: Live Metric 3D Reconstruction on Mobile 
Phones [Tanskanen et al. 2013]

Photogrammetry

Source: Agisoft
Metashape

Source: 3D Room Geometry Reconstruction 
Using Audio-Visual Sensors

Audio-Visual



System Demo and Mobile Prototype

52

Bottom smartphone (e.g. 
iPhone 6) performs a live, RGB-

based 3D reconstruction 
[Astrivis] and emits pulsed 

audio

Top smartphone (e.g. Samsung 
Galaxy Note 4) records video 
for audio and visual input to 

enhance bottom reconstruction 
via EchoCNN classifiers



System Overview and EchoCNN

53



EchoCNN Classifiers

54



Filter Visualizations and Activation 
Maximization
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Extensions to Existing Work

§ Our approach uses commodity hardware 
(smartphones)

§ Outputs for EchoCNN neural network are
• (1) surface and sound source detection;
• (2) depth estimation,
• (3) and material classification

§ We enhance state-of-the-art visual reconstructions 
by detecting discontinuities using open/closed 
inferences from our pre-trained EchoCNN

56



EchoReconstruction Results

57
Before (Prior Work) After (Ours)



VR Demo of Audio-Augmented Scene and 
Audio Reconstructions
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Outline
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Thesis Statement Revisited

§ Coupling multimodal information enhances task performance and processing 
of audio-visual learning based methods for fluid-structure sound synthesis, 
liquid pouring sequences, object tracking, and 3D reconstructions while 
also allowing for single mode application for special cases.
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Conclusions / Contributions
II: Fluid-Structure Sound Synthesis

§ Transforming the problem 
into a single fluid-structure 
system using the added mass 
operator

§ Enhancing the rigid-body 
sound synthesis pipeline 
with pre-processing steps for 
objects containing a liquid

§ Demonstrating on real-time 
VR applications
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II: Fluid-Structure Sound Synthesis

§ Limitations
• Assumes that the liquids are inviscid, remain steady, 

and are not mixed
• Assumes a non-moving domain; that is, the structural 

vibration must move the liquid along with the structure 
• Limited by the granularity of the solid mesh 

discretization since modifications to the mass matrix 
occur at the mesh nodes

§ Future Work
• Investigation of acoustic transfer 
• User evaluation on auditory perception
• Acquire model of the object using 3D reconstruction
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Thesis Statement Revisited

§ Coupling multimodal information enhances task performance and processing 
of audio-visual learning based methods for fluid-structure sound synthesis, 
liquid pouring sequences, object tracking, and 3D reconstructions while 
also allowing for single mode application for special cases.
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Conclusions / Contributions
III: Liquid Pouring Sequences 

§ Audio-visual pouring dataset
§ Audio PSNN-A for multiclass 

weight estimation and binary 
overflow detection

§ Audio-augmented PSNN-AV 
neural network enhancing the 
audio based method with 
fused visual inputs

§ Pouring content and container 
classification
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III: Liquid Pouring Sequences 

§ Limitations
• Liquids are not mixed

§ Future Work
• Evaluate effectiveness of augmenting with 

synthetic data
• Explore if approach can be applied to other 

containers, liquids, and granular materials
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Thesis Statement Revisited

§ Coupling multimodal information enhances task performance and processing 
of audio-visual learning based methods for fluid-structure sound synthesis, 
liquid pouring sequences, object tracking, and 3D reconstructions while 
also allowing for single mode application for special cases.
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Conclusions / Contributions
IV: Audio-Visual Object Tracking

§ An end-to-end, jointly 
trained audio-visual object 
tracker (AVOT) to enhance 
visual object tracking

§ Ground truth bounding box 
annotations for Sound-20K 
audio-visual dataset with 1, 
2, and 3 object scenes

§ Experimental results against 
baselines for mIoU and 
mFPS
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IV: Audio-Visual Object Tracking

§ Limitations
• Few audio-visual object tracking datasets
• Dataset contains 18 objects varying geometry & 

materials
§ Future Work

• Evaluate alternative audio-visual fusion methods
• Augment audio data and test audio-only object tracker
• Research on generative models and classifying 

material per voxel using both audio and visual data
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Thesis Statement Revisited

§ Coupling multimodal information enhances task performance and processing 
of audio-visual learning based methods for fluid-structure sound synthesis, 
liquid pouring sequences, object tracking, and 3D reconstructions while 
also allowing for single mode application for special cases.
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Conclusions / Contributions
V: Audio-Augmented Reconstruction

§ EchoCNN, a fused audio-visual 
CNN architecture for classifying 
open/closed surfaces, depth, and 
material

§ EchoReconstruction, a staged 
audio-visual 3D reconstruction 
pipeline using mobile phones to 
enhance scene geometry 
containing windows, mirrors, and 
open surfaces with depth filtering 
and inpainting

70

Scene Reconstruction

Audio Reconstruction



V: Audio-Augmented Reconstruction

§ Limitations
• EchoCNN’s depth estimation inference in 

increments of 6 and 12 inches
• Staged approach for audio-augmentation instead of 

an integrated pipeline
§ Future Work

• Perform audio emission, receiving, and 3D 
reconstruction simultaneously and in real-time

• Investigate the impact of live audio for training and 
testing
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