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ABSTRACT

Justin Alden Wilson: Multimodal Learning for Audio and Visual Processing
(Under the direction of Henry Fuchs and Ming C. Lin)

The world contains vast amounts of information which can be sensed and captured in a variety of

ways and formats. Virtual environments also lend themselves to endless possibilities and diversity of data.

Often our experiences draw from these separate but complementary parts which can be combined in a way

to provide a comprehensive representation of the events. Multimodal learning focuses on these types of

combinations. By fusing multiple modalities, multimodal learning can improve results beyond individual

mode performance. However, many of today’s state-of-the-art techniques in computer vision, robotics,

and machine learning rely solely or primarily on visual inputs. Vision only approaches can experience

challenges in cases of highly reflective, transparent, or occluded objects and scenes containing the like.

To address these challenges, this thesis explores coupling multimodal information to enhance task

performance through learning-based methods for audio and visual processing. As has been shown in vi-

sual question and answering and other related work, multiple modalities have the ability to complement

one another and outperform single modality systems. When visual data is obtained from video, the cor-

responding audio information may be readily available to augment learning and realize the benefits from

both audio and visual data. We show that fluid-structure coupling using the added-mass operator enables

impact sound synthesis of objects with varying amounts and types of liquid. By fusing audio and visual

data from real and synthetic videos, we also demonstrate enhanced processing and performance for object

classification, tracking, and reconstruction tasks.

Contributions of this thesis include new neural network designs, new enhancements to real and syn-

thetic audio-visual datasets, and prototypes that demonstrate audio and audio-augmented performance for

sound synthesis, inference, and reconstruction.
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CHAPTER 1: INTRODUCTION

Sights and sound are all around us, in both real and virtual worlds. At times, it is useful to unmute our

speakers or put on earphones so we can not only see what looks real but also hear how it sounds. By mod-

eling how objects and fluids should behave and sound, we can generate impact sounds of a user striking an

object, colliding sounds of objects interacting with one another, and other object and environment sounds.

While visual information provides a great amount of context for what one can expect, auditory cues can

assist with complementary data; for example, by differentiating between visually similar materials or the

type and amount of liquid in an opaque container. Audio can also provide primary data when vision is

unavailable; for example, unlit scenes or sounds outside the current field of view. Whether modeling by

physically based phenomena or training a multimodal neural network, both audio and visual information

play an important role in learning and processing of data for scene and object understanding.

Not only can additional modes of data provide more information, they can also reaffirm one another.

For example, if we only read the captions of a video, we may miss context of the scene or speakers. Infor-

mation from auditory cues may be lost. Furthermore, we can also use the sound to verify the visual and

textual data based on the synchronization between modes. We learn this through experience and under-

standing. The uncanny valley effect is also described in terms of visual resemblance; however, the same

can be applied to our perception of sound, though likely not as pronounced. The effect of audio and visual

together matters as well. Individual modes and their interplay represent research areas in multimodal learn-

ing, cross-modal self supervision, and transfer learning, to name a few. This dissertation contributes to the

simulation of sound for rigid body objects, with and without liquid, and uses both real and synthetic audio

as an additional mode to visual data for learning and processing tasks.

1.1 Motivation

‘ The screen is a window through which one sees a virtual world. The challenge is
to make that world look real, act real, sound real, feel real. ’ (Sutherland, 1965)

1



Virtual environments: as the excitement and economic potential for interactive virtual reality (VR) and

augmented reality (AR) increases, modeling of the physical world is imperative to realism of an immersive

experience, a sense of being there. In addition to sight, sound is also integral to the level of immersion

and sense of presence in virtual and augmented reality (Cummings and Bailenson, 2015). This interest

has motivated prior work in 3D sound synthesis, particularly in real-time. Audio has been used to guide

user attention and highlight parts of a scene outside current field of view. In the case of redirected walking,

sound can also serve as a distraction. The virtual scene can be manipulated in such a way that the user

can travel through a virtual world that is larger than the physical working space without the user noticing.

Whether or not audio and visual information are processed together in a single pipeline or separately, the

presentation of the modes should be synergistic to prevent a distraction from any of the senses which can

cause a ’break in presence’ (Sanchez-Vives and Slater, 2005).

Sound synthesis: traditionally, sounds have been added post-production by Foley artists who recreate

sounds for film and other media. However, today’s virtual environments expect real-time interactivity.

Therefore, game engines and VR systems are incorporating physically-based graphics and sound simula-

tion algorithms for interactive and realistic effects to help users remain immersed in the experience. This

modeling can be done based on the vibration and deformation of an object from interacting with another

surface. This deformation generates pressure waves through a medium such as air or a liquid. Our ears

hear the variation in pressure as sound, although we may not see the vibrations. This harmonic motion can

be modeled as an underdamped spring mass system.

mx′′ + dx′ + kx = 0 (1.1)

where m is mass, d is damping, k is stiffness, and x is displacement. Sound synthesis and physically-based

sound synthesis for rigid bodies as well as liquids have been studied. A few other major categories include

fractures, fire, and thin shell.

Since both sound and graphics can be physics-based, the graphics pipeline can be naturally extended to

generate sound. Humans can hear frequencies from between 20 Hz to about 22 kHz, requiring applications

to sample at a rate of 44 kHz based on the Nyquist Theorem, doubling the frequency we can sense. Rigid

body sound has been modeled using modal analysis to decouple the problem into n independent, damped
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vibration equations. By performing modal analysis to precompute frequency and damping, real-time sound

synthesis can be achieved (O’Brien et al., 2002; Ren et al., 2013a; van den Doel et al., 2001). This is im-

portant such that the audio and visual information rendered from interactions of virtual objects with other

objects, liquids, and the user reflect the current state of the virtual environment. Precomputing features,

clustering sources, decoupling equations, and/or simplifying the computational model are techniques that

have been used to achieve real-time performance and are explored in contributions to this dissertation.

Fluid-structure interactions: the dynamic sound synthesis model may be generalized to any object rep-

resented by a tetrahedral mesh and fluid by Lagrangian particles. The next extension of the pipeline is to

account for these objects that contained a liquid. While each perform in real-time separately, the coupling

of fluid-structure interactions could be compute intensive and needed to meet no-penetration and no-slip

conditions.

(
∂u

∂t
− v) · n = 0 (1.2)

The no-penetration condition (Equation 1.1) occurs at the fluid-structure boundary where u is the deforma-

tion of the solid, v is the velocity of the fluid, and n is the outward normal.

(
∂u

∂t
− v)× n = 0 (1.3)

The no-slip condition (Equation 1.1) holds that the tangential velocity components have to be equal. If

both independent boundary conditions hold, we have
∂u

∂t
= v. The problem can be simplified to a single

system, sometimes referred to as a rigid doubly body, by assuming:

1. Solid object is impermeable

2. Fluid is incompressible

3. Fluid motion coincides with structure motion (also known as a non-moving domain)

4. Fluid is at rest in hydrostatic equlibrium

5. Fluid is inviscid
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Applying Newton’s third law, for every action, there is an equal and opposite reaction, the resting

forces along the boundary of the fluid-structure interface can be calculated and included as an added mass

to the sound dynamics equation, extending the sound synthesis pipeline to objects containing a liquid.

Multimodal learning: learning-based methods often primarily rely on visual feedback and human interac-

tion; for example, state-of-the-art vision-based techniques for image classification (Deng et al., 2009) and

object detection (Liu et al., 2016; Redmon et al., 2016; Ren et al., 2015a) in images and video, to name a

few. Prior work for the liquid pouring task and object detection in robotics have also used visual sensing

for volume estimation and tracking. With many of these methods using video as an input, multimodal

learning with both audio and visual data can improve processing and performance. Fused modalities also

cover edge cases that can be a challenge for a single model. For visual data, noise from blur, poor illumi-

nation, or occlusions can cause error. On the other hand, environmental noise, varying room acoustics, or

mixed audio from other sound sources can prove difficult with audio inputs.

Natural Language Processing (NLP) has demonstrated the use of multimodal learning for visual ques-

tion and answering systems (Fukui et al., 2016; Ilievski and Feng, 2017), video captioning (Pasunuru and

Bansal, 2017; Wang et al., 2018). Audio-visual have also been used for speech separation (Zhao et al.,

2018) and object classification (Anusha and Roy, 2015). Rather than using extra sensors such as contact

microphones (Clarke et al., 2018) or thermal imaging cameras (Schenck and Fox, 2017), frames of audio

and visual data are used from the recorded video. Various techniques have been used to fuse these multiple

modes of data, such as merge layers of concatenation, add, and multiply to combine separate input streams.

Bilinear modeling has also been used to learn multiplicative interactions of differing input types (Gao

et al., 2015; Yu et al., 2017b; Park et al., 2016). A simple multi-modal bilinear model can be represented:

zi = xTWiy (1.4)

where x and y are mode features, Wi ∈ Rmxn is a projection matrix, and z is the output blinear model.

3D reconstruction: a number of algorithms exist to generate 3D shape from 2D and other sensory in-

formation. Passive methods use sensors (e.g. camera) to capture details (e.g. RGB) about an object for

reconstruction without any interference or projections into the scene. On the other hand, active reconstruc-

tion techniques (e.g. RGB-D) use infrared projectors to illuminate and detectors to measure the radiance

on the object’s surface. Using commodity sensors such as the Microsoft Kinect and GPU hardware allow
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for both static (Golodetz* et al., 2015; Izadi et al., 2011) and dynamic (Dai et al., 2017b; Newcombe et al.,

2015) scenes to be scanned in real-time. 3D scene reconstructions have also used sound such as time of

flight sensing (Crocco et al., 2016).

Results of reconstruction of 3D geometries can also serve inputs to other learning based algorithms.

For instance, 3D points have been used as inputs to train neural networks for other downstream tasks

such as object classification, segmentation, and tracking (Qi et al., 2016a). Reconstruction research has

generated large amounts of 3D scene (Silberman et al., 2012a; Song et al., 2017) and object (Lai et al.,

2011; Singh et al., 2014; Wu et al., 2015b) data that can be used for training vision-based neural networks

for classification, segmentation, and other downstream tasks.

1.2 Scope of this dissertation

There are a number of training datasets, neural network architectures, technologies, and active research

areas for multimodal learning, especially in the area of audio and visual data from video. Applications in

these areas range from Virtual and Augmented Reality, e.g., sound synthesis, reconstruction, inference, etc.

to expanding methods to handle a wider variety of surfaces and scenes, such as illumination, reflectivity,

texture, and occlusion. This dissertation focuses on coupling fluid-structure (chapter 3) and audio-visual

classification (chapter 4), tracking (chapter 5), and reconstruction (chapter 6 and chapter 7) with demon-

strations in multimodal learning and virtual reality.

1.3 Thesis Statement

My thesis statement is as follows:

Coupling multimodal information enhances task performance and processing of audio-visual learning

based methods for fluid-structure sound synthesis, liquid pouring sequences, object tracking, and 3D

reconstructions while also allowing for single mode application for special cases.

To support this thesis, I present four methods; one method to efficiently synthesis sound of objects

containing a liquid, two methods to accurately estimate liquid pouring sequences and track objects using

audio-visual neural networks, and one method to use audio to enhance scene and object reconstructions

using mobile devices.
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1.4 Main Results

1.4.1 Sound Synthesis for Fluid-Structure Coupling

Previous sound synthesis research has focused on single systems only, either solid or liquid but not

both. Since not all single mode, sound simulations achieve real-time performance, modeling the variation

in sound from a coupled vibrating fluid-structure system could be computationally expensive. This work

was the first to synthesize sound for a system containing both a rigid body object and liquid (referred to as

a fluid-structure coupling).

In chapter 3, I present a fast and practical method for simulating the sound of rigid body objects that

contain liquid. To maintain real-time, interactive performance, we modify the existing modal synthesis

pipeline by adding pre-processing steps. Those steps are to identify mesh nodes of the object that bound

the liquid and to then modify the mass matrix of the structural object by an amount proportional to the

liquid density and volume.

The main contributions of my work are:

1. Transforming the problem into a single fluid-structure system using the added mass operator;

2. Enhancing the sound synthesis pipeline with pre-processing steps for objects containing a liquid;

3. demonstrating the proposed method in interactive 3D VR applications.

Actual recordings versus synthesized frequencies were compared for varying amounts of liquid and

results were less than 5% relative error. The interactivity of the algorithm was demonstrated with VR appli-

cations of a simulated liquid xylophone and kitchen scene of different containers, liquids, and volumes.

1.4.2 Analyzing Liquid Pouring Sequences via Audio-Visual Neural Networks

Prior work to estimate liquid poured amounts often require predefined amounts in the source container

or rely on visual data. To compensate for vision-based challenges such as occlusion and transparency, this

work uses audio from the pouring sequence to augment audio and visual only methods.

In chapter 4, I introduce audio and audio-visual neural networks in the form of multimodal convolu-

tional neural networks (CNNs) to perform weight estimation, overflow detection, and content and con-

tainer classification for robots pouring liquids.
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The main contributions are:

1. Training, validation, and test data generated from audio recordings and video images with ground

truth measurements from a digital scale

2. Audio-based CNN for multiclass weight estimation and binary classification for overflow detection

by robotic systems

3. Audio-augmented neural network enhancing the audio only based method with fused visual inputs

for robots pouring contents into various target containers

4. Pouring content and target container classification for robots, based on pouring sequence audio data

Upto 91.5% of the audio intervals for the robot pouring sequences were classified within 0.4 oz using

audio-visual data. This resulted in an average error of 0.2 oz. The sound from pouring the liquid was also

used to predict the type of liquid and target container.

1.4.3 Audio-Visual Object Tracking of Multiple Objects

Visually based object trackers can run into challenges when object collide, occlude, or appear similar

but differ in material. By using audio of the impact sounds from object collisions, rolling, etc., an audio-

based technique may be used in conjunction with other neural networks to augment visually based object

detection and tracking methods. In chapter chapter 5, I describe the first use of an audio-visual neural

network for tracking tabletop sized objects and enhancing visual object trackers.

The key contributions of this work include:

1. An end-to-end, jointly trained audio-visual object tracker (AVOT) to enhance visual object tracking

2. Ground truth bounding boxes for virtual scenes from the Sound-20K audio-visual dataset with 1, 2,

and 3 objects

3. Scheduler for object detection re-initialization based on audio onset detection when using multi-

modal tracking

By fusing audio with visual data, the audio-visual object tracker (AVOT) achieves upto 78% inter-

section over union (IoU) post-collision tracking accuracy compared to 69% using state-of-the-art deep

learning visual trackers.
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1.4.4 Audio-Augmented Scene and Object Reconstruction

In chapter 6, I introduce echoreconstruction, an audio-visual method that uses reflecting sounds to aid

in geometry and audio reconstruction. Scenes containing open and reflective surfaces often lead to existing

techniques reconstructing objects behind (in the case of transparent glass) or in front of (in the case of

mirrors) the object. By using pulsed audio from a mobile device, inferences from a convolutional network

can detect and estimate depth to the reflecting surface. Key results include:

1. EchoCNN, a fused audio-visual CNN architecture for classifying open/closed surfaces, their depth,

and material

2. EchoReconstruction, a staged audio-visual 3D reconstruction pipeline that uses mobile phones to

enhance scene geometry containing windows, mirrors, and open surfaces with depth filtering and

inpainting based on EchoCNN inferences

3. Semantic rendering of window and mirror in audio-augmented reconstructions based on point of

view (e.g. environment outside of the window or reflected view of a TV)

4. Real and synthetic audio-visual ground truth data for multiple scenes containing windows and mir-

rors in addition to reflection separation data (direct, early, or late reverberations)

Overall, 71.2% of hold out reflecting sounds were correctly classified as an open or closed boundary

and 71.8% of 1 second audio frames were correctly classified as 1 ft, 2 ft, or 3 ft away from the surface

based on audio alone; 89.5% when fused with its corresponding image. Pulsed sounds were emitted a

maximum of 3 feet away to remain in the free field. Beyond that, there will be less noise reduction due to

reflecting sounds in the reverberant field (Egan, 1988).

In chapter 7, I detail a multimodal single and multi-frame LSTM autoencoder for 3D reconstruction

using audio-visual input. Existing methods may experience difficulties in cluttered environments with

multiple objects causing occlusion. To address such limitations, the method adds audio as another input,

specifically impact sounds resulting from object to object or scene interactions. The main contributions of

this work can be summarized as:

1. A multimodal LSTM autoencoder neural network for geometry and material reconstruction from

audio and visual data

8



2. The resulting implementation has been tested on voxel, audio, and image datasets of objects over a

range of different geometries and materials

3. Experimental results of our approach demonstrate the reconstruction of single sounding objects and

multiple colliding objects in a virtual scene

4. Audio-augmented datasets with ground truth object tracking bounding boxes

Single view ShapeNet resulted in IoU metrics of 21.2% for audio and 32.6% for audio-visual. 10

Sound20K views resulted in 37.15% and 69.8% IoU for audio and audio-visual respectively.

1.5 Contributions of this dissertation

For sound synthesis: (1) Transforming the problem into a single fluid-structure system using the added

mass operator. (2) Enhancing the rigid-body sound synthesis pipeline with pre-processing steps for objects

containing a liquid. (3) Demonstrating the proposed method in interactive 3D VR applications.

For analyzing pouring sequences: (1) Training, validation, and test data generated from audio record-

ings and video images with ground truth measurements from a digital scale. (2) Audio-based convolutional

neural network for multi-class weight estimation and binary classification for overflow detection by robotic

systems. (3) Audio-augmented neural network enhancing the audio only based method with fused visual

inputs for robots pouring contents into various target containers. (4) Pouring content and target container

classification for robots, based on pouring sequence audio data.

The broad contributions of this dissertation are new real-time fluid-structure coupling methods, new

audio-visual classification and tracking, and prototype audio-augmented object and scene reconstruction

on mobile devices.

1.6 Organization

The remainder of this dissertation is organized as follows. The discussion of fluid-structure coupling

begins with the sound synthesis of objects containing a liquid using the added mass operator in chapter 3.

This is followed by my work on analyzing liquid pouring sequences using audio-visual neural networks

in chapter 4. Next, I cover my method for audio-visual object tracking in chapter 5. Finally, I discuss a

model for using audio on mobile devices to enhance 3D reconstructions of scenes (chapter 6) and objects
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(chapter 7). I conclude my dissertation in chapter 8 by presenting a summary of this work, its contribu-

tions, and a discussion of future work.
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CHAPTER 2: BACKGROUND

This chapter briefly discusses the background knowledge required to understand the work presented in

subsequent chapters.

2.1 Sound Waves and Harmonic Motion

We first discuss sound waves and harmonic motion. When an object is struck, it vibrates and deforms.

The surrounding air rapidly compresses (compression) and expands (rarefaction or decompression) as the

object vibrates outward and inward respectively, As it oscillates periodically, pressure waves are created

and air pressure amplitude changes up and down over time. This periodic pattern of compression and

rarefaction is known as harmonic motion. Although we may not see the vibrations or deformations, our

ears hear the variation in air pressure as sound.

2.1.1 Spring-Mass System

Like harmonic motion, a spring mass system also responds in a period motion. For the underdamped

case (0 < d2 < 4 ∗ k ∗ m) where d is damping, k is stiffness, and m is mass, sound amplitude vibrates

but eventually stops. Equation 1.1 models the displacement for a single mass. For a volumetric object, the

system can be modeled by the sound dynamics equation:

Mu′′ +Du′ +Ku = f (2.1)

where M is the mass matrix, where mass is located on the object, u is the displacement of each element, D

is the viscous damping matrix (i.e. how velocity decays over time), K is the stiffness matrix (i.e. defining

the connectivity of the elements) and f is the vector of forces (i.e. inducing vibrations). Note that upper

case denotes matrices, lower case denotes vectors or scalars, and M, D, and K are size 3n x 3n sparse

matrices for n tetrahedral mesh nodes. Stiffness is based on the objects mesh and Poisson’s ratio; mass,
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construction method Consistent Mass Matrix (CMM); and damping, Rayleigh damping (also known as

linearly proportional damping).

D = α1 ∗M + α2 ∗K (2.2)

where α1 and alpha2 are real-value parameters. Given these parameters, we can simulate the vibration of

the solid volume body object in response to an impulse.

2.1.2 Modal Analysis and Sound Synthesis

To achieve real-time performance, modal analysis performs pre-processing steps for a given object and

material. Then at runtime, sounds are dynamically created with modal synthesis based on hit (or contact)

point where the object is struck and impulse direction. Typically, we simulate an impulse direction normal

to the contact point but could synthesize tangentially to the object like (0,1,0) for (x,y,z) impulse direction.

The solution to the sound dynamics equation is damped sinusoidal waves.

qi = ai ∗ e−di∗tsin(2π ∗ fi ∗ t+ θi) (2.3)

where qi is the displacement, ai depends on run-time impulse, and di along with fi depend on geometry

and material properties.

di =
1

2
(α1 + α2 ∗ λi) (2.4)

fi =
1

2π

√
λi − (

α1 + α2 ∗ λi
2

)2 (2.5)

2.2 Fluid-Structure Interaction and Elasto-Acoustic Coupling

Previous research focuses on single systems only, either solid or liquid but not both. Elasto-acoustic

coupling refers to a solid-fluid interface. It involves the interactions between the vibrations of an elastic

structure and the sound field in the surrounding fluid. Using an added mass operator simplifies a coupled

problem into a single fluid-structure system.
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The added mass operator assumes a non-moving domain; that is, the structural vibration must move

the liquid along with the structure. Then, the weight of the surrounding liquid can be added to the system

by modifying the mass matrix of the structure object. This is referred to as a rigid double body where

the added mass is the additional (drag) force resulting from fluid acting on a structure. Since the liquid

In reality, the fluid will be accelerated but for simplicity, liquid is modeled as a volume moving with the

object.

Mu′′ +Du′ +Ku = f(t)−ma ∗ u′′ (2.6)

2.3 Multimodal Learning with Audio Visuals

Multimodal learning explores relationships between different modalities. These techniques are found

in natural language processing methods such as visual question and answering systems that use both im-

ages and text. Recently, audio-visual learning has also been used for speech separation by using both the

image of the speakers and their speech. In addition to language, multimodal learning from impact sounds

of meshed geometries have also been demonstrated to aid in localization, object, and material classifica-

tion.

Learning based on multiple modes also enables methods to fill missing modalities. For example, while

vision-based methods may have difficulty detecting or estimating depth for textureless or glass surfaces,

echoes of reflecting sounds from a sound source may fill those holes. Furthermore, reconstruction methods

may also benefit from audio for enhanced geometry reconstruction and material inference.

2.4 3D Reconstruction Systems

A common processing pipeline involves capture, point generation, meshing and texturing, and tempo-

ral mesh processing. During capture, the setup often includes some level of calibration, preprocessing, bias

correction, and background subtraction. 3D point cloud generation follows from depth maps (IR, RGB,

SfS), multimodal MVS, or iterative surface estimation (point-based). Meshing and texturing may include

topology denoising, island removal, hull-constrained PSR, occlusion detection, and texturing. Finally,

temporal mesh processing incorporates mesh tracking, importance detection, and mesh decimation.
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CHAPTER 3: SOUND SYNTHESIS FOR FLUID-STRUCTURE COUPLING1

This chapter describes a fast and practical method for simulating the sound of non-empty objects

containing fluids. Our sound synthesis algorithm for fluid-structure coupling enhances the rigid-body

sound with an added mass operator to account for the amount and type of liquid contained within the

object. Although the technique assumes the liquids are inviscid, remain steady, and are not mixed and has

some limitations (such as granularity of the solid discretization since modifications to the mass matrix

occur at mesh nodes), this method is designed and demonstrated for use in interactive 3D systems, where

live sound synthesis is important.

3.1 Introduction

Sound is integral to the level of immersion and sense of presence in virtual and imaginative environ-

ments (Cummings and Bailenson, 2015). Research has demonstrated that even with eyes closed, we

can have a mental imagery response similar to a visual perception, as if we are actually viewing the ob-

jects (Kosslyn, 2005). However, in the case of virtual reality, a distraction from any of the senses can cause

a ‘break in presence’ (Sanchez-Vives and Slater, 2005). Therefore, game engines and VR systems are in-

corporating physically-based graphics and sound simulation algorithms for interactive and realistic effects

to help users remain immersed in the experience.

Given an object and its material properties, we can simulate, in real-time, the resulting sound that it

would make when struck (van den Doel et al., 2001; O’Brien et al., 2002; Ren et al., 2013a). To achieve

this real-time sound synthesis, we may pre-compute the frequencies and dampings of each element node

by performing modal analysis using a generalized eigendecomposition. Then, sound synthesis is based on

the results of these pre-processed steps and a given impulse force.

1 Most of this chapter previously appeared as an article in The Visual Computer. The original citation is as follows: Justin Wilson,
Auston Sterling, Nicholas Rewkowski, and Ming C. Lin. Glass half full: sound synthesis for fluid–structure coupling using added
mass operator. The Visual Computer, 33(6):1039–1048, Jun 2017. ISSN 1432-2315. doi: 10.1007/s00371-017-1383-8. URL
https://doi.org/10.1007/s00371-017-1383-8
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Figure 3.1: (Top) Simulated liquid xylophone with varying levels of liquid and/or density based on our
sound synthesis algorithm for fluid-structure coupling that enhances the rigid-body sound modeled by
accounting for both the amount and type of liquid contained within the object. (Bottom) Spectrograms for
each goblet, illustrating how the fundamental frequency decreases, resulting in a lower pitch as the amount
of liquid or density increases

Since both sound and graphics are physics-based, the rendering pipeline can be naturally extended to

generate sound based on the same physics. However, 3D objects for graphical display can be filled with

liquids (and/or other materials) in the scene and we can hear sounds coming from sources that we cannot

see. It is, therefore, important to simulate sounds from non-empty objects that may be hollow by design

but contain liquid in the virtual world.

In this paper, we present a new and practical method that satisfies both audio and graphics require-

ments and enhances the existing physically-based sound synthesis model to include non-empty objects.

This feature is important, because we interact with filled containers and can distinguish between objects

that are either full or empty (Rocchesso et al., 2003). Therefore, the difference in perceived sounds be-

tween empty and non-empty containers should be modeled to increase the realism of the virtual environ-

ments.

3.1.1 Contributions

This chapter’s main contributions are:
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Figure 3.2: A wooden pot, metallic teapot, and porcelain bowl with fine and coarse subdivision surfaces
are a few of the objects simulated with varying volumes of liquid (e.g. water). The far right image is the
same porcelain bowl but simulated with a more dense liquid (e.g. milk)

1. Transforming the problem into a single fluid-structure system using the added mass operator;

2. Enhancing the rigid-body sound synthesis pipeline with pre-processing steps for objects containing a

liquid;

3. Demonstrating the proposed method in interactive 3D VR applications.

3.2 Related Work

Sound Synthesis: Research has modeled rigid body sound using modal analysis to decouple the sound

dynamic equations into n independent, damped vibration equations (Adrien, 1991; van den Doel and Pai,

1998). These sound synthesis techniques create sound based on vibration analysis of the object resulting in

varying frequency vibration modes. Modal analysis relies on expensive pre-processing to achieve interac-

tive runtime performance. In addition to rigid-body sounds, there are a few other major physically based

categories such as fracture (Zheng and James, 2010), fire (Chadwick and James, 2011), and liquids (Moss

et al., 2010), to name a few. Please see a recent survey (James, 2016) for more details.

Parameter Acquisition: To perform sound synthesis, object specific parameters are required, for

example material specific damping coefficients that have traditionally been tuned manually. To automati-

cally determine these material properties, a method to extract parameters from recorded audio was intro-

duced (Ren et al., 2013a). Alternative and more general damping models have also been introduced (Ster-

ling and Lin, 2016).
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Acoustic Transfer: However, what we hear is not the modal amplitudes of the vibrating solid but

the sound pressure waves radiating from the vibrating surface into the surrounding air. Acoustic transfer

techniques couple synthesis and propagation together to generate sound. There are geometric acoustics

(GA) techniques (Funkhouser et al., 2003) and numerical acoustics (NA) methods that solve the wave

equation using adaptive Finite Element Method (FEM) (Thompson, 2006), Boundary Element Method

(BEM) (Brebbia and Ciskowski, 1991), Finite Difference Time Domain (FDTD) (Sakamoto et al., 2006),

spectral methods (Boyd, 2001), and Adaptive Rectangular Decomposition (ARD) (Raghuvanshi et al.,

2009).

Coupled Synthesis-Propagation: In addition to focusing on outgoing waves from the vibrating sur-

face into the air, research also been conducted to evaluate cavity tones for virtual instruments (Ren et al.,

2012) and aerodynamic sound of a swinging sword (Dobashi et al., 2003). To simulate the sound propaga-

tion into the full 3D environment, various methods have been developed using geometric sound propaga-

tion based on ray tracing techniques (Rungta et al., 2016a), wave-based algorithms (Mehra et al., 2015b),

and two types of multipole expansion for radiating sound fields-multipole expansion based on equivalent

source methods (James et al., 2006a) and single point multipole expansion (Rungta et al., 2016a). For

single-point multipole expansion (SPME), a single multipole source is placed inside the object while multi-

point multipole expansion places a large number at different points inside the object. These representations

depict outgoing pressure fields. Source clustering has also been proposed to reduce computation since

complexity varies with the number of sound sources (Tsingos et al., 2004a).

Fluid-Structure Mechanics: To allow for interactions between a solid and a liquid, Müller et al. (Müller

et al., 2002, 2004) simulated the interaction of fluids with deformable solids, which estimates the forces

between virtual boundary particles of the solid surface and fluid particles. Computational approaches are

discussed by Bazilevs et al. (Bazilevs et al., 2013), where the variational structural mechanics equation in

matrix form may be written as:

MŸ +DẎ +KY = F (3.1)

MAB =

∫
Ω
NANBdΩ (3.2)

where M = MAB. For linear elastodynamics, a density term is added to the mass matrix (and damping

matrix as well since it is a linear combination of the mass and stiffness matrices). Linear elastodynamics:
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M = [MAB
ij ]

MAB
ij =

∫
Ω
NAρNBdΩδij (3.3)

Here, Ω is the material domain of a structure along with the boundary Γ, ρ is the mass density of the

structure, and N is associated to its unique mesh nodes.

Added Mass Operator: Viewing the coupled fluid and structure as a single system, added mass or

virtual mass is a concept in fluid mechanics that incorporates the surrounding fluid of an accelerating or de-

celerating object (Newman, 1977). In the marine industry, added mass is often referred to as hydrodynamic

added mass and can reach up to 1/3 of the total ship mass. Although less common in aeronautics because

of small air density (except lighter-than-air balloons or blimps), the stability and convergence properties

were evaluated based on the ratio of added-mass to the actual structural mass (Brummelen, 2009). More

information on the topic of added mass and fluid inertial forces can be found in a survey by the the Naval

Civil Engineering Laboratory (Brennen, 1982).

3.3 System Overview

In this paper, we introduce an enhanced sound synthesis model that accounts for the amount of liquid

contained within an object by incorporating these added mass and fluid-structure interactions into the

existing rigid body sound synthesis model. Our new approach for simulating sound of non-empty objects

begins by modifying the mass matrix along the fluid-structure interface prior to performing modal analysis

on the system. We present various approaches to calculate the modification required for a specific liquid

density and volume.

3.3.1 Rigid-Body Sound Synthesis Pipeline

1. Generate the object’s volumetric mesh and stiffness K, mass M, and damping D matrices

2. Apply an added mass operator to modify the mass matrix based on a fluid-structure interface

3. Run generalized eigen-decomposition

4. Construct decoupled modal vibration equations

5. Apply an impulse force
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Figure 3.3: Overview of the enhanced rigid body sound pipeline to include new contributed steps to
account for different liquid volumes and densities contained within the solid object. These new pre-
processing steps come before modal analysis and therefore can be computed before simulation allowing
for usage in real-time interactive systems

6. Numerically integrate individual modes

3.3.2 Modal Sound Analysis

Modal analysis is the standard linear model for dynamic deformation and physically based sound (Sha-

bana, 1997). When an object is struck, it vibrates and deforms. The surrounding air rapidly compresses

(compression) and expands (rarefaction or decompression) as the object vibrates outward and inward re-

spectively. As it oscillates periodically, pressure waves are created and air pressure amplitude changes up

and down over time (like a sinusoidal wave). Although we may not see the vibrations or deformations, our

ears hear the harmonic oscillation and periodic pattern of compression and rarefaction in air pressure as

sound. We can simulate the vibration of the solid volume body object in an underdamped response to an

impulse using the following equation:

Mü+Du̇+Ku = f (3.4)
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where M , D, and K are the mass, damping, and stiffness matrices, respectively; u is the displacement vec-

tor and f as the force vector. It is well-established to approximate small levels of damping with Rayleigh

Damping, i.e. representing the damping matrix as a linear combination of the mass and stiffness matrices.

3.3.3 Modal Sound Synthesis

We can then simulate sound based on a contact position p = (x, y, z), where the object is struck. The

impulse direction is usually normal to the contact point but could be tangential to the object. To achieve

real-time performance, pre-processing steps are performed for a given object and material.

After solving the generalized eigenvalue problem of Eqn. 3.4, the solution are modes, i.e. damped

sinusoidal waves where each mode has the form

qi = aie
-ditsin(2πf it+ θi), (3.5)

where f i is the frequency of the mode, di is the damping coefficient, ai is the excited amplitude, and θi is

the initial phase. And,

ωi = 2πf i =

√
4km− d2

2m
(3.6)

We ignore θi and safely assume it to be zero since the object is initially at rest. It is also important to note

that our approach requires the mass to be normalized (m = 1).

3.3.4 Added Mass Operator

In solid and structural mechanics and civil engineering where pressure forces are commonly applied

to the structure, the additional force resulting from fluid acting on a structure when formulating the system

equation of motion is known as added mass. In a physical sense, the added mass of an incompressible flow

is the weight added to the system from surrounding fluid that the accelerating or decelerating structural

vibration must move with the structure. This force is factored into our sound dynamics equation as:

Mü+Du̇+Ku = f −maü (3.7)
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where ma is the added mass. Reordering terms, we arrive at:

(M +ma)ü+Du̇+Ku = f (3.8)

Note that if mass is also included in the damping matrix, the added mass would automatically be included

there as well.

On short time scales, the effect of the fluid on the structure can be represented as an added mass. Ratio

of this added mass to the structural mass is critical to convergence and should be less than or equal to 1;

else, the system may become unstable (Brummelen, 2009). In reality, the fluid will be accelerated but for

simplicity, it is modeled as a volume moving with the object as a second-order tensor, relating the fluid

acceleration vector to the resulting force vector on the body.

Added mass is analogous to the amount of work needed to change the kinetic energy T associated with

the motion of the fluid:

T =
ρ

2
IU2 =

ρ

2

∫
V

(u2
1 + u2

2 + u2
3)dV (3.9)

where u is the fluid velocity in Cartesian coordinates, V is the volume of fluid, ρ is the liquid density, U is

the structure’s velocity, and I is a number proportional to the liquid’s volume. We assume a non-moving

domain and a rectilinear velocity, which could be generalized to other motions if required (?). When the

solid body accelerates causing changes in U, kinetic energy T increases, supplying additional work by

the body on the fluid. The rate of additional work is the rate of change of T with respect to time dT/dt

and is considered added drag by the body. A viscous fluid also contributes a drag force; however, in our

implementation, we assume inviscid liquids. Then, the added drag, F, can be represented as:

F = − 1

U

dT

dt
= −ρI dU

dt
= −ρV

2
ü (3.10)

I =

∫
V

ui
U

ui
U
dV (3.11)

where I is half the volume and F is in the form of maü or ρfluid ·
Vfluid

2
ü if we approximate our liquids

to be spherical, similar to the concept of spherical bounding volume hierarchy (Gottschalk et al., 1996).

Since cylindrical objects result in a full volume rather than half (Brennen, 1982), future work is required
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to analyze the trade-offs between ease of implementation and accuracy in accounting for the geometric

complexity of the liquid.

As a result, if we approximate our liquid as a sphere, added mass for each liquid object is approxi-

mated by:

ma = ρfluid · Vfluid/2 (3.12)

For example, the added mass for a sphere (of radius r) is
2

3
πr3ρfluid which is half the volume of a sphere

times fluid density. Therefore, a spherical air bubble rising in water has a mass of
4

3
πr3ρair and added

mass of
2

3
πr3ρwater.

Since the liquid must move with the same phase as the structure’s motion, this may be referred to as a

rigid double body (Newman, 1977). In general, the value of the added mass also depends on the direction

of acceleration and is incorporated by projecting the area of the body in the direction of acceleration; for

instance, tangential acceleration yields zero added mass. In our case, projection is not necessary since we

assume a non-moving domain where the fluid motion is in the same direction as the structural vibration.

3.4 Sound Synthesis for Fluid-Structure Coupling

Added mass from the liquid is distributed to mesh nodes of the structural object along the fluid-structure

boundary. In our system, we represent both the solid and liquids as tetrahedral meshes to detect boundary

elements although particle-based methods (such as Lagrangian particles) are also possible. We also make

the following assumptions:

• Solid is impermeable & the liquid is incompressible

• Fluid is at rest in hydrostatic equilibrium or the flow velocity at each point is constant over time

• Domain is non-moving, i.e. fluid motion coincides with structure motion

• Fluid is inviscid, having no or negligible viscosity

3.4.1 Identifying Nodes at Fluid-Structure Interface

A number of collision detection methods exist (Gottschalk and Lin, 1998) and may be used to identify

the necessary boundary nodes. Since the liquid is assumed to be at rest, boundary detection of symmetric
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Figure 3.4: Left: top view. Right: cross sectional view. Surface boundary and adjacent domain nodes in
between the inner and outer boundary are detected, stored, and modified by an added mass based on the
amount and type of liquid in each respective object

objects may be simplified by selecting all nodes above and below the min and max nodes that intersect

between the structure and fluid (see Fig. 3.4).

3.4.2 Modifying the Mass Matrix

We use the added mass equation for a sphere (see Eqn. 3.12) to calculate total added mass for each liq-

uid based on the liquid density and volume. For example, if the liquid added is pure water, then the density

is 1,000 kg/m3; milk, 1,050 kg/m3; olive oil, about 860 kg/m3; and boiling water, approximately 958

kg/m3. This total added mass is then distributed to the mesh nodes of the structural object. An approach

to randomly distribute this added mass across the entire structure is less accurate than uniformly or force

weighted distributions along the fluid-structure boundary.

A uniform distribution calculates the total added mass and then distributes an equal amount to each

boundary and adjacent domain mesh node, as illustrated in Fig. 3.4 and Fig. 3.5. Alternatively, rather

than uniformly distributing additional mass from the liquid, we may distribute it relative to the local force.

For example, mesh nodes with a greater depth will have a greater force and therefore should obtain a

greater proportion of the total added weight. Given the boundary nodes and the weight of the liquid, we

modify the mass matrix elements for each node based on its hydrostatic force, as shown in Fig. 3.6 and

Eqn. (3.18).
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Figure 3.5: Added mass should be distributed along the fluid-structure interface. Randomly distributing
(left) the added mass over the entire structure also modifies the sound but uniformly (middle) or weighted
(right) distributions result in frequencies closest to real-world recordings

3.4.3 Hydrostatic Force on a Curved Surface

In our system, we can also evaluate the force along the boundary of an object to determine the weighted

distribution of added mass. This is based on fluid statics where the pressure increases linearly with depth

below the water’s surface for fluids in a non-moving domain (CAL POLY POMONA, 2016). For example,

dams are designed to be parabolic for improved stability, allowing the weight of the water to press the dam

into the ground.

Newton’s 3rd law dictates that ~F N = −~F R and 2nd law that
∑ ~F = m~a = 0 since there is no

motion. Given these conditions, our goal is to solve for the force along the fluid-structure boundary ~F N =

FHî + FVĵ where N stands for normal, R for reactive, H for horizontal, and V for vertical, as illustrated

in Fig. 3.6. For both the horizontal and vertical components of the normal force, the force magnitude

increases with depth. Therefore, the force along the boundary of the solid is greatest at points farthest

away from the surface. In addition to depth, the hydrostatic force equations also demonstrate the linear

relationship with density. Since the fluid body is not moving, the net force is zero which means that the
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Figure 3.6: Free-body diagram for the hydrostatic force along the fluid-structure boundary of a curved
surface depends on depth below the surface, liquid density, liquid volume, and gravitational constant g

horizontal force from the structure is equal to the horizontal pressure force from the liquid.

∑
F x = 0 = F 2 − FH (3.13)

FH = F 2 = γhcAleft = γ(d+
hs

2
)(wshs) (3.14)

where γ = ρ · g, hc is the vertical distance from the free surface to the centroid of the left planar surface, area

of the left planar surface is Aleft, d is depth, hs is height from bottom to top of the liquid surface, and ws is

the width of the liquid surface.

∑
F y = 0 = FV − F 1 −W (3.15)

W = mfg = (ρV f)g = γV f = γ(dwsls) (3.16)

FV = F 1 +W (3.17)

The sum of the forces in the vertical direction are also equal to zero. F1 is the pressure force due to the

weight W of the fluid directly above the isolated fluid body and in our case is equal to zero. The weight W

is mass m times the gravitational constant g, where mass can be calculated as density ρ times volume V.

FN =
√
FH2 + FV2 = FR (3.18)
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Figure 3.7: This figure displays the results of sound synthesis for our approach with liquid volume increas-
ing from empty to glass half full; notice that the fundamental frequency decreases resulting in a lower
pitch as the liquid increases

With this approach, we are able to calculate the forces along the boundary. Rather than uniformly dis-

tributing additional mass from the liquid, we can distribute relative to the local force. Given the boundary

nodes and the weight of the liquid, we modify the mass matrix elements for each node based on its force

contribution. If we calculate the forces using a particle approach, then we can distribute the liquid particle

forces to the structure mesh nodes using Gaussian quadrature rules (Müller et al., 2004).

3.5 Results and Analysis

We have implemented our algorithm in C++, while performing the power spectral density and spectro-

gram analysis using MATLAB. The virtual reality demo application was created with Unreal Game Engine

and viewed with the HTC Vive, as shown in the supplementary video posted at: http://gamma.cs.

unc.edu/GlassHalfFull

3.5.1 Comparison: Synthesized vs. Recording

To evaluate the effectiveness of our method, we compared synthesized sounds to real-world recordings.

The results show that the direction of the change in sound is accurate. For example, the pitch decreases as

the volume or density increases. This inverse relationship is referred to as “wet” natural frequencies (with
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Figure 3.8: Given equal volumes of liquid, the fundamental frequency of the sounding object decreases as
the contained liquid density increases

liquid) that are lower than corresponding “dry” natural frequencies (without liquid) (Basic, 2012). Also,

although the synthesized and actual frequencies differ, the similarity in sound between the two are imper-

ceptible (Sek and Moore, 2016). Our synthesized sounds would provide the expected auditory difference

among different liquids, as shown in Table 3.1.

Keeping the volume constant and changing density (e.g. milk versus water) also changes the frequency.

For example, in Figure 3.8, we can see that frequency is inversely proportional to liquid density; that is,

as density increases, frequency decreases. The difference in sound by varying the type may be harder to

distinguish unless there is a more significant difference in density (e.g. olive oil versus milk).

Table 3.1: Generalizations for different liquid densities. Syn Freq and Actual Freq are the synthesized and
actual fundamental frequencies respectively, in kHz, of a wineglass with 1/4 liquid volume

Liquid Syn Freq (kHz) Act Freq (kHz) Rel Error
Milk 1.7037 1.6823 1.27%
Water 1.7176 1.7607 2.45%
Hot Water 1.7297 1.7771 2.67%
Olive Oil 1.7597 1.7824 1.28%

Similar to density, volume is also inversely proportional to pitch. Compared to real-world recordings,

the change in frequency direction is aligned with expectations and the magnitude of the frequencies are

reasonable within single-digits, (see Fig. 3.9 and Table 3.2).
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Figure 3.9: Fundamental frequency of the object decreases as the amount of liquid increases

Table 3.2: Generalizations for different liquid volumes where Syn Freq and Actual Freq are the synthe-
sized and actual fundamental frequencies, in kHz, of a porcelain bowl with water

Vol Syn Freq(kHz) Act Freq(kHz) Rel Error
Empty 2.9419 2.9709 0.98%

1/4 2.9389 2.9597 0.70%
1/3 2.8816 2.9453 2.16%
1/2 2.7810 2.8759 3.30%

3.5.2 Spectrogram Analysis

We used power spectrograms to analyze the synthesized sounds in a time-varying frequency represen-

tation. This allows us to view the fundamental frequency as well as the duration of each frequency. As

expected, the fundamental frequency decreases, resulting in a lower pitch, as the liquid increases. Fig-

ures 3.10 and 3.11 show that the empty wineglass has a fundamental frequency of 1.89 kHz for a duration

of about 1.15 seconds while the half full glass has 1.58 kHz for approximately 1.5 seconds.

The fundamental frequency duration increases as the volume rises; however, at about the volume

halfway point, it begins to decrease. This requires additional analysis in future work but we believe that

this may be due to the convergence constraint in the added mass operator that the added mass be below

some maximum percentage of total mass.

Performance: the wineglass 3D model contained about 17,000 vertices, taking less than 30 seconds of

precomputation to run our sound synthesis algorithm for fluid-structure coupling on a 2.40 GHz Lenovo

Intel Core i7-4700MQ machine. Since our method enhances an existing pipeline by pre-processing steps

28



Figure 3.10: Empty wineglass. Top left: time domain signal. Top right: power spectral density estimation
graph. Bottom: spectrogram for empty wineglass; higher frequency, higher pitch, shorter duration

only, we refer to related work for a computational cost analysis on the interactivity of sound synthesis

techniques (Raghuvanshi and Lin, 2006).

Table 3.3: Solid and liquid are represented as tetrahedral meshes to detect boundary nodes and modify
their mass elements although particle-based methods may also be used

Descriptor Fluid Structure
Object Inviscid Impermeable
Mesh Tetrahedral Tetrahedral
No. Vertices ˜2-5k ˜17k
No. Boundary Nodes ˜500-1.5k ˜500-1.5k

3.6 Applications

We integrated our prototype implementations with two applications: simulated liquid xylophone and

interaction with virtual environments.
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Figure 3.11: Half full wineglass. Top left: time domain signal. Top right: power spectral density estima-
tion graph. Bottom: spectrogram for half full wineglass; lower frequency, lower pitch, longer duration

3.6.1 Simulated Liquid Xylophone

Modal analysis is performed before the simulation so the modes are pre-computed, allowing a user to

interactively play the simulated liquid xylophone and generate sounds based on object material, liquid type,

and liquid volume. Future additions could include making the simulated xylophone even more interactive

by allowing the user to modify the type of liquids and/or the amount at run-time.

3.6.2 Integration With Virtual Environments

To demonstrate the plethora of non-empty objects that we interact with, we applied our method to a

virtual kitchen. Next to each empty object is a filled object for sound comparison. Please see the supple-

mentary video to hear the added sound effects.

3.7 Conclusion and Future Work

We have presented a novel method that extends the rigid-body sound synthesis pipeline to account

for the change in sound frequency and duration resulting from various types and amounts of liquids that

an object contains. Although our experiments show results in the general direction of how the frequency
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Figure 3.12: User strikes each glass interactively in a virtual environment using a mouse click or virtual
reality controller to play an octave of a simulated liquid xylophone

Figure 3.13: Users can interactively hear the sounds of various objects due to varying amounts and types
of liquids in a virtul kitchen scene
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Table 3.4: Generalizations for different solids and liquid volumes where Syn Freq is the synthesized
frequency, in kHz

Solid Liquid Vol ρ(kg/m3) Syn Freq
Porcelain Bowl Water Empty 1,000 2.9419
Porcelain Bowl Water 1/2 1,000 2.7810
Metal Teapot Water Empty 1,000 10.0070
Metal Teapot Water 1/2 1,000 7.5150
Wineglass Water Empty 1,000 1.8911
Wineglass Water 1/2 1,000 1.5828

changes and produce similar sounds, our work assumes that liquids are inviscid, remain steady, and are not

mixed. Our method should be extensible to handle mixed fluids. Liquids are also approximated as spheres

to calculate added mass. The granularity of the solid mesh discretization also influences the results since

the modifications to the mass matrix occur at the level of the mesh nodes. Other future research directions

may include investigation of acoustic transfer and harmonic pressure (James et al., 2006a; Zheng and

James, 2011a), as well as user evaluation on auditory perception of these added sound effects.

In summary, our sound synthesis algorithm for fluid-structure coupling adds pre-processing steps to

the rigid body sound pipeline to simulate sound based on the volume and type of liquid contained within

an object. The pre-computed steps are to identify and modify the mass matrix elements of the structural

mesh nodes, along the domain of the fluid-structure boundary with an added mass operator proportional

to the liquid’s density and volume. Since our technique adds mass from the liquid to the structural object

before the simulation, the fluid(s) can be occluded as often is the case in graphical rendering and may be

used in interactive 3D graphics and VR systems. Finally, we have demonstrated the effectiveness of our

method for simulated musical instruments and composition, as well as enhanced realism of “glass-half-

full” sounds in virtual environments.

32



CHAPTER 4: ANALYZING LIQUID POURING SEQUENCES VIA AUDIO-VISUAL1

This chapter presents novel audio-based and audio-augmented, multimodal convolutional neural net-

works (CNNs), to estimate poured weight, perform overflow detection, and classify liquid and target con-

tainer. Our Pouring Sequence Neural Networks (PSNNs) use the sound from a pouring sequence—a liquid

being poured into a target container to improve classification accuracy for different environments, con-

tainers, and contents of the robot pouring task. They are trained and tested using the Rethink Robotics

Baxter Research Robot. To the best of our knowledge, this is the first use of audio-visual neural networks

to analyze liquid pouring sequences by classifying their weight, liquid, and receiving container.

4.1 Introduction

For robots to perform tasks individually or collaboratively, their ability to sense objects and substances

in their environment is critical, especially when pouring liquids. Robots are increasingly performing more

complicated human tasks, such as household activities, warehouse placements (e.g. Amazon Picking Chal-

lenge (Correll et al., 2018)), and other detection, recognition, and motion-planning tasks. Many methods

for performing these robotic tasks use, and often primarily rely on, visual feedback and human interaction.

In this work, we propose using auditory cues to enhance learned feedback for robots in liquid pouring

tasks. Audio has been used in robotics for localization of the spatial position of a sound source (Rascón

and Ruiz, 2017), navigation (Huang et al., 1999), autonomous systems (Martinson and Schultz, 2009),

sensorimotor learning (Boyer, 2015), and locomotion control (Ozkul et al., 2012), to name a few. Here,

we investigate using sound to enhance a robot’s ability to estimate poured weights and types of liquids

and containers. Humans are able to roughly sense a change in pitch when filling up a container (Lawson,

1965), and we demonstrate that robots can learn to do the same. With audio-visual neural networks, we

classify weight, pouring contents, and containers for robot pouring tasks.

1 This chapter previously appeared as an article in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
The original citation is as follows: Justin Wilson, Auston Sterling, and Ming Lin. Analyzing liquid pouring sequences via
audio-visual neural networks. pages 7702–7709, 11 2019b. doi: 10.1109/IROS40897.2019.8968118
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Figure 4.1: Our audio-augmented approach performs weight estimation, overflow detection, and content
and container classification in bright environments (left) whereas our audio only based approach can be
used in dark and occluded environments (right). Pouring sequences are recorded using either a smart-
phone or Microsoft Kinect’s built-in microphone array. Training data is generated by assigning digital
scale measurements to discrete audio intervals and tested in experiments using Baxter robot and human
experimenter pouring sequences. Various contents (water, rice, soda, and milk) and target containers (glass
measuring cup, metal cup, Polyphenylsulfone (PPSU) bottle, plastic bottle, plastic cup, and square bowl)
were evaluated.

Until recently, pouring tasks have often used predefined source amounts of a liquid. Now, (Clarke

et al., 2018) demonstrates flow and weight estimation from audio-frequency mechanical vibrations of a

robot scooping up and pouring granular materials and (Schenck and Fox, 2017) controls pouring with

closed-loop visual feedback. Our motivation is to use audio to augment a robot’s visual sensing, thereby

enabling the use of learned audio-visual feedback. To the best of our knowledge, this is the first use of

learned audio-visual feedback to estimate the weight of poured liquids and classify liquid type and con-

tainer.

The key contribution of this work is a novel, multimodal CNN for weight estimation, overflow de-

tection, and liquid and container classification. We analyze liquid pouring sequences using audio and

audio-visual variants of our neural network. We demonstrate their ability to compensate for vision-based

challenges such as occlusion and transparency by evaluating on pairs of liquids and containers with hold

out pouring sequences for both robot and human experimenter pouring. Our contributions are summarized

as follows:
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1. Training, validation, and test data generated from audio recordings and video images with ground

truth measurements from a digital scale;

2. Audio-based convolutional neural network for multi-class weight estimation and binary classifica-

tion for overflow detection by robotic systems;

3. Audio-augmented neural network enhancing the audio only based method with fused visual inputs

for robots pouring contents into various target containers;

4. Pouring content and target container classification for robots, based on pouring sequence audio data.

4.2 Related Work

In this section, we discuss some of the state-of-the-art audio and video based classification techniques,

focusing on temporal classification methods, motion planning, and learned estimation methods for the

robot pouring task.

Temporal classification methods: these methods model the dependency, causality, and sequential

nature of time series data such as audio. A number of temporal models have been introduced to represent

this history and predict the likelihood of consecutive actions. Typical techniques include Hidden Markov

Models (HMMs) (Rabiner, 1989), Conditional Random Fields (CRFs) (Lafferty et al., 2001), Recurrent

Neural Networks (RNNs) (Jain and Medsker, 1999), and Long Short-Term Memory (LSTM) (Hochreiter

and Schmidhuber, 1997) networks.

Convolutional filters have also been used for temporal consistency; for example, WaveNet’s (van den

Oord et al., 2016b) dilated causal convolutions and Temporary Convolutional Networks’ (TCNs) (Lea

et al., 2017) dilated and encoder-decoder implementations. These models have in common the notion of

convolution filters across time, computational speedup by updating time steps simultaneously rather than

sequentially like recurrent networks, and frame-based classifications as a function of receptive fields (i.e.

fixed-length periods of time). TCNs replace fully-connected layers with causal convolutional layers and

sequential processing with parallel processing given the same filter in each layer. These characteristics

along with state-of-the-art accuracy make TCNs a top choice for audio and visual classification tasks (Bai

et al., 2018).

35



Motion planning and monitoring: while our work assumes specific robot and container placements,

motion planning for pouring liquids focuses on motion going from start to end targets (Pan et al., 2016).

To monitor pouring motion, sensory inputs from a chest-mounted camera and a wrist-mounted IMU sensor

have been used (Wu et al., 2018). Related work has also categorized objects based on size, material, and

other features (Griffith et al., 2012). For example, whether a container is fillable can be determined by us-

ing state sequences and a hierarchical spectral clustering algorithm (von Luxburg, 2007). This work is also

relevant to our research by combining two modalities-sound and proprioception-to improve categorization

accuracy.

Learning based methods for pouring liquids: (Clarke et al., 2018) is an audio based method that es-

timates the weight of granular material scooped. The technique is also used for pouring a desired material

amount. The approach uses a recurrent neural network with convolutional layers and audio spectrogram in-

put. A benefit of our multimodal approach is that the audio augments the visual data and sample intervals

of the pouring sequence are evaluated independently (Table 4.2 for baseline comparisons). Analyzing the

marginal benefit of recurrent layers in our neural networks is future work. Other learning based methods

are based on human demonstrations (Yamaguchi et al., 2014, 2015). These methods model a variety of

pouring motions involving shaking and using both robot arms.

Figure 4.2: Spectrogram from a recorded pouring sequence. The frequency of a container filling up can
be modeled based on its Helmholtz resonance (also referred to as a resonant cavity) (Webster and Davies,
2010). This resonant frequency increases over time as an object fills up with water as its cavity volume Vc
decreases, supporting the use of an audio-based feature for the robot pouring task.
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Visual control for pouring liquids: estimate liquid levels by identifying which pixels contain a liq-

uid. (Schenck and Fox, 2017) uses a convolutional network to identify liquid pixels from RGB images

and a second stage recurrent CNN-LSTM to estimate liquid volume. (Do et al., 2016) is a probabilistic

approach using RGB-D to detect liquid levels. These estimation methods allow for the source container to

carry amounts greater than that which the target container can receive because they can be used to control

pouring without the need for specialized sensors.

4.3 Technical Approach

Our neural networks use audio and image data for weight estimation, overflow detection, and poured

content and container classification, enhancing learning with sound alone or in conjunction with visual

data. By augmenting visual data with sound, we can enhance a robot’s ability to detect and perform tasks

with transparent or highly reflective containers and liquids in challenging and cluttered environments. To

the best of our knowledge, this is the first use of an audio-augmented neural network to analyze liquid

pouring sequences in robotics by estimating the weight of a pouring task and classifying poured contents

and containers.

Our method allows for a source container to contain amounts greater than the capacity of the target

container, as our Pouring Sequence Neural Networks (PSNNs) perform multiclass liquid, container, and

weight classification and binary classification for overflow detection. Our audio-based approach uses a

microphone for input, which can be found in any modern smartphone or Microsoft Kinect. Intervals of

recorded audio are assigned a discrete weight class based on digital scale measurements for ground truth

labeling. Training is performed offline, while classifications and overflow detection are the results of our

neural network predictions.

4.3.1 Task Overview

Our task is to use a mel-scaled2 spectrogram of sound and video images of the target container to

predict weight, liquid, and container at a point in time during a pouring sequence. A spectrogram is a two-

dimensional representation of acoustic energy over frequency and time. Once target weight is reached or

overflow detected, the robot can be signaled to stop pouring and return to its initial position. This task is

2 The mel scale is a perceptually linear scale of pitch.
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Figure 4.3: As the Baxter robot pours liquid from source to target container, a microphone records the
audio of the target object filling up with liquid and a camera captures video images. The audio is split
into 0.2 second intervals to match the digital scale sampling rate. These audio intervals are converted
into mel-scaled spectrograms and passed through a multimodal CNN Pouring Sequence Neural Network
(we refer to as PSNN) comprised of 2D convolutional, max pooling, fully connected, and softmax layers.
Multi-class classification is used for discrete weight estimation (classes of 0.2 oz increments) and liquid
and container prediction while binary classification is used for overflow detection. The network’s output
may be used as a very simple stop command for the robot pouring task. Our method is trained on specific
target container and content pairs.

more difficult than previous work in that it pours a specific amount rather than simply pouring the entire

contents of the source. Moreover, our networks utilize audio information to augment a robot’s visual data.

The use of audio features are reinforced by the change in audible frequency during a pouring sequence,

known as the Helmholtz resonance.

4.3.2 Audio Feature Analysis: Helmholtz Resonance Frequency

As depicted in Fig. 4.2, the audio frequency increases as a container fills up with liquid, forming the

basis of an audio-based feature for weight estimation and overflow detection. This increase in frequency

can be modeled based on the Helmholtz resonance (also referred to as a resonant cavity) (Webster and

Davies, 2010). This resonant frequency, fres is calculated as:

fres =
c

2π

√
sp
Vclp

, (4.1)

where fres is proportional to the speed of sound in a gas c and square root of the cross section area sp of

the container neck, divided by cavity volume Vc and neck length lp. When an object or liquid of volume Vp

is placed/poured into the container, the cavity volume Vc decreases by that amount. By substituting Vc − Vp

for Vc, then we can solve for poured volume Vp given Vc, fres, and corrected port l
′
p (Rayleigh, 1945).
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Example pouring sequence
Weight Est Overflow

Audio Truth Pred Truth Pred
0.2s 0.0 0.0 NotFull NotFull
0.4s 0.0 0.0 NotFull NotFull
0.6s 0.0 0.0 NotFull NotFull
0.8s 0.0 0.0 NotFull NotFull
1.0s 0.1 0.0 NotFull NotFull
1.2s 0.4 0.2 NotFull NotFull
1.4s 1.0 0.8 NotFull NotFull
1.6s 1.5 1.6 NotFull NotFull
1.8s 2.7 2.4 NotFull NotFull
2.0s 4.2 4.2 NotFull NotFull
2.2s 5.8 6.4 NotFull NotFull
2.4s 7.0 7.2 NotFull Full
2.6s 9.0 8.6 NotFull Full
2.8s 11.0 10.6 Full Full
3.0s 11.8 11.4 Full Full
3.2s 11.8 11.8 Full Full

Table 4.1: Ground truth and predicted labels for a pouring sequence with intervals of 0.2, 0.5, and 1 sec-
ond; 0.2 sec performed best. As length increases, there’s a larger variation of weight and frequencies for
each training example.

Vp = Vc −
sp

l′p(
2πfres
c

)
2 (4.2)

While the resonant frequency adds justification for an audio-based network feature, it assumes the

container itself will be symmetric, uniform width, and of a similar shape. Thus, we implement neural

network based classifications that are trained on specific container and liquid pairs with holdout pouring

sequences to relax some of these constraints.

4.3.3 Dataset Generation

We recorded 500 pouring sequences in total, for six target containers of varying material and geometry,

each with three liquids and rice. Each container-liquid combination consisted of 20 pouring sequences.

3 hours of audio and video was captured to use 22,239 samples of 0.2 sec. Data was captured using an

iPhone, Android, and Microsoft Kinect. Both robot and human experimenter pouring was performed.

For poured weight estimation, digital scale measurements were captured at a rate of 5 readings per

second and synchronized to the audio and video recordings. The audio sampling rate was 256 kb/s and the
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Figure 4.4: Audio-visual inputs 2D mel-scaled spectrogram (a) and cropped grayscale image (b). For
opaque objects (c), visual information may be occluded. In these cases, PSNN-A outperforms PSNN-V
and PSNN-AV. For transparent containers (d-e), our PSNN-V and PSNN-AV networks are able to detect
visual deviations for both opaque (d) and transparent (e) pouring contents. The robot arm and digital scale
LED are cropped out of images as to not influence network learning (b).

video frame rate was 30 per second. Digital scale readings were visible in the video and used for ground

truth verification. However, since these video images were also an input into our audio-augmented net-

work, they were cropped to remove the digital scale display and robot arm as to not influence training. For

overflow detection, pouring sequences used for training were stopped at the time of overflow to assign full

labels to the last few seconds of audio and the remaining intervals as not full. For both weight and overflow

prediction, ground truth labels were assigned to discrete 0.2 sec intervals (or frames) for audio and visual

data. Fig. 4.3 describes our neural network structure and Table 4.1 shows an example pouring sequence.

4.3.4 Neural Network Architecture of Audio-based Method

Our audio-based neural network model, also referred to as Pouring Sequence Neural Network (PSNN-

A) shown in Fig. 4.3, is trained on mel-scaled spectrograms for audio intervals at the digital scale sampling

rate of 0.2 seconds. A single convolutional layer followed by two dense layers with feature normalization

performs optimally on our classification tasks (Table 4.2). We use consecutive full classification labels

to indicate when to stop pouring for overflow detection. Section 4.4 covers our experiments and results

against baseline methods. Section 4.5 offers analysis and insights into our audio-based (PSNN-A) and

audio-augmented (PSNN-AV) convolutional neural networks.

Audio input: two audio input forms were considered – they are a 1D raw audio data and a 2D mel-

scaled spectrogram. Using spectrograms as audio input has been shown to reduce over-fitting and improve

accuracy (Huzaifah, 2017a). They are computed using a short-time Fourier transform with a Hann win-
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dow of 2048 samples and an overlap of 25%. Frequency and time axes are downsampled and mapped into

64 mel-scaled frequency bins and 25 time bins to match the logarithmic perception of frequency (Ster-

ling et al., 2018). We downsample the mel-spectrogram audio input and use a convolution kernel with an

increased frequency resolution to reduce over-fitting.

Figure 4.5: Demo video of liquid weights predicted by our PSNN neural network for a robot pouring
sequence. (Left) video. (Top Right): actual versus predicted weights over time. (Bottom Right): audio and
visual neural network inputs. Supplemental materials available at http://gamma.cs.unc.edu/PSNN/

4.3.5 Neural Network Architecture of Audio-Visual Method

The input size for audio and visual data have equivalent sizes (25 by 64 pixels). The inputs were de-

signed this way to highlight the importance of estimating weight by changing vertical dimensions of fre-

quency for audio and height for images respectively. Visualizations of inputs that maximize activation

illustrate these distinguishing features (Fig. 4.9). Equivalence by concatenating inputs or fusing based

on a bilinear model (Yu et al., 2017b) also allows the network to appropriately weight audio, visual, and

audio-visual, given transparent or opaque target containers and contents.

Visual input: for our visual and audio-augmented networks, video images from a mobile device were

assigned to corresponding audio intervals and digital scale recordings. To improve training and the effec-

tiveness of our classification, visual data was augmented using techniques discussed in (Perez and Wang,
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Weight Estimation by Method for Robot and Human Experimenter Water Pouring Sequences
PPSU Bottle, Robot Pour, N=20 PPSU Bottle, Human Pour, N=20

Method Input +/- 0.4 oz Ave Err Overflow +/- 0.4 oz Ave Err Overflow
kNN (Cover and Hart, 1967) A 66.4% 1.9 oz 71.9% 54.2% 2.7 oz 62.5%
Linear SVM (Bottou, 2010) A 4.6% 3.8 oz 50.0% 13.6% 4.3 oz 50.0%
SoundNet5 (Aytar et al., 2016) A 46.0% 1.9 oz 50.0% 42.4% 3.6 oz 50.0%
SoundNet8 (Aytar et al., 2016) A 11.2% 3.3 oz 50.0% 29.2% 4.7 oz 50.0%
TCN (Lea et al., 2017) A 78.4% 0.9 oz 50.0% 40.1% 3.7 oz 50.0%
PSNN-A (Ours) A 88.0% 0.5 oz 78.1% 75.8% 1.9 oz 64.3%
ImageNet (Deng et al., 2009) V 83.8% 0.3 oz –* 71.2% 0.4 oz –*
PSNN-V (Ours) V 79.9% 0.6 oz –* 66.5% 0.6 oz –*
PSNN-AV Cat (Ours) AV 91.5% 0.2 oz –* 86.4% 0.2 oz –*
PSNN-AV MFB (Ours) AV 88.8% 0.2 oz –* 71.2% 2.1 oz –*

Table 4.2: Multiple models (ours is PSNN) and baselines were evaluated for audio and audio-visual based
liquid pouring analysis. PSNN-AV correctly classified weight within 0.4 oz for up to 91.5% for robot and
86.4% of the human pouring sequences, outperforming all audio- and visual-only methods. This resulted
in an average error of 0.2 oz and 0.2 oz respectively. * Only audio-based neural networks were evaluated
for overflow as visual information oversimplified the task.

2017) such as cropping. Correctly aligning the multimodal inputs with different sampling rates was also

important as to not degrade neural network performance.

4.3.6 Implementation Details

All models were implemented with Tensorflow (Abadi et al., 2016) and Keras (Chollet, 2015). Pa-

rameters were learned using categorical cross entropy loss with Stochastic Gradient Descent. Training

was performed using ADAM (Kingma and Ba, 2015) and run with a batch size of 64, with remaining

hyperparameters tuned manually based on a separate validation set before final test set evaluation. Only

audio-based methods were evaluated for overflow detection as incorporating visual information oversim-

plifies the task. Since there are fewer Full examples in a pouring sequence, audio data was balanced by

randomly selecting an equal number of Full/Not Full audio intervals. Our datasets are available to aid

future research in this area.

4.4 Results

We compared our method against baselines by conducting quantitative experiments on a variety of tar-

get containers, liquids, and rice. All baselines are trained on the same input data in order to provide a fair
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Combined Robot and Human Experimenter Pouring Sequences
Combined Container Dataset, N=40

Method Input +/- 0.4 oz Ave Err Overflow
kNN (Cover and Hart, 1967) A 58.8% 2.4 oz 77.1%
Linear SVM (Bottou, 2010) A 12.7% 4.0 oz 60.4%
SoundNet5 (Aytar et al., 2016) A 21.2% 3.3 oz 50.0%
SoundNet8 (Aytar et al., 2016) A 35.4% 4.4 oz 50.0%
TCN (Lea et al., 2017) A 49.6% 2.6 oz 50.0%
PSNN-A (Ours) A 80.8% 1.3 oz 83.3%
ImageNet (Deng et al., 2009) V 68.1% 1.1 oz –*
PSNN-V (Ours) V 78.0% 0.4 oz –*
PSNN-AV Cat (Ours) AV 82.0% 0.3 oz –*
PSNN-AV MFB (Ours) AV 86.7% 0.2 oz –*

Table 4.3: Evaluation results for the combined container dataset.

comparison. Deep network SoundNet (Aytar et al., 2016) is included as a commonly known sound-based

classifier but it requires much more data to train. Pouring sequences were randomly divided into 80% train-

ing and 20% test sets. All target containers and pouring contents were included in training. Test data was

based on hold out pouring sequences, which were removed from training and used only for testing.

4.4.1 Data Capture and Training

Video was recorded using a Samsung Galaxy Note 4 running Android 6.0.1, iPhone 6, and Microsoft

Xbox 360 Kinect Sensor. Training was performed using a TITAN X GPU running on Ubuntu 16.04.5 LTS.

4.4.2 Pouring Sequence Experiments

Our experiments contained both human experimenter and robot pouring sequences. While robot pour-

ing was varied by adjusting source container volume, experimenter pouring sequences offered additional

variability, e.g. unfixed starting positions. All of our robot experiments were performed on a Rethink

Robotics Baxter Research Robot, shown in Fig. 4.1. Pouring consisted of experimenters using both hands

to hold the source container for human pouring and the Baxter robot’s 7 DOF left arm for robot pouring

sequences. We used the Dymo Digital USB Postal Scale for ground truth weight estimates and a Samsung
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Figure 4.6: PSNN-AV: confusion matrix comparing actual to predicted poured amounts by classes of 0.2
oz (about 6 ml) weight increments. Class 0 represents empty; Class 1, 0.2 oz; and so on. Using audio
and visual improves accuracy, especially at the beginning and end of the pouring sequence. Our system
achieves up to 91.5% (Table 4.2) and 91.2% (Table 5.2) classification accuracy to within +/- 0.4 oz using
PSNN-AV.

Galaxy Note 4 for video recording.3 According to the digital scale’s user guide, its accuracy is +/- 0.2 oz

when under and +/- 0.4 oz when over half its capacity respectively.

For robot experiments, the target container rests on a tabletop, positioned slightly to the side and below

the source container. The source container is fixed to the robot gripper and is pre-filled with an amount not

known to the robot but greater than the amount required to fill the target container.

After a pouring sequence is initiated, audio from the target container filling up is recorded with a smart-

phone. Each audio interval is transformed into a mel-scaled spectrogram and input into our neural network

model for weight and overflow classification. Once the desired pour amount is classified or overflow is

detected, the robot can be signaled to stop the pouring sequence and return to its initial position.

4.4.3 Our PSNN Accuracy vs. Baseline Results

As illustrated in Table 4.2 and Fig. 6.8, up to 91.5% of the audio intervals for the robot pouring se-

quence into a PPSU bottle were classified to a weight class within 0.4 oz using our audio-augmented

convolutional neural network (PSNN-AV); likewise, 86.4% of the human pouring sequence. This resulted

3 Audio and video was also captured using an iPhone 6 and Microsoft Xbox 360 Kinect Sensor with built-in microphone array for
comparison.
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in an average error of 0.2 oz and 0.2 oz respectively. We also performed an evaluation on a combined pour-

ing dataset containing both robot and human pouring sequences to explore the opportunity for transfer

learning. A detailed analysis of these results will be discussed in Section 4.5.

Table 4.4, Table 5.2, and Fig. 4.7 demonstrate our method’s ability to be trained on different liq-

uids and types of containers, including asymmetric objects. First, our audio-based PSNN-A network

outperforms all baseline methods for audio only input. Second, when pouring content is visible, audio-

augmented (PSNN-AV) outperforms audio-based (PSNN-A). This is especially true for more viscous

liquids, such as milk, which make less noise during a pouring sequence.

Classification Accuracy for Plastic Bottle Weight
Estimates via PSNN-AV and Human Pouring

Pl. Bottle +/- 0.2 oz +/- 0.4 oz +/- 0.6 oz
Milk 57.8% 63.9% 68.4%
Rice 49.1% 64.4% 73.0%
Soda 73.0% 82.9% 88.4%
Water 69.6% 77.2% 84.0%

Table 4.4: Various pouring contents were evaluated. Rice was most difficult to precisely predict within +/-
0.2 oz.

Figure 4.7: Various pouring contents evaluated with PSNN-AV. This graph displays the percentage of
classified weights within +/- 0.2 oz (blue), 0.4 oz (orange), and 0.6 oz (gray) of ground truth. For instance,
soda and water weights were easier to estimate than rice and milk.

We should note, however, that due to the relatively small size of the training set, our neural networks

work well for target container and pouring content pairs that are described in this paper. Since all liquid-

container pairs are included in training with hold-out pouring sequences, future work is needed for general-

ization to unseen and untrained target containers or pouring contents.
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Accuracy by Method, Input, and Target Container for Robot Pouring Sequences
Transparent Transparent Opaque
Plastic Cup Glass Meas. Cup Porcelain Bowl

Water Water Water
Method In +/-0.4 oz/Err +/-0.4 oz/Err +/-0.4 oz/Err
kNN A 34.7% / 3.4 oz 25.9% / 3.6 oz 48.1% / 2.2 oz
Linear SVM A 5.4% / 3.4 oz 8.0% / 4.8 oz 8.9% / 3.3 oz
SoundNet5 A 14.0% / 3.4 oz 5.3% / 4.2 oz 6.4% / 4.4 oz
SoundNet8 A 11.6% / 3.2 oz 20.5% / 6.1 oz 9.4% / 3.5 oz
TCN A 50.0% / 1.5 oz 39.5% / 1.9 oz 43.0% / 2.0 oz
PSNN-A (Ours) A 59.1% / 1.2 oz 46.8% / 1.2 oz 60.9% / 1.3 oz
ImageNet V 64.5% / 0.6 oz 51.7% / 1.2 oz 29.4% / 3.9 oz
PSNN-V (Ours) V 79.8% / 0.3 oz 63.9% / 0.5 oz 36.2% / 2.7 oz
PSNN-AV Cat (Ours) AV 79.0% / 0.3 oz 70.0% / 0.4 oz 40.0% / 3.4 oz
PSNN-AV MFB (Ours) AV 69.2% / 0.4 oz 44.9% / 1.7 oz 42.6% / 2.6 oz

Table 4.5: Multiple network models and baselines were evaluated. Ours is PSNN. Headings indicate
distinguishing properties being evaluated. The PSNN networks outperform baseline networks on the same
type of inputs, while the multimodal PSNN-AV network outperformed each independent modality.

Classification Accuracy and Average Error Continued
Opaque Transparent Transparent

Metal Cup PPSU Bottle PPSU Bottle
Water Milk Rice

Method In +/-0.4 oz/Err +/-0.4 oz/Err +/-0.4 oz/Err
kNN A 41.0% / 2.5 oz 38.2% / 2.7 oz 48.4% / 1.7 oz
Linear SVM A 7.0% / 4.1 oz 33.2% / 3.5 oz 12.8% / 2.3 oz
SoundNet5 A 4.4% / 4.7 oz 9.7% / 3.0 oz 9.6% / 2.4 oz
SoundNet8 A 13.1% / 4.2 oz 13.4% / 5.8 oz 8.8% / 3.4 oz
TCN A 51.5% / 1.7 oz 34.0% / 3.9 oz 52.7% / 1.7 oz
PSNN-A (Ours) A 65.9% / 0.7 oz 45.0% / 1.8 oz 74.1% / 1.0 oz
ImageNet V 20.0% / 6.1 oz 65.1% / 0.4 oz 77.0% / 0.4 oz
PSNN-V (Ours) V 25.3% / 4.6 oz 68.9% / 0.4 oz 83.7% / 0.4 oz
PSNN-AV Cat (Ours) AV 48.5% / 1.9 oz 71.8% / 0.4 oz 91.2% / 0.2 oz
PSNN-AV MFB (Ours) AV 65.5% / 1.2 oz 82.4% / 0.2 oz 81.8% / 0.3 oz

Table 4.6: Varying type of liquid poured, multiple network models and baselines were evaluated for weight
estimation of robot pouring sequences.
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Classification Accuracy for Pouring Content via Human
Pouring and Target Container via Robot Pouring

Pl. Bottle Content % Water Container %
Milk 86.5% Plastic Bottle (0) 99.6%
Rice 79.6% Metal Cup (1) 88.4%
Soda 72.4% PPSU Bottle (2) 69.2%
Water 97.9% Glass Measuring Cup (3) 64.2%

Porcelain Square Bowl (4) 61.3%
Plastic Cup (5) 78.5%

Table 4.7: PSNN-A predicts pouring content and target container with high accuracy, learning features
from audio to correctly classify liquid and container from pouring sequence data.

4.4.4 Liquid and container classification

Table 4.7 highlights PSNN-A’s ability to classify liquid and target container from pouring sequence

audio. Higher accuracy can be achieved by excluding intervals before and after pouring when audio is not

present, or by using PSNN-AV. For future work, we plan to investigate if accuracy varies over time. For

instance, is content classification accuracy higher in the beginning of a pouring sequence?

We concluded our testing with an ablative analysis for hyper-parameter optimization (e.g. training

epochs, interval length, etc.). Our pouring sequence dataset with audio and visual data is made available to

support future research and evaluation in this area of robotics.

Figure 4.8: Confusion matrix of actual and predicted container classifications based on audio-only pouring
sequences. It shows PSNN-A learning to classify between objects of the same material (e.g. Plastic Bottle
and Cup) and same type (Plastic Bottle and PPSU Bottle). 0-5 labels in Table 4.7.
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4.5 Analysis

In this work, we implement multimodal neural networks based on audio and visual data to the robotic

task of weight estimation for pouring a liquid, overflow detection, and liquid and container classification.

Our PSNN neural networks outperform existing methods in the experiments that we have performed. Our

contributions include new audio-visual datasets and multimodal neural network architectures designed for

the robot pouring task. In this section, we analyze the improved performance of using our methods.

Figure 4.9: Audio activations: example pouring sequence spectrograms (a). Audio inputs that would max-
imize our audio-based neural network activation for a couple of specific weights (b). This demonstrates
PSNN-A’s ability to learn changes in frequency to distinguish between weight classes. Visual activations:
example grayscale, cropped visual input (c). Visual input that would maximize the activation of our visual
neural network (d). This shows PSNN-V’s ability to learn visual features for distinguishing between
classes for visible pouring contents (Fig. 4.4).

4.5.1 Activation Maximization Visualizations

We analyzed activation maximizations to visualize the spectrogram audio and visual input which

would produce the highest activation for a given volume class. Fig. 4.9 shows activation maximization

for the audio-based PSNN-A network as additional volume is poured (a-b) and the visual-based PSNN-V

network (c-d). Both highlight the importance of audio (frequency) and visual (height) respectively.

4.5.2 Model Comparisons

For opaque target containers, the audio only PSNN-A performs the best compared to PSNN-V and

PSNN-AV due to occlusion. For transparent target containers, multimodal PSNN-AV provides the maxi-

mum classification accuracy and minimum average error. Even for a quiet, viscous liquid like milk, aug-
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menting visual data with audio outperformed audio or visual only with 82.4% accuracy and 0.2 oz average

error compared to 45.0% and 68.9% respectively. (Table 5.2).

4.5.2.1 PSNN-A Normalized

Normalizing the features allows for a more symmetric optimization between frequency and time given

a mel-scaled spectrogram input. Scaling is important to normalize the differences in feature scale. When

feature scaling is not applied, then gradient descent may require a smaller learning rate to ensure that the

optimization converges and does not over step the minimum.

4.5.2.2 PSNN-A and Temporal Convolutional Networks (TCN)

Our methods outperform time distributed baselines because while the pouring task is sequential, it

does not rely as heavily on previous inputs since each 0.2 second spectrogram encodes the current state.

Furthermore, time distributed methods may overfit and fail to cover more general and inconsistent pouring

behavior. PSNN can evaluate inputs independently since each mel-scaled spectrogram already encodes

historical information given a frame-based interval.

4.5.2.3 Robot and Human Poured

Given an equal number of training examples and epochs, robot pouring sequences are more accurate

than human poured (Table 4.2). In other words, robot pouring sequences require less data and training time

because of more uniform pouring sequences, producing more consistent audio and visual data for each

weight class. Additional analysis of the impact pouring rates have on accuracy will be further investigated

in future work.

4.5.2.4 Combined Pour Dataset

For TCN and PSNN, the combined dataset of robot and human pouring sequences mostly performs

medially as compared to each separately (Table 4.2). For PSNN-V, however, additional visual data of a

combined dataset performs better with 0.4 oz average error compared to 0.6 oz for both robot and human

pouring. This implies visual data is less affected by pouring consistency than audio, benefiting from addi-

tional yet mixed data.
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4.5.2.5 Interval Length

Audio sampling intervals of 0.2, 0.5, and 1 second were evaluated. 0.2 is the minimum based on the

digital scale sampling rate. Faster intervals performed better, which is to be expected since the interval

is assigned a single ground truth weight and smaller time intervals would represent a smaller change in

poured amount over that time. As the length increases, the interval likely has a larger variation of frequen-

cies for each training example.

4.6 Conclusion and Future Work

We present novel, audio-based and audio-augmented neural networks to estimate poured weight, per-

form overflow detection, and classify pouring liquid and target container based on pouring sequence audio-

visual data. By recording the sound of the pouring sequence as the target container fills up, an audio-based

feature can be applied to different containers and liquids for the robot pouring task. Our method is trained

on specific target container and content pairs using both human and robot pouring sequences and is tested

on the Baxter robot. We also evaluate our dataset on a combined container dataset and make our audio-

visual data available for future research. To our knowledge, this is the first use of audio-visual neural

networks to analyze liquid pouring sequences by classifying weight, liquid, and target container.

Future Directions: to increase accuracy beyond current performance, we plan to analyze augmentations

of our audio data with environmental, room acoustics, and other alterations. As the task involves temporal

data, sequential layers can be introduced into the neural network model. This may be especially helpful

for audio only PSNN-A classification at the beginning and end of pouring sequences when there are no

pouring sounds. In addition, we can compare against lower-dimensional parameterizations of the sound

such as audio features like spectral centroid, skew, kurtosis, and rolloff. Comparison with model-based

methods when target container geometry is known may shed new insight as well.

Our current neural networks do not generalize to unseen target containers or pouring contents. We plan

to research ways to generalize our approach, which may involve multitask learning, increasing the size

of our training set, adding more audio and visual data augmentations, or incorporating synthetic pouring

sequences. Using a multiple output neural network rather than separately trained neural networks for

poured weight, content, and target container classification may also help as well as using a ratio of volume

over the target container volume or a combination of all of the above.
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Finally, we will explore if our approach can be applied to other granular materials and liquids in addi-

tion to rice and the liquids that we’ve tested to date. Furthermore, we plan to evaluate if container size and

function (e.g. fillable or not) can be determined by using the spectral hierarchical clustering algorithm (von

Luxburg, 2007) or PSNN to categorize objects based on size, material, and other features (Griffith et al.,

2012).
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CHAPTER 5: AUDIO-VISUAL OBJECT TRACKING FOR MULTIPLE OBJECTS1

This chapter describes an audio-visual object tracking (AVOT) neural network that reduces tracking

error and drift by using audio of the impact sounds from object collisions, rolling, etc. It may be used in

conjunction with other neural networks to augment visually based object detection and tracking methods.

Using the synthetic Sound-20K audio-visual dataset, AVOT outperforms single-modality deep learning

methods, when there is audio from object collisions.

5.1 Introduction

Deep learning has enabled state-of-the-art techniques for image classification and object detection

in images and video (Liu et al., 2016; Redmon et al., 2015a; Ren et al., 2015c). Object tracking classi-

fies bounding boxes for each object in a video over time. These methods are useful for applications in

autonomous driving (Geiger et al., 2012), mobile robotics (Schulz et al., 2001), person tracking (Checka

et al., 2001), speaker recognition (Spors et al., 2001; Qian et al., 2019), and 3D reconstruction (Prisacariu

et al., 2015). For more granularity beyond bounding boxes, object segmentation provides pixel-level an-

notations (Voigtlaender et al., 2019; Perazzi et al., 2016). These existing object trackers achieve real-time

performance and continue to improve on accuracy and the number of classes that they can detect.

However, occlusion, similar object categories, and smaller object sizes remain a challenge for visu-

ally based trackers (Liu et al., 2016). Auditory cues can assist in these exacting areas, especially when

similar and/or smaller objects are of a different material (Aytar et al., 2016). In this paper, we propose an

audio-visual object tracker (AVOT) that augments visual only trackers with fused audio in a jointly trained

end-to-end model. It is evaluated using synthetic Sound-20K dataset (Zhang et al., 2017c), consisting of

tabletop sized objects of different geometry and materials. The data contains videos with multiple objects

of various shapes (e.g. bottle, knife, etc.) and materials (e.g. steel, wood, etc.) colliding in a virtual scene.

1 This chapter previously appeared as an article in the International Conference on Robotics and Automation (ICRA). The original
citation is as follows: Justin Wilson and Ming C. Lin. Avot: Audio-visual object tracking of multiple objects for robotics. 2020a
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Figure 5.1: An example failure case improved by our audio-visual object tracker. (Top row) best baseline,
CSRT in this case, incorrectly latches to the wrong object after collision. (Middle row) our AVOT method
continues to correctly track the object post-collision. (Bottom row) ground truth annotated by the exper-
imenter. For clarity, we show the bounding box for only one of the objects being tracked, although the
methods track both objects. Please see the Supplementary Video for more demonstration.

Colliding includes objects colliding within the scene, with each other, rolling, etc. We use videos with one,

two, or three colliding objects.

Other than speaker recognition, this is the first use of an audio-visual neural network for tracking

tabletop sized objects and enhancing visual object trackers. The key contributions of this work include:

• An end-to-end, jointly trained audio-visual object tracker (AVOT) to enhance visual object tracking;

• Ground truth bounding box annotations for Sound-20K audio-visual dataset with 1, 2, and 3 object

scenes;

• Scheduler for object detection re-initialization based on audio onset detection when using multi-

modal tracking.

Fusing audio with visual data, AVOT achieves 77.7% IoU post-collision tracking accuracy compared

to 68.6% IoU using deep-learning visual tracking, SSD– (Liu et al., 2016), and 38.4% using CSRT (Lukezic

et al., 2017) for virtual scenes with multiple objects based on our annotated Sound-20K dataset of 19 table-

top sized object classes of varying geometry and materials.

5.2 Background and Related Work

While object detection methods must search over the entire search space to first detect an object, track-

ing algorithms can be much faster by leveraging knowledge from previous frames to reduce the search
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Object Detection/Tracking Datasets
Dataset # Class # Img/Vid
COCO (Lin et al., 2014b) 80 330K img
DAVIS (Caelles et al., 2019) 384 10.5K img
ILSVRC (Russakovsky et al., 2015) 1000 1.4M img
KITTI (Voigtlaender et al., 2019; Milan et al., 2016) 8 10.9K img
OTB (Wu et al., 2015a) 100 100 vid
PASCAL VOC (Everingham et al.) 20 21K img
Sound-20K (Zhang et al., 2017c) 55+ 20K vid
VOT2018 (Kristan et al., 2016) 35 147K img
YouTube–VOS (Xu et al., 2018) 7800+ 4K+ vid

Table 5.1: In contrast to other datasets, the Sound-20K dataset contains the largest audio-visual data for
object interactions in a virtual scene and provides an excellent baseline for assessing the accuracy of our
AVOT method against others.

space. However, this can make error recovery difficult. Tracking is also more complex because unlike

object detection bounding boxes which are class specific, tracking is object specific. It assigns identifiable

bounding boxes to each object and attempts to maintain each assignment over all frames. So, tracking not

only detects but also maintains bounding box assignment for each object, over all frames. More granular

than bounding boxes, segmentation may also be performed for pixel-level annotations. For an attribute and

performance comparison, object tracking benchmark (Wu et al., 2015a) provides attribute and performance

comparisons between various methods and evaluation criteria.

The majority of object detection and tracking methods are visually based, even though some datasets

are generated from videos with audio. Table 5.1 lists commonly used datasets for object detection and

tracking evaluation. We add ground truth bounding box annotations to the Sound-20K dataset and use it

as a baseline for assessing the accuracy of our AVOT method. While the general methodology of research

areas such as speaker detection and person tracking leverage both audio and visual information, their

implementations are specifically aimed at tracking human speakers (e.g. face detection is part of their

pipeline). Our method aims to be applicable in a broader context and does not make assumptions about

the targets. It currently can track up to nineteen object-material classes. Next we discuss object detection,

tracking, and audio-visual techniques in more detail, as compared to our work.
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5.2.1 Object Detection

In addition to overall classification of an image, researchers are interested in also detecting and clas-

sifying the specific objects within an image. This can be achieved by using object detection methods to

locate and label each object with a class-specific bounding box. As is similar in image classification, ob-

ject detection techniques require large amounts of training data but in its case, more annotations for each

example. Because, in the case of object detection, training data requires both class labels and bounding

box coordinates for each object. For example, the PASCAL Visual Object Classes (VOC) dataset contains

images, object annotations, and segmentations for twenty different classes. Other available datasets are

mentioned in Table 5.1. Unfortunately, only a few datasets make available the video and accompanying au-

dio, making audio-visual methods more time-consuming to explore. We contribute our Sound-20K ground

truth annotations to aid future audio-visual research in this area.

Video object detection: object detection can be performed not only on images but on video as well.

Here, additional contextual information is available such as sound and image sequence. This tempo-

ral memory has allowed video detection to achieve start-of-the-art performance and speeds by learn-

ing lightweight scene features for mobile (Liu et al., 2019) and shifting channels along the dimension

of time (Lin et al., 2019). However, video also introduces new challenges such as motion blur, defocus,

and various poses. Temporal coherence can also be used to overcome these defects with flow-guided fea-

ture aggregation (Zhu et al., 2017), for instance. Finally, in addition to scene features, time shifting, and

temporally coherent features, temporal propagation for on demand detection has also yielded efficiency

gains (Chen et al., 2018).

5.2.2 Object Tracking

Object tracking differs from object detection in that the labels and bounding boxes are dependent. In

other words, tracking attempts to establish correspondences of the same object over multiple frames, for

example, one particular car in traffic over time. While object tracking has been studied for decades, nu-

merous factors remain a challenge, such as illumination variation, occlusion, and background clutters (Wu

et al., 2015a). Given the sequential nature of the task and method, tracking can be fast and efficient but

also accumulate error and drift. Moreover, it is not easy for object trackers to recover from failure or an

incorrect assignment to another object. Approaches such as frame skipping, Siamese trackers, and deep
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learning are a few of the existing techniques being used to perform object tracking and segmentation

quickly and accurately.

Frame skipping: this baseline approach detects every N-th frame and tracks frames in between. Ad-

vantages of frame skipping are realized in terms of speed and precision by efficiently tracking on a major-

ity of the frames while still allowing for correction by performing detection every N keyframes. This can

be referred to as a fixed scheduler. Dynamic schedulers have also been considered. For instance, Detect or

Track (Luo et al., 2019) uses a scheduler network to determine whether to detect or track at certain frames.

In our research, we propose an audio-based scheduler procedure that can alter tracking during audio onset

detection in videos.

Siamese trackers: Siamese neural networks take two inputs and, with shared weights, predict if the

two inputs belong to the same output class. Fully-convolutional Siamese approaches can be used for ob-

ject tracking (Bertinetto et al., 2016; Li et al., 2018; Zhu et al., 2018; He et al., 2018; Yang and Chan,

2018) and unlike batch processing, online Siamese methods can perform tracking on streaming video

with access only to current and previous frames (Wang et al., 2019). To improve initialization of online

adaption-based deep networks such as these, offline meta-learning has been applied (Park and Berg, 2018).

Asymmetric Siamese networks have also been studied and learn a linear template to search test images by

cross-correlation (Valmadre et al., 2017).

Figure 5.2: Audio-Visual Object Tracker (AVOT) neural network architecture. AVOT is a feed-forward
convolutional neural network that classifies and scales a fixed number of anchor bounding boxes to track
objects in a video. Here, we define an object based on its geometry and material. Convolutional layers
from the visual and audio inputs are fused using an add merge layer before being input into a base network
of convolutional layers similar to standard classification networks. The base is then followed by predictor
layers for detection, as is done in SSD, however designed and optimized for our audio-visual dataset and
task. The single best detection for each object is then selected using non-maximum suppression.
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Deep learning: last but not least, object tracking performed using deep learning. Faster R-CNN (Ren

et al., 2015a) is a real-time, state-of-the-art object tracker and four staged end-to-end neural network. First,

a convolutional feature map of the image is obtained by extracting from a convolutional layer of a pre-

trained CNN (e.g. ImageNet (Krizhevsky et al., 2012a), ResNet (He et al., 2016), MobileNets (Howard

et al., 2017), DenseNet (Huang et al., 2017), etc.). The second stage is a Region Proposal Network, which

are reference bounding boxes uniformly placed across the image. In this stage, specific regions are identi-

fied and adjusted based on the convolutional feature map from the first step. The third stage applies Region

of Interest (RoI) Pooling to extract features from the convolutional map for each region. The fourth and

final step then uses those features to classify the content in the bounding box (e.g. bottle, table, etc., back-

ground) and adjust the classified bounding box to a better fit, predicting ∆xcenter,∆ycenter,∆width,∆height

from an anchor.

Single Shot MultiBox Detector (SSD) (Liu et al., 2016) is another real-time, state-of-the-art object

tracker. SSD is slightly better than YOLO (Redmon et al., 2015a, 2016) in terms of speed while improving

upon accuracy with additional feature layers on top of a base network 2. Furthermore, SSD is slightly bet-

ter than Faster R-CNN in terms of accuracy while eliminating object proposals with multiple feature maps

of differing resolution. Although SSD uses similar default boxes, it applies them to several feature maps

of different resolutions. In addition to a single unified framework for training and prediction, SSD input

images are smaller at 300 x 300, compared to 512 x 512 for Faster R-CNN and 448 x 448 for YOLO. This

enables faster processing over other single shot, region proposal, and pooling techniques. This permits a

wider range of computer vision applications to leverage this architecture. We use SSD as both a baseline

and base network for our AVOT tracker.

5.2.3 Audio-Visual Methods

Audio-visual techniques have been used for speech separation (Ephrat et al., 2018a), object and ge-

ometry classification (Zhang et al., 2017c,b; Sterling et al., 2018), and audio-visual correspondence learn-

ing (Arandjelovic and Zisserman, 2018, 2017). Most directly related to audio-visual object tracking is

speaker recognition (Spors et al., 2001; Qian et al., 2019), tracking from audio-visual data using a linear

prediction method (Anusha and Roy, 2015), and object detection and tracking with audio and optical sig-

2 ImageNet VGG-16 was used as a base, but other neural networks should also produce good results.
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Figure 5.3: Existing object trackers performance decline when objects collide in a moving two object
Sound-20K virtual scene whereas AVOT improves with audio onset. Post-collision (i.e. when there’s
audio), deep learning (DL) methods achieve nearly 40% higher in accuracy over other methods and AVOT
further outperforms SSD– by another 10% in mean Intersection over Union (mIoU) with an added benefit
of audio-visual input. A scheduler network gated on audio can be used to achieve the best run performance
and/or the highest accuracy across all cases using multimodal trackers.

nals (Holz). For speaker recognition, a face tracking algorithm and microphone array are used to estimate

speaker position. These methods fuse audio and visual data by leveraging time delays in audio and motion

changes in visual. While both modalities, in theory, can distinguish these changes, one may be more adept

to do so. Also, the fusion of the two can decrease uncertainty and increase reliability (Ngiam et al., 2011b).

Finally, audio can also come from contact microphones or acoustical sensors to capture touch sounds and

optical signals for gesture recognition (Holz). In our approach, we leverage audio from impact sounds of

objects and images from video.

5.3 Technical Approach

Unlike visually based object trackers, our method defines each object by its geometry and material.

With audio-visual data, the same shape (e.g. bottle) with different materials (e.g. steel vs. wood) are distin-

guishable and are therefore considered to be different objects. Our work also considers colliding objects.

While a challenge for visually based tracking methods (Fig. 5.3), they provide auditory cues for an audio-

visual object tracker. Scheduling between trackers can then be enabled based on audio availability.
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Given the location of an object in the first frame of video, the object tracking task is to quickly and

accurately estimate its position in all successive frames (Smeulders et al., 2014). More specifically, for

each video frame in a sequence F = f1, f2, ..., fN where N is number of frames, obtain bounding boxes

B = b1, b2, ..., bM where M is the number of objects.

5.3.1 AVOT Neural Network Architecture

Similar to existing object tracking architectures, AVOT is a feed-forward convolutional neural network

that classifies and scales a fixed number of anchor bounding boxes to fit each object in an image. We

define an object based on its geometry and material. AVOT leverages audio and visual data for a more

granular definition of an object to distinguish between objects with the same appearance but different

materials.

Audio input: Audio frames from Sound-20K (Zhang et al., 2017c) videos match the image frame rate

of 33 frames per second. As a result, each jpeg image has a corresponding 29 ms audio wav file. The audio

is converted to mel-scaled spectrograms and serve as the audio input given their performance in CNNs

for other tasks (Huzaifah, 2017a). They are computed using a short-time Fourier transform with a 512

sample Hann window and 12.5% overlap. A Hanning (Hann) window was selected for its suitability for

a variety of signals, good frequency resolution, and reduced spectral leakage. Each spectrogram is indi-

vidually normalized and downsampled to a size of 62 frequency bins by 25 time bins (Fig. 5.4). Binning

provides for appropriate fusion with image dimensions and weight matching to the logarithmic perception

of frequency (Sterling et al., 2018).

Image input: image dimensions are 500 x 375 pixels. Since SSD evaluated input sizes 300 x 300

and 512 x 512 (YOLO 448 x 448), our images are augmented but input dimensions unmodified as they

fall within range of previous work. For data augmentation, we use common image transformations and

sampling strategy similar to SSD and YOLO. Random cropping can be especially useful for creating

zoomed in and out training examples to aid the classification of small objects in PASCAL VOC and Sound-

20K. Each training image randomly samples from a data augmentation sequence to make the model more

robust to object size and shape (Liu et al., 2016). We use a reduced layer variation of VGG16 (Simonyan

and Zisserman, 2015) as the base network leading up to our detection prediction layers. Images were
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extracted from video using ffmpeg with CRF scale set to 0 (lossless) and libx264 set to vcodec (Zhang

et al., 2017c). Each image is fused with its corresponding audio via an add-merge layer.

Figure 5.4: AVOT needs ground truth boxes (left), input audio from the scene video converted to a mel-
scaled spectrogram (center), and input image (right) for each object during training. We predict shape
offsets and confidences for all object categories where an object is defined by its geometry and material.

Architecture: Fig. 5.2 illustrates the layers of our multimodal object tracker neural network. The

early visual layer is based on (LeCun and Bengio, 1998) and audio layer based on impact (Sterling et al.,

2018) and environmental sound (Huzaifah, 2017a) classification. Convolutional layers from the visual

and audio inputs are fused using an add merge layer. A multiply-merge layer was also considered and

resulted in a similar training loss, however, at 1.5x the number of training epochs. Fused features are then

input into a base network. Given our relatively small annotated audio-visual dataset, our base network is

a reduced version of the standard image classification architecture (Krizhevsky et al., 2012a). The base is

then followed by predictor, or also referred to as feature or classifier layers. Upper and lower feature maps

are used for detection, as is done in SSD, to promote consistency and capture fine details respectively. The

single best detection for each object is then selected using non-maximum suppression.

5.3.2 AVOT Dataset

Ground truth annotations were manually labeled by the experimenter for 18 objects. Each object is

unique by geometry and material. The dataset is comprised of 17 three second videos of 103 image and

audio frames each. This resulted in a total of 1,752 audio and visual segments. Videos contained one, two,

and three colliding objects per scene. Our training and test datasets are split 80% and 20% respectively.

The test dataset randomly samples frames from each video that are held out from training and used only

for evaluation. For example, a video with 100 frames will have 20 frames randomly selected for test and
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the remaining 80 frames used for training. Fig. 5.5 shows loss by epoch for our AVOT tracker compared to

a variation of visually based SSD.

Figure 5.5: The training (circle) and validation (line) loss for SSD– (blue) and AVOT (orange). Multi-
modal AVOT loss seems to decrease more consistently than visual only SSD with reduced layers, denoted
as SSD–.

5.3.3 Implementation Details

All models were implemented with Tensorflow (Abadi et al., 2016) and Keras (Chollet, 2015). AVOT

was run with early stopping at a maximum of 100 epochs, 100 steps per epoch, and batch size of 16 (Fig.

5.5). Training was performed using an Adam optimizer (Kingma and Ba, 2015) and loss as defined by the

weighted sum of localization loss (Smooth L1) and confidence loss (Softmax). We use a reduced variation

SSD for predictor layers. AVOT anchor box scaling factors were set to 0.08, 0.16, 0.32, 0.64, and 0.96 and

aspect ratios 0.5, 1.0, and 2.0 (Liu et al., 2016). Here, we do not use SSD aspect ratios 1/3 or 3 given a

smaller number of target classes. There are five scaling factors for four predictor layers because the last

scaling factor is used for the second aspect ratio box of the last predictor layer. Although fewer layers,

detections are still based on small 3 x 3 kernels at each feature map offset (Liu et al., 2016).

Initialization: our AVOT neural network uses he normal initialization (He et al., 2015b). For evalu-

ation, we also initialize baseline methods with he normal rather than fine tune on pre-trained networks.

Recent research suggests equivalent performance between random initialization for training instead of
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pre-trained weights (He et al., 2019). Furthermore, given a smaller dataset of Sound-20K with ground truth

annotations, we have reduced the layers of baseline implementations to avoid overfitting.

Non-maximum suppression (NMS) (Neubeck and Gool, 2006): object trackers may produce more

than one overlapping bounding box that are greater than the confidence and IoU thresholds for the same

object. NMS is a post-process that selects the bounding box with the greatest confidence and suppresses

remaining bounding boxes that overlap this maximum by some threshold. Here, NMS confidence and IoU

threshold are set to 0.5 (Liu et al., 2016).

Scheduler network: Impact sounds from objects colliding emulate a type of scheduler network that

can improve detections post collision. For added efficiency, only visual inputs can be processed leading up

to audio onset. After, both audio and visual inputs can be used. In the case of our synthetic dataset, there is

no audio prior to collision which makes audio onset easier to detect than videos with noise.

5.4 Experiments and Results

Evaluation was performed using ground truth annotations on the Sound-20K audio-visual dataset. This

dataset is comprised of synthetic videos of multiple objects colliding in a scene. Training took roughly 30

minutes running on Ubuntu 16.04.6 LTS with a single Titan X GPU. We use Intersection over Union (IoU)

for accuracy between ground truth and predicted object bounding boxes. As a general rule of thumb, a true

positive prediction occurs when IoU ≥ 0.5, according to the PASCAL VOC challenge. We measure the

speed in mean frames per second (mFPS) with a batch size of 16 using a Titan X and cuDNN v7.4.2.

OpenCV implementations: online Multiple Instance Learning (MIL) (Babenko et al., 2009), Ker-

nelized Correlation Filters (KCF) (Henriques et al., 2015), Discriminative Correlation Filter with Chan-

nel and Spatial Reliability (CSRT) (Lukezic et al., 2017), and an adaptive correlation filter known as

Minimum Output Sum of Squared Error (MOSSE) (Bolme et al., 2010) are a few trackers available in

OpenCV (Bradski, 2000). We selected to evaluate these as baselines due to their advantages in terms of

accuracy and/or speed. For these methods, appearance is learned from first frame bounding boxes that are

initialized with ground truth coordinates.
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mIoU / mFPS Object Tracking Accuracy by Method
Method 2 Objects 3 Objects
AVOT (Ours) 58.3% / 101.6 66.1% / 101.0
CSRT (Lukezic et al., 2017) 46.9% / 17.1 30.1% / 4.7
KCF (Henriques et al., 2015) 13.5% / 24.9 1.7% / 38.6
MIL (Babenko et al., 2009) 43.0% / 2.5 21.6% / 1.6
MOSSE (Bolme et al., 2010) 7.6% / 70.4 1.0% / 74.5
SSD– (Liu et al., 2016) 55.5% / 108.7 65.9% / 103.8

Table 5.2: Multiple network models were evaluated on accuracy and time using mean Intersection over
Union (mIoU) and mean frames per second (mFPS). Ours is AVOT. Failure cases for baseline methods
without audio tend to classify to the correct geometry but wrong material. By exploiting both visual and
audio data, AVOT achieves the highest level of tracking accuracy, with nearly comparable best runtime
performance, over existing visual tracking methods.

5.4.1 Our Results vs. Baselines

Given our limited number of training examples in our audio-visual dataset, we used a reduced layer

implementation of SSD (labeled in Table 5.2 as SSD–) for a baseline and base network for AVOT. Our

AVOT neural network outperforms SSD– and other baseline methods after collision (Fig. 5.3). As shown

in Fig. 5.3, AVOT was able to achieve the highest level of accuracy of 80% in mean Intersection over

Union (mIoU)– about 10% more accurate than SSD. While these results are AVOT only, we further pro-

pose a scheduler network (Algorithm 1) to switch between AVOT and other methods based on audio onset

to maximize accuracy and performance over all frames in multimodal object tracking.

Figure 5.6: We compare CSRT and SSD to our AVOT method for multi-object tracking. Two colliding
objects with the same geometry but different materials are tracked free-falling in a virtual scene from
Sound-20K (Zhang et al., 2017c). CSRT is unable to maintain tracking post-collision and while SSD
recovers, it temporarily loses tracking at the time of occlusion. Audio-visual AVOT maintains tracking
across all frames. Please see the Supplementary Video for more demonstrations.
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5.4.2 Maximization Activation

We analyzed activation maximizations to visualize the spectrogram audio and visual input which

would produce the highest activation for a given volume class. They demonstrate features being learned by

both modalities for the object tracking task. Please see the Supplementary Video for demonstration.

Figure 5.7: Examples of AVOT applied to virtual scene of Sound-20K with predicted bounding box. These
are exemplary screenshots of AVOT performing object tracking before and after collisions for one, two,
and three object virtual scenes. Notice alphanumeric labels (e.g. bottle1 and bottle1) to differentiate the
same geometry with different materials.

5.5 Conclusion

We present AVOT, an end-to-end trained neural network for object tracking using audio and visual

data from videos. To distinguish between similar objects with different materials, we define an object

based on its geometry and material. This more granular categorization benefits from a multimodal learning

approach using audio and visual data, where audio is typically available from the sources of video but

are currently underutilized. By fusing audio with visual data, our audio-visual object tracker (AVOT)

outperforms single-modality methods when audio is present from impact, collision, and rolling sounds

while maintaining real-time performance. We evaluated against Sound-20K and make our audio-visual

data along with ground truth bounding box annotations available for future research in this area.

Future work: we will expand the size of our training set by annotating more objects in the Sound-20K

dataset, increase the number of object classes that we are predicting, evaluate alternative fusion methods,

and perform sensitivity analysis on scaling factors and aspect ratios. We would also like to augment our

audio data and experiment with a variation of our object tracker with audio only.
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CHAPTER 6: AUDIO-AUGMENTED SCENE RECONSTRUCTION ON MOBILE DEVICES1

This chapter describes echoreconstruction, an audio-visual method that uses the reflections of sound to

aid in geometry and audio reconstruction. The mobile phone prototype emits pulsed audio while recording

video for RGB-based 3D reconstruction and audio-visual classification. Reflected sound and images from

the video are input into our audio (EchoCNN-A) and audio-visual (EchoCNN-AV) convolutional neural

networks for surface and sound source detection, depth estimation, and material classification. The infer-

ences from these classifications enhance scene 3D reconstructions containing open spaces and reflective

surfaces by depth filtering, inpainting, and placement of unmixed sound sources in the scene.

6.1 Introduction

Reconstruction techniques have enabled significant contributions in detection (Lea et al., 2016), seg-

mentation (Golodetz* et al., 2015; Arnab et al., 2015), and semantic understanding (Song et al., 2017).

They have also been used to generate large-scale, labeled datasets of object (Wu et al., 2015b) and scene

(Dai et al., 2017a) geometric models to further aid training and sensing in a 3D environment. However,

scenes containing open and reflective surfaces, such as windows and mirrors, can present a unique set of

1 This chapter is currently under review.

Figure 6.1: Left: ground truth image. Before (Middle) and after (Right) audio-augmented rendering of an
indoor scene with open and closed reflective surfaces. The reconstruction is enhanced by EchoCNN infer-
ences of surface detection, depth estimation, and material classification based on audio-visual reflecting
sound and image inputs.
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challenges. First, they are difficult to detect and reconstruct due to their transparency and high reflectiv-

ity. Distinguishing between glass (e.g. window) and an opening in the space is an important part of the

audio-visual experience. Finally, illumination, background objects, and min/max depth ranges can be con-

founding factors. While advances have been made to account for these challenging surfaces (Sinha et al.,

2012; Whelan et al., 2018; Chabra et al., 2019), our work augments these state-of-the-art visual methods

by adding an audio context of surface detection, depth, and material estimation.

Previous work has used sound to better understand objects in scenes. For instance, impact sounds from

interacting with objects in a scene to perform segmentation (Arnab et al., 2015) and neural networks to em-

ulate the sensory interactions of human information processing (Zhang et al., 2017d). Audio has also been

used to automatically compute material (Ren et al., 2013b), object (Zhang et al., 2017d), scene (Schissler

et al., 2018), and acoustical (Tang et al., 2020) properties. Better still, using both audio and visual sensory

inputs has been shown to be even more effective; for example, multi-modal learning for object classifica-

tion (Sterling et al., 2018; Wilson et al., 2019a) and object tracking (Wilson and Lin, 2020b).

Fusing multiple modalities, such as vision and sound, provide a wider range of possibilities than ei-

ther single modality alone. In this work, we demonstrate that augmenting vision-based techniques with

audio, referred to as “EchoCNN,” can detect open and reflective surfaces, its depth, and material, thereby

enhancing 3D object and scene reconstruction. We highlight some key results below:

• EchoCNN, a fused audio-visual CNN architecture for classifying open/closed surfaces, their depth,

and material;

• EchoReconstruction, a staged audio-visual 3D reconstruction pipeline that uses mobile phones to

enhance scene geometry containing windows, mirrors, and open surfaces with depth filtering and

inpainting based on EchoCNN inferences;

• Semantic rendering of window and mirror in audio-augmented reconstructions based on point of

view (e.g. environment outside of the window or reflected view of a TV);

• Real and synthetic audio-visual ground truth data for multiple scenes containing windows and mir-

rors in addition to reflection separation data (direct, early, or late reverberations).
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Figure 6.2: Top row: closed window in winter. Bottom row: opened in spring. Column 1: mobile echore-
construction prototype; the bottom phone emits pulsed audio and performs a RGB-based 3D recon-
struction (live (Tanskanen et al., 2013) or photogrammetric (Metashape, 2020)); the top phone records
video. Column 2: initial reconstruction based on state-of-the-art commercially available Astrivis app. Col-
umn 3: our audio-visual EchoCNN convolutional neural network classifies open or closed surface, depth,
and material. Column 4: semantic reconstruction of the window accounting for EchoCNN inferences.

6.2 Related Work

Previous research in 3D reconstruction, audio-based classifications, and echolocation are discussed in

this section in addition to existing techniques for reconstructing open and reflective surfaces.

6.2.1 3D reconstruction

Object and scene reconstruction methods generate 3D scans using RGB and RGB-D data. For ex-

ample, Structure from Motion (SFM) (Westoby et al., 2012), Multi-View Stereo (MVS) (Seitz et al.,

2006), and Shape from Shading (Zhang et al., 1999) are all techniques to scan a scene and its objects.

Static (Newcombe et al., 2011; Golodetz* et al., 2015) and dynamic (Newcombe et al., 2015; Dai et al.,

2017b) scenes can also be scanned in real-time using commodity sensors such as the Microsoft Kinect

and GPU hardware. 3D scene reconstructions have also been performed with sound based on time of

flight sensing (Crocco et al., 2016). Not only has this previous research generated large amounts of 3D

scene (Silberman et al., 2012b; Song et al., 2017) and object (Singh et al., 2014; Lai et al., 2011; Wu et al.,

2015b) data, they also benefit from these datasets by using them for training vision-based neural networks
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Example 3D Reconstruction Methods
Type Methods
Active (RGB-D) KinectFusion, DynamicFusion, BundleFusion
Passive (RGB) SLAM, SFM, (Tanskanen et al., 2013), ScanNet, (Whelan et al., 2018)
Stereo MVS, StereoDRNet
Lidar (Kada and Mckinley, 2009)
Ultrasonic (Zhang et al., 2017a)
Time of flight (Crocco et al., 2016)

Table 6.1: 3D reconstruction methods by type such as passive (RGB), active (RGB-D), or other sensor (e.g.
ultrasound, lidar, etc.); single or multiple views; and static or dynamic scenes.

for classification, segmentation, and other downstream tasks. Depth estimation algorithms (Eigen and Fer-

gus, 2014; Alhashim and Wonka, 2018; Chabra et al., 2019) also create 3D reconstructions by fusing depth

maps using ICP and volumetric fusion (Izadi et al., 2011).

6.2.1.1 Glass and mirror reconstruction

Reflective surfaces produce identifiable audio and visual artifacts that can be used to help their detec-

tion. For example, researchers have developed algorithms to detect reflections in images taken through

glass using correlations of 8-by-8 pixel blocks (Shih et al., 2015), image gradients (Kopf et al., 2013), and

two layer renderings (Sinha et al., 2012). (Sutherland, 1968) used ultrasonic sensor logic to track contin-

uous wave ultrasound and (Zhang et al., 2017a) to detect obstacles such as glass and mirrors by using

frequencies outside of the human audible range. More recently, reflective surfaces have been detected by

utilizing a mirrored variation of an AprilTag (Olson, 2011; Wang and Olson, 2016). (Whelan et al., 2018)

use the reflective surface to their advantage by recognizing the AprilTag attached to their Kinect scanning

device when it appears in the scene. Depth jumps and incomplete reconstructions have also been used (Ly-

senkov et al., 2012). However, vision based approaches require the right illumination, non-blurred imagery,

and limited clutter behind the surface that may limit the reflection. We show that sound creates a distinct

audio signal, providing reconstruction methods complementary data about the presence of windows and

mirrors without additional sensors.

6.2.2 Acoustic imaging and audio-based classifiers

We begin with an introduction into sound propagation, room acoustics, and audio-visual classifiers.
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Figure 6.3: Staged approach to enhance scene and object reconstruction using audio-visual data. Our
echoreconstruction prototype consists of two smartphones - one recording (top) and one emitting/recon-
structing (bottom). As the bottom smartphone moves to reconstruct the scene and emits 100 ms pulsed
audio (Section 6.3.3), the top smartphone is used to record video of the direct and reflecting sound. The
receiving audio is split into 1.0 second intervals to allow for reverberation. These audio intervals are con-
verted into mel-scaled spectrograms and passed through a multimodal echoreconstruction convolutional
neural network (we refer to as EchoCNN) comprised of 2D convolutional, max pooling, fully connected,
and softmax layers. EchoCNN classifications inform depth filtering and hole filling steps to resolve planar
discontinuities in scans caused by reflective surfaces, such as windows and mirrors. Binary classification
is used to predict if a window is open or closed. Multi-class classification is used for depth and material
estimation.

Acoustics: various models have been developed to simulate sound propagation in a 3D environment,

such as wave-based (Mehra et al., 2015a), ray tracing based (Rungta et al., 2016b), sound source cluster-

ing (Tsingos et al., 2004b), multipole equivalent source methods (James et al., 2006b), and single point

multipole expansion (Zheng and James, 2011b), representing outgoing pressure fields. (Godoy et al., 2018)

uses acoustics and a smartphone for an app to detect car location and distance from walking pedestri-

ans using temporal dynamics. (Bianco et al., 2019) further discusses theory and applications of machine

learning in acoustics. Computational imaging approaches have also used acoustics for non-line-of-sight

imaging (Lindell et al., 2019), 3D room geometry reconstruction from audio-visual sensors (Kim et al.,

2017), and acoustic imaging on a mobile device (Mao et al., 2018). To reconstruct windows and mirrors,

our work uses room acoustics given the surface materials of the room (Schissler et al., 2018) and distance

from sound source. However, prior work and downstream processes often require a watertight reconstruc-

tion which can be difficult to generate in the presence of glass. Our approach addresses these issues using

an integrated audio-visual CNN that can detect discontinuity, depth, and materials.
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Audio-based classification: using principles from sound synthesis, propagation, and room acoustics,

audio classifiers have been developed for environmental sound (Gemmeke et al., 2017; Piczak, 2015;

Salamon et al., 2014), material (Arnab et al., 2015), and object shape (Zhang et al., 2017d) classification.

Audio input can take the form of raw audio, spectral shape descriptors (Michael et al., 2005; Cowling and

Sitte, 2003; Smith III, 2020), or frequency spectral coefficients that we also adopt in our method.

Audio-visual learning: similar to its applications in natural language processing (NLP) and visual

questing & answering systems (Kim et al., 2016, 2020; Hannan et al., 2020), multi-modal learning using

both audio-visual sensory inputs has also been used for classification tasks (Sterling et al., 2018; Wilson

et al., 2019a), audio-visual zooming (Nair et al., 2019), and sound source separation (Ephrat et al., 2018b;

Lee and Seung, 2000) which have also isolated waves for specific generation tasks. Although similar

in spirit, our audio-visual method, “Echoreconstruction” differs from the existing methods by learning

absorption and reflectance properties to detect a reflective surface, its depth, and material.

6.3 Technical Approach

In this work, we adopt “echolocation” as an analog for our echoreconstruction method. According

to (Egan, 1988), echo is defined as distinct reflections of the original sound with a sufficient sound level

to be clearly heard above the general reverberation. Although perceptible echo is abated because of prece-

dence (known as the Haas effect) (Long, 2014), returning sound waves are received after reflecting off of

a solid surface. We use these distinct, reflecting sounds to design a staged approach of audio and audio-

visual convolutional neural networks. EchoCNN-A and EchoCNN-AV can be used to estimate depth based

on reverberation times (Fig. 6.9), recognize material based on frequency and amplitude, and handle both

static and dynamic scenes with moving objects based on Doppler shift. All of which enhance scene and

object reconstruction by detecting planar discontinuities from open or closed surfaces and then estimating

depth and material.

6.3.1 Echolocation

Echolocation is the use of reflected sound to locate and identify objects, particularly used by animals

like dolphins and bats. According to (Szabo, 2014), bats emit ultrasound pulses, ranging between 20-150

kHz, to catch an insect prey with a resolution of 2-15 mm. This involves signal processing such as:
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1. Doppler shift (the relative speed of the target),

∆f = fD − f0 = f0
cs
c0
cos(θ) (6.1)

2. time delay (distance to the target), and

3. frequency and amplitude in relation to distance (target object size and type recognition);

where the Doppler shift (or effect) is the perceived change in frequency (Doppler frequency fD minus

transmitted frequency f0) as a sound source with velocity cs moves toward or away from the listener/ob-

server with velocity co and angle θ.

6.3.2 Staged classification and reconstruction pipeline

As depicted in Fig. 6.3, we take a staged approach to enhance scene and object reconstruction using

audio-visual data. Our echoreconstruction prototype consists of two smartphones - one recording (top) and

one emitting/reconstructing (bottom). Each audio emission is 100 ms of sound followed by 900 ms of si-

lence to allow for the receiving microphone to capture reflections and reverberations (Section 6.3.3). After

the 3D scan is complete, an .obj file containing geometry and texture information is generated. 1 second

frames are extracted from the recorded video to generate audio and visual input into the EchoCNN neural

networks (Section 6.3.4). These networks are independently trained to detect whether a surface is open

or closed, estimate depth to the surface from the sound source, and classify the material of the surface.

Using mobile accelerometer data and coarse audio with fine visual data to augment depth estimation will

be explored as future work.

6.3.3 Sound source

A smartphone emits recordings of human experimenter voice, whistle, hand clap, pure tones (ranging

from 63 Hz to 16 kHz), chirps, and noise (white, pink, and brownian). All of which can be generated as

either pulsed (PW) or continuous waves (CW). PW is preferred for theoretical and empirical reasons. First,

the transmission frequency f0 may experience considerable downshift as a result of absorption and diffrac-

tion effects (Szabo, 2014). Therefore, using pulsed waves independent for each emission is theoretically
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Figure 6.4: Mel-scaled spectrograms of recorded impulses of different sound sources used. From left
to right: narrow to disperse spectra. Not shown are other pure tone frequencies, chirp, pink noise, and
brownian noise. Horizontal axis is time and vertical axis is frequency.

better than continuous waves compared to f0. Furthermore, Section 7.5 shows superior PW results over

CW for the given classification tasks.

Pure tones were generated with default 0.8 out of 1 amplitudes using the Audacity computer program

and center frequencies of 63 Hz, 125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz, 8 kHz, and 16 kHz. Hu-

man voice ranges from about 63 Hz to 1 kHz (Long, 2014) (125 Hz to 8 kHz (Egan, 1988)) and an un-

trained whistler between 500 Hz to 5 kHz (Nilsson et al., 2008). Chirps were linearly interpolated from

440 Hz to 1320 Hz in 100 ms. A hand clap is an impulsive sound that yields a flat spectrum (Long, 2014).

All sound sources were recorded and played back with max volume (Fig. 6.4). While recorded sounds

were used for consistency, we plan to add live audio for augmentation and future ease of use during recon-

struction. Please see our supplementary materials for spectrograms across all sound sources.

Audio input: audio was generated in pulsed waves (PW). One smartphone to emit the sound while

performing a RGB-based reconstruction and the second smartphone to capture video. As future work, a

single mobile device or Microsoft Kinect paired with audio chirps could be used for audio-visual capture

and reconstruction instead of two separate devices. Each pulsed wave emitted into the scene was a total

of 1 second consisting of an 100 ms impulse followed by silence. 1 second audio frames is based on the
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Total room absorption a using a =
∑
Sα at 250 Hz

Real bathroom scene S α a (sabins)
Painted walls 432 x 0.10 = 43.20
Tile floor 175 x 0.01 = 1.75
Glass 60 x 0.25 = 15.00
Ceramic 39 x 0.02 = 0.78
Mirror 34 x 0.25 = 8.50

Total a = 69.23 sabins

Table 6.2: According to the Sabine Formula (Eq. 6.3.3), reverberation time can be calculated as room
volume V divided by total room absorption a. For an indoor sound source in a reverberant field, a is the
total room absorption at a given frequency (sabins), S is the surface area (ft2), and α is the sound absorp-
tion coefficient at a given frequency (decimal percent). At 250 Hz, the total room absorption a for our
real-world bathroom scene is 69.23 sabins.

Sabine Formula of reverberation time for a compact room of like dimensions calculated as:

T = 0.05
V

a
= 0.05

V∑
Sα

= (0.05
sec
ft

)
1, 296 ft3

69.23 ft2
= 0.94 sec (6.2)

where T is the reverberation time (time required for sound to decay 60 dB after source has stopped), V is

room volume (ft3), and a is the total room absorption at a given frequency (e.g. 250 Hz). For the bathroom

scene, V = 9 ft ∗ 16 ft ∗ 9 ft = 1, 296 ft3 and a = 69.23 ft2, which is the sum of sound absorption from the

materials in Table 6.2.

Visual input: images were captured from the same smartphone video as the audio recordings. Each

corresponding image was cropped and grayscaled for illumination invariance and data augmentation.

Image dimensions were 64 by 25 pixels. Visual data served as inputs for visual only and audio-visual

model variation EchoCNN-AV.

6.3.4 Model Architecture

To augment visually based approaches, we use a multimodal CNN with mel-scaled spectrogram and

image inputs. First, we perform surface detection to determine if a space with depth jumps and holes is

in error or in fact open (i.e. open/closed classification). In the event of error, we estimate distance from

recorder to surface using audio-visual data for depth filtering and inpainting. Finally, we determine the

material. All of these classifications are performed using our audio and audio-visual convolutional neural

networks, referred to as EchoCNN-A and EchoCNN-AV (Fig. 6.3).
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Audio sub-network: our frame-based EchoCNN-A consists of a single convolutional layer followed

by two dense layers with feature normalization. Sampled at Fs = 44.1 kHz to cover the full audible range,

audio frames are 1 second mel-scaled spectrograms with STFT coefficients χ (Eq. 7.3.2). Each audio

example is classified independently and 1 second intervals to reflect an estimated reverberation time based

on a compact room size (Eq. 6.3.3). With a 2048 sample Hann window (N), 25% overlap, and hop length

(H = 2048/4), this results in a frequency dimension of 21.5 Hz (Eqn. 6.3.4) and temporal dimension of

12 ms (Eqn. 6.3.4) or 12% of each 100 ms pulsed audio. Each spectrogram is individually normalized and

downsampled to a size of 62 frequency bins by 25 time bins.

We define the frequency spectral coefficients (Mller, 2015) as:

χ(m, k) =
N−1∑
n=0

x(n+mH)w(n)exp(−2πikn/N) (6.3)

for mth time frame and kth Fourier coefficient with real-valued DT signal x : Z → R, sampled window

function w(n) for n ∈ [0 : N − 1] → R of length N ∈ N, and hop size H ∈ N (Mller, 2015). R denotes

continuous time and Z denotes discrete time. Equal to |χ(m, k)|2, spectrograms have been demonstrated

to perform well as inputs into convolutional neural networks (CNNs) (Huzaifah, 2017b). Their horizontal

axis is time and vertical axis is frequency.

Fcoef (k) =
kḞs

N
= k

44100

2048
= k ∗ 21.5 Hz (6.4)

Tcoef (m) =
mḢ

Fs
= m

2048 ∗ 0.25

44100
= m ∗ 0.012 seconds (6.5)

A hop length of H = N/2 achieves a reasonable temporal resolution and data volume of generated

spectral coefficients (Mller, 2015). Temporal resolution is important in order to detect when a reflecting

sound reaches the receiver. Therefore, we decided to use a shorter window length N = 2048 instead

of N = 4096 for instance. This resulted in a shorter hop length and accepting the trade-off of a higher

temporal dimension for increased data volume.
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Figure 6.5: Sample visualizations of the filters for the two convolutional layers in the audio-based
EchoCNN-A neural network. The model learns filters for octave bands, frequencies, reflections, re-
verberations, and damping.

Visual sub-network: while audio information is generally useful for all three classifications tasks (Ta-

ble 4.2) visual information is particularly useful to aid material classification. We use ImageNet (Krizhevsky

et al., 2012b) as a visual-based baseline to compare to our audio and audio-visual methods. It also serves

as an input into our audio-visual merge layer. Future work will explore whether or not another image

classification method is better suited as a baseline and to fuse with audio.

Merge layer: we evaluated concatenation and multi-modal factorized bilinear (MFB) pooling (Yu

et al., 2017a) to fuse audio and visual fully connected layers. Concatenation of the two vectors serves as a

straightforward baseline. MFB allows for additional learning in the form of a weighted projection matrix

factorized into two low-rank matrices.

zi = xTWiy = xTUiV
T
i y = 1T (UT

i x ◦ V T
i y) (6.6)

where k is the factor or latent dimensionality with index i of the factorized matrices, ◦ is the Hadmard

product or element-wise multiplication, and 1 ∈ Rk is an all-one vector.

6.3.5 Loss Function

Categorical cross entropy loss is used for EchoCNN inferences. For open/closed predictions, categori-

cal cross entropy loss is used instead of binary if estimating the extent of the surface opening (e.g. all the

way open, halfway open, or closed). A regression model is not used for depth estimation because ground
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Figure 6.6: Spectrograms from a recorded hand clap in front of an interior glass shower door and exterior
glass window. For the interior door, reflected sounds experience intensified damping as we go from opened
(left) to closed (middle) and then from 3 feet to 1 foot depth (right). Damping increases with fewer late
reverberations and intensity increases with more early reflections. For the exterior window, closing it
decreases outside noise up to a distance.

truth data is collected in 1 foot increments within the free field for better noise reduction (Egan, 1988). The

Softmax function is used for output activations.

6.3.6 Depth filtering and planar inpainting

The outputs of our EchoCNN inform enhancements for 3D reconstruction (Algorithm ??). If depth

jumps in the reconstruction are first classified as an open surface, then no change is required other than

filtering loose geometry and small components. Otherwise, there is a planar discontinuity (e.g. window or

mirror) that needs to be filled. With depth estimated by EchoCNN, we filter the initial 3D mesh to within a

threshold of that depth. This gives us the plane size needed to fill. Finally, EchoCNN classifies its surface

material.

6.4 Datasets

Our audio-based EchoCNN-A and audio-visual EchoCNN-AV convolutional neural networks are

trained across nine octave bands with center frequencies 63 Hz, 125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4

kHz, 8 kHz, and 16 kHz. Training is done using these pulsed pure tone impulses along with experimenter

hand clap. The hold out test data is comprised of sound sources excluded from training - white noise,
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Figure 6.7: Listener at different distances of 1, 2, 3 ft from sound source (red dot) in a virtual environment
used to generate synthetic audio-visual data. In addition to open/closed, depth, and material, we make
synthetic, unmixed reflection separation data (direct, early, or late) available for future research.

experimenter whistle, and voice. The test set contains sound sources not in the training set to evaluate

generalization.

6.4.1 Real and synthetic datasets

Real: training data is comprised of 1 second pulsed spectrograms (Fig. 6.6) from recorded pure tones,

experimenter hand claps, brownian noise, and pink noise (N=857). Training and test examples were col-

lected via video recordings and labeled for material, open/closed, and in 1 ft depth increments based on the

distance from the surface. Nine octaves of pure tones, hand claps, and white noise cover a disperse range

of frequencies and were thus used to train our models.

The hold out test dataset consists of 1 second pulsed spectrograms from recorded experimenter voice,

whistle, chirp, and white noise (N=227). Voice and whistle recordings were chosen for the hold out test

set to ease future transition to live and hands-free emitted sounds during reconstruction. Hold out test data

is excluded from training and only evaluated during testing. While the same hold out sets were used for

visual and audio-visual evaluation, unheard is not the same as unseen. Unheard audio can have the same

visual appearance between training and test. Other new training and test datasets for visual and audio-

visual methods will be future work.

Synthetic: we employ a ray-based geometric sound propagation approach (Schissler and Manocha,

2011). Given scene materials (e.g. carpet, glass, painted, tile, etc.), a sound source (e.g. voice), and listener

position, we generate impulse responses for a given scene of varying sizes. From each listener, specular

and diffuse rays are randomly generated and traced into the scene. The energy-time curve for simulated

impulse response Sf (t) is the sum of these rays:

Sf (t) =
∑

δ(t− tj)Ij,f (6.7)
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where Ij,f is the sound intensity for path j and frequency band f, tj is the propagation delay time for path j,

and δ(t− tj) is the Dirac delta function or impulse function. As these sound rays collide in the scene, their

paths change based on absorption and scattering coefficients of the colliding objects. Common acoustic

material properties can be referenced in (Egan, 1988). We assume a sound absorption coefficient, α = 1.0

for open windows.

Along with sound intensity Sf (t), a weight matrix Wf is computed corresponding to materials within

the scene. Each entry wf,m is the average number of reflections from material m for all paths that arrived

at the listener. It is defined as:

wf,m =

∑
Ij,fdj,m∑
Ij,f

(6.8)

where dj,m is the number of times rays on path j collide with material m, weighted according to the sound

intensity Ij,f of the path j. To mirror our real-world data, sound source directivity was disabled. Future

work is needed to compare ambient and directed sound sources. This data may also be used for material

sound separation.

6.5 Experiments and Results

Overall, 71.2% of hold out reflecting sounds and 100% of audio-visual frames were correctly classified

as an open or closed boundary in the home (Table 4.2). 71.8% of 1 second audio frames were correctly

classified as 1 ft, 2 ft, or 3 ft away from the surface based on audio alone; 89.5% when concatenating with

its corresponding image. Finally, 77.4% of audio and 100% of audio-visual inputs correctly labeled the

surface material.

ImageNet, a visual only baseline, is higher at 78.1% than audio-only EchoCNN-A for open/closed clas-

sification. This is partly due to the fact that the hold out set was to test audio generalization (i.e. unheard

sound sources). But unheard sound sources does not guarantee unseen visual data. Images similar to those

found in training are present in test. A proper hold out set based on image (e.g. different depths) should be

evaluated as future work.

78



Figure 6.8: EchoCNN-A (Left) Confusion matrix to classify open/closed for an interior glass shower door.
Open predictions (86%) were more accurate than closed (56%). (Right) Confusion matrix to classify depth
from same interior glass door. Notice that our EchoCNN is learning to differentiate distance based on
reflecting sounds from pulsed ambient waves of a smartphone.

6.5.1 Experimental setup

Listener (top smartphone, e.g. Galaxy Note 4) and sound source (bottom smartphone, e.g. iPhone

6) are separated vertically by 7 cm. Pulsed sounds are emitted 3 feet, 2 feet, and 1 feet away from the

reconstructing surface. Three feet was selected to remain in the free field. Beyond that, there will be less

noise reduction due to reflecting sounds in the reverberant field (Egan, 1988). Within a few feet of the

reconstructing surface also create finer detail reconstructions.

We labeled our data based on scene, sound source, and surface properties - type of surface, material,

and depth from sound source. The training set included pulsed sounds of pure tone frequencies, a single

hand clap, brownian noise, and pink noise. The hold out test set consisted of voice, whistle, chirp, and

white noise. For rooms with different sound-absorbing treatments, our real-world recordings include a

bedroom (e.g. carpet and painted) and bathroom (e.g. tiled).

6.5.2 Implementation details

We implemented all EchoCNN and baseline models with Tensorflow (Abadi et al., 2015) and Keras (Chol-

let et al., 2015). Training was performed using a TITAN X GPU running on Ubuntu 16.04.5 LTS. We used

categorical cross entropy loss with Stochastic Gradient Descent optimized by ADAM (Kingma and Ba,

2014). Using a batch size of 32, remaining hyperparameters were tuned manually based on a separate

validation set. We make our real-world and synthetic datasets available to aid future research in this area.
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Figure 6.9: From left to right: audio input (i.e. mel-scaled spectrogram) which would produce the highest
activation for a given depth class from 1 ft, 2 ft, and 3 ft away from an object. Longer reverberation times
tend to occur at lower frequencies (3 ft) than at high frequencies (1 and 2 ft) due to typical high frequency
damping and absorption.

6.5.2.1 Initial 3D Reconstruction

We evaluated the following smartphone-based reconstruction applications to obtain an initial 3D ge-

ometry for which our method would enhance. The Astrivis application, based on (Tanskanen et al., 2013),

generates better live 3D geometries for closed object rather than scene reconstructions since it limits fea-

ture points per scan. On the other hand, Agisoft Metashape produces scene reconstructions offline from

smartphone video. Enabling the software’s depth point and guided camera matching features further im-

proved reconstructed geometries.

6.5.3 Results by source frequency and object size

We will evaluate dynamic source frequencies based on the physical size of the objects, since sound

wave behavior relates to wavelength. For example, if an object is much smaller than the wavelength, the

sound flows around it rather than scattering (Long, 2014).

λ =
c

f
(6.9)
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where λ is wavelength (ft) of sound in air at a specific frequency, f is frequency (1 Hz), and c is speed of

sound in air (ft/s).

6.5.4 Activation Maximization

The objective of activation maximization is to generate an input that maximizes layer activations for

a given class. This provides insights into the types of patterns the neural network is learning. Fig. 6.9

shows the different inputs that would maximize EchoCNN activations for depth estimation. Notice lower

frequencies tend to occur at 3 ft (longer reverberation times) than at 1 and 2 ft (high frequencies) due to

typical high frequency damping and absorption.

6.5.5 Applications

When using a head mounted display (HMD) users are alerted within the virtual environment, when

they approach the physical space boundaries established during room setup. However, if room setup does

not accurately reflect these boundaries or changes occur after setup, a user risks walking into unseen real-

world objects such as glass and walls. Using our method, transmitted sound from the HMD could be used

to locate physical objects and appropriately notify the user as an added safety measure. Depth estimation

from audio can also be used to unmix and place unseen but heard sound sources from video into a virtual

environment. In addition to scene reconstruction, echoreconstruction also reconstructs audio (Fig. 6.12).

6.6 Conclusion and Future Work

To the best of our knowledge, these are the first audio and audio-visual techniques introduced for

enhancing scene reconstructions that contain windows and mirrors. Our multi-smartphone prototype and

staged echoreconstruction pipeline emits and receives pulsed audio from a variety of sound sources for

surface detection, depth estimation, and material classification. These classifications enhance scene and

object 3D reconstruction by resolving planar discontinuities caused by open spaces and reflective surfaces

using depth filtering and planar filling. Our prototype performs well compared to baseline methods given

our experiment results for multiple real-world and virtual scenes containing windows, mirrors, and open

surfaces. We make publicly available our real and synthetic audio-visual ground truth data in addition to

reflection separation data (direct, early, or late reverberations) for future research.
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Figure 6.10: We evaluated our method on real and virtual scenes. Column 1: we used the off-the-shelf
MagicPlan app to obtain 3D models and dimensions to calculate estimated reverberation time based on
room size and materials. Our experimental setups consists of a two smartphone prototype. One phone per-
forms an initial reconstruction using state-of-the-art commercial Astrivis application and also emits pulsed
audio. The second phone captures video for audio-visual input data into our EchoCNN. We tested glass,
mirror, and other objects and surfaces within each scene at different depths, materials, and open/closed.
Using audio, we noticed noise reduction between winter and spring due to more foliage on the trees. We
also observed flutter echoes, which can be heard as a ”rattle” or ”clicking” from a hand clap and have been
simulated in spatial audio (Halmrast, 2019). They became more pronounced the closer to the wall surface
in the bathroom scene. Background UV textures are placed at a fixed 1 ft (0.3 m) behind estimated surface
depth. Audio unable to augment failure cases of the shower from initial RGB-based reconstructions using
either (Tanskanen et al., 2013) or (Metashape, 2020). We leave calculating the background depth as future
work. We compare our 3D reconstructions to depth estimates based on related work.
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Figure 6.11: Echoreconstruction of a TV on a dresser. (From left to right) Photo of prototype system
in action, initial 3D reconstruction, depth filtering applied, and resulting echoreconstruction. Semantic
rendering is applied post-processing during the render stage of the pipeline.

Figure 6.12: EchoCNN may also be used to reconstruct the audio of a scene from video. Instead of depth
estimation, our method can be trained to approximate sound source position, which is especially useful
for objects that are outside of the camera field of view. Ground truth (green dots) and estimated (red
dots) sound source placements. Seen and heard sound source (TV) from the video capture placed more
accurately than unseen but heard sound sources (cradle and laptop). Audio-visual compared to audio only.
Please see our supplementary video for a VR demo and improved sound source placement as future work.
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Future Work: To further extend this research, performing audio emission, reception, and 3D reconstruc-

tion simultaneously and in real-time instead of having a staged approach would be one possible alternative

to explore. This approach could possibly enable mapping classifications to 3D geometry more densely

than fusing RGB-D, tracking, or Iterative Closest Point (ICP) (Izadi et al., 2011). An integrated approach

may not only be more efficient but also more effective by using audio feedback as part of the reconstruc-

tion code. Another possible avenue of exploration is to investigate the impact of live audio for training

and/or testing our neural network variations. With a defined set of output classes for EchoCNN, alterna-

tive baselines such as Non-Negative Matrix Factorization (NMF), source separation techniques, and the

pYIN algorithm (Mauch and Dixon, 2014) to extract the fundamental frequency f0, i.e. the frequency of

the lowest partial of the sound, are suggested as future work. Finally, our current implementation holds out

voice and whistle data, which is different from the audio used during training. However, unheard sounds

does not equate to unseen images. Therefore, some insights can be possibly gained by experimenting with

a different training dataset for testing audio-only, visual-only, and audio-visual methods.
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CHAPTER 7: AUDIO-VISUAL OBJECT RECONSTRUCTION FROM VIDEO1

This chapter describes a multimodal single and multi-frame neural network for 3D reconstructions

using audio-visual inputs. Our trained reconstruction LSTM autoencoder 3D-MOV accepts multiple in-

puts to account for a variety of surface types and views. To the best of our knowledge, our single and

multi-frame model is the first audio-visual reconstruction neural network for 3D geometry and material

representation.

7.1 Introduction

Deep neural networks trained on single- or multi-view images have enabled 3D reconstruction of

objects and scenes using RGB and RGBD approaches. These models generate 3D geometry volumetri-

cally (Boscaini et al., 2016; Choy et al., 2016; Xie et al., 2018a) and in the form of point clouds (Han et al.,

2019; Qi et al., 2016a, 2017a). With these reconstructions, additional networks have been developed to use

the 3D geometry as inputs for object detection, classification, and segmentation in 3D environments (Atz-

mon et al., 2018; Qi et al., 2017b). However, existing methods still encounter a few challenging scenarios

for 3D shape reconstruction (Boscaini et al., 2016).

One such challenge is occlusion in cluttered environments with multiple objects in a scene. Another is

spatial resolution. Volumetric methods such as voxelized reconstructions (Maturana and Scherer, 2015) are

primarily limited by resolution. Point cloud representations of shape avoid issues of grid resolution, but in-

stead need to cope with issues of point set size and approximations. Existing methods also are challenged

by transparent and highly reflective or textured surfaces. Self-occlusions and occlusions from other objects

can also hinder image-based networks, necessitating the possible adoption of multimodal neural networks.

To address these limitations, we propose to use audio-visual input for 3D shape and material recon-

struction. A single view of an object is insufficient for 3D reconstruction as only one projection of the

object can be seen, while multi-view input does not intrinsically model the spatial relationships between

1 This chapter has been prepared for conference submission.
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Figure 7.1: Our 3D-MOV neural network is a multimodal LSTM autoencoder optimized for 3D reconstruc-
tions of single ShapeNet objects and multiple objects from Sound20K video. During training, a LSTM
autoencoder is trained to reconstruct 2D image and spectrogram inputs. 3D shape reconstructions are
then generated by fine tuning the fused encodings of each modality for 3D voxel output. The network
has recurrent LSTM layers for temporal consistency. Adding audio enhances learning for object tracking,
material classification, and reconstruction when multiple objects collide, self-occlude, or are transparent.

views. By providing a temporal sequence of video frames, we strengthen the relationships between views,

aiding reconstruction. We also include audio as an input, in particular, impact sounds resulting from inter-

actions between the object to be reconstructed and the surrounding environment. Impact sounds provide

information about the material and internal structure of an object, providing complementary cues to the

object’s visual appearance. We choose to represent our final 3D shape using voxel representation due to

their state-of-the-art performance in classification tasks. To the best of our knowledge, our audio-visual

network is the first to reconstruct multiple 3D objects from a single video.

Main Results: In this paper, we introduce a new method to reconstruct high-quality 3D objects from a

sequence of images and sound, the main contributions of this work can be summarized as follows.

• A multimodal LSTM autoencoder neural network for geometry and material reconstruction from

audio and visual data is introduced;

• The resulting implementation has been tested on voxel, audio, and image datasets of objects over a

range of different geometries and materials;
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• Experimental results of our approach demonstrate the reconstruction of single sounding objects and

multiple colliding objects in a virtual scene;

• Audio-augmented datasets with ground truth object tracking bounding boxes are made available for

future research.

7.2 Related Work

Computer vision research continues to push state-of-the-art reconstruction and segmentation of ob-

jects in a scene (Dai et al., 2017c). However, there still remain research opportunities in 3D reconstruction.

Wide baselines limit the accuracy of feature correspondences between views. Challenging objects for

reconstruction include thin or small objects (e.g. table legs), and classes of objects that are transparent,

occluded, or have much higher shape variation than other classes (e.g. lamps, benches, and tables com-

pared to cabinets, cars, and speakers for example). In this section, we review previous work relating to 3D

reconstruction, multimodal neural networks, and reconstruction network structures.

7.2.1 3D Reconstruction

Deep learning techniques have produced state-of-the-art 3D scene and object reconstructions. These

models take an image or series of images and generate a reconstructed output shape. Some methods pro-

duce a transformed image of the input, intrinsically representing the 3D object structure (Odena et al.,

2017; hong Tsai, 2018; Mao et al., 2017; Mirza and Osindero, 2014; Lun et al., 2017). 3D voxel grids pro-

vide a shape representation which is easy to visualize and works well with convolution operations (Choy

et al., 2016; Girdhar et al., 2016; Riegler et al., 2017; Qi et al., 2016b; Hu et al., 2018; Wu et al., 2016). In

more recent work, point clouds have also been found to be a viable shape representation for reconstructed

objects (Hedman et al., 2017; Fan et al., 2017).

7.2.2 Multimodal Neural Networks

Neural networks with multiple modalities of inputs help cover a broader range of experimental setups

and environments. Common examples include visual question answering (Cadene et al., 2019), vision

and touch (Lee et al., 2019), and other multisensory interactions (Klemen and Chambers, 2012). Multiple
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Figure 7.2: We first separate audio-visual data using object tracking (Section 7.3.1) and sound source
separation (Section 7.3.2). Features from audio and visual subnetworks for each object are aggregated by
LSTM autoencoders and then fused using addition, concatenation, or a bilinear model (Yu and Tao, 2014).
Finally, 3D geometry is reconstructed by a 3D decoder and audio classified material applied to all voxels.

modes may also take the form of image-to-image translation, e.g. domain transfer (Huang et al., 2018).

Using local and global cropped parts of the images (i.e. bounding boxes) have also been shown to serve as

a mode of context to supervise learning (Reed et al., 2016).

Audio-visual specific multimodal neural networks have also proven effective for speech separation (Ephrat

et al., 2018b) as well as sound localization (Zhao et al., 2018; Owens and Efros, 2018; Konno et al., 2020;

Arandjelović and Zisserman, 2017). Audio synthesis conditioned on images is also enabled as a result of

these combined audio-visual datasets (Zhou et al., 2018). Please see a survey and taxonomy on multimodal

machine learning (Baltrusaitis et al., 2017) and multimodal deep learning (Ngiam et al., 2011a) for more

information.

7.2.3 Reconstruction Network Structures

While single view networks perform relatively well for most object classes, objects with concave struc-

tures or classes of objects with large variations in shape tend to require more views. 3D-R2N2 (Choy et al.,

2016) allows for both single and multi-view implementations given a single network. Other recurrent

models include learning in video sequences (Chong and Tay, 2017; Hasan et al., 2016), Point Set Gen-

eration (Fan et al., 2017), and Pixel Recurrent Neural Network (PixelRNN) (van den Oord et al., 2016c).

Methods have also been developed to ensure temporal consistency (Xie et al., 2018b) and use generative

techniques (Gwak et al., 2017). T-L network (Girdhar et al., 2016) and 3D-R2N2 (Choy et al., 2016) are

most similar to our 3D-MOV reconstruction neural network. Building on these related works, we fuse

audio as an additional input and temporal consistency in the form of LSTM layers (Fig. 7.2).
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7.3 Technical Approach

In this work, we reconstruct the 3D shape and material of sounding objects given images and impact

sounds. Using audio and visual information, we present a method for reconstruction of single instance

ModelNet objects augmented with audio and multiple objects colliding in a Sound20K scene from video.

In this section, we cover visual representations from object tracking (Section 7.3.1) and audio obtained

from sound source separation of impact sounds (Section 7.3.2) that serve as inputs into our 3D-MOV

reconstruction network (Section 7.4).

7.3.1 Object Tracking and Visual Representation

Since an entire video frame may contain too much background, we use object tracking to track and

segment different objects. This tracking is performed using the Audio-Visual Object Tracker (AVOT) (Wil-

son and Lin, 2020a). Similar to the Single Shot MultiBox Detector (SSD) (Liu et al., 2015), AVOT is a

feed-forward convolutional neural network that classifies and scales a fixed number of anchor bounding

boxes to track objects in a video. While 3D-MOV aggregates audio-visual features before decoding, AVOT

fuses audio-visual inputs before its base network. With additional information from audio, AVOT defines

an object based on both its geometry and material.

We use AVOT over other algorithms, such as YOLO (Redmon et al., 2015b) or Faster R-CNN (Ren

et al., 2015b), because of the availability of audio and need for higher object-tracking accuracy given

occlusions caused by multiple objects colliding. Unlike CSR-DCF (Lukezic et al., 2016), AVOT automat-

ically detects objects in the video without initial markup of bounding boxes. For future work, a scheduler

network or a combination of object trackers is worth considering as well as use of Common Objects in

Context (COCO) (Lin et al., 2014a) and SUN RGB-D (Song et al., 2015; Silberman et al., 2012a; Janoch

et al., 2011; Xiao et al., 2013) datasets for initialization and transfer learning.

The output from tracking is a series of segmented image frames for each object, consisting of the

contents of its tracked bounding box throughout the video. These segmented frames are grayscaled and

resized to a consistent input size of 88 by 88 pixels. While resizing, we maintain aspect ratio and pad to

square the image. These dimensions were automatically chosen to account for the size of objects in our

Sound20K dataset and to capture their semantic information. Scenes included one, two, and three colliding

objects with materials such as granite, slate, oak, and marble. For our single-frame, single impact sound
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Figure 7.3: For our single impact sound analysis using ShapeNet, we build multimodal datasets using
modal sound synthesis to produce spectrograms for audio input and images of voxelized objects as an
estimate of shape. Please note that audio used from ISNN (Auston Sterling and Lin, 2018) was generated
for voxelized models as a result of the sound synthesis pipeline requiring watertight meshes. Unmixed
Sound20K audio was available from the generated synthetic videos.

evaluations, we resized ShapeNet’s 224 x 224 image size. For comparison, other image sizes from related

work include MNIST, 28 x 28; 3D-R2N2, 127 x 127; ImageNet, 256 x 256.

7.3.2 Sound Source Separation of Impact Sounds and Audio Representation

For single frame reconstruction, we synthesize impact sounds on ShapeNet (Auston Sterling and Lin,

2018), illustrated in Fig. 7.3. For multiple frames, we take as input a Sound20K video showing one or

more objects moving around a scene. These objects strike one another or the environment, producing

impact sounds, which can be heard in the audio track of the video. We refer to these objects, dynami-

cally moving through the scene and generating sound due to impact and collision, as sounding objects.

Sound20K provides mixed and unmixed audio which can be used directly or to train algorithms for sound

source separation (Wang et al., 2014; Koretzky et al., 2017; Scallie et al., 2017). While prior work to

localize objects using audio-visual data exists (Arandjelović and Zisserman, 2017; Zhao et al., 2018),

automatically associating separated sounds with corresponding visual object tracks in the context of the

reconstruction task remains an area of future work.

Initially, Sound20K and ShapeNet audio are available as time series data, sampled at 44.1 kHz to cover

the full audible range. The audio is converted to mel-scaled spectrograms for neural network inputs, which

effectively represent the spectral distribution of energy over time. Each spectrogram is 3 seconds for a

single frame (ShapeNet) and 0.03 seconds per multi-frame (Sound20K) with an overlap of 25%. Audio

spectrograms are aligned temporally with their corresponding image frames from video, forming the audio-
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visual input for queries. They are generated with discrete short-time Fourier transforms (STFTs) using a

Hann window function.

χ(m, k) =

N−1∑
n=0

x(n+mH)w(n)exp(−2πikn/N) (7.1)

for mth time frame and kth Fourier coefficient with real-valued DT signal x : Z → R, sampled window

function w(n) for n ∈ [0 : N − 1]→ R of length N ∈ N, and hop size H ∈ N (Mller, 2015).

7.3.2.1 Single View, Single Impact Sound

Single view inputs are based on ShapeNet, a repository of 3D CAD models based on WordNet cate-

gories. Evaluations were performed on voxelized versions of ShapeNet’s (Chang et al., 2015), ModelNet10

and ModelNet40 models (Wu and Xiao, 2015), and image views of these datasets from 3D-R2N2 (Choy

et al., 2016). To generate audio for these objects to be used for our multi-modal 3D-MOV neural network,

we use data from Impact Sound Neural Network (Auston Sterling and Lin, 2018). This work synthesized

impact sounds for voxelized ModelNet10 and ModelNet40 models (Wu and Xiao, 2015) using modal anal-

ysis and sound synthesis. Modal analysis is precomputed to obtain modes of vibration for each object and

sound synthesized with an amplitude determined at run-time given the hit point location on the object and

impulse force. The modes are represented as damped sinusoidal waves where each mode has the form

qi = aie
-ditsin(2πf it+ θi), (7.2)

where f i is the frequency of the mode, di is the damping coefficient, ai is the excited amplitude, and θi is

the initial phase.

7.3.2.2 Multi-Frame, Multi-Impact

Multi-frame inputs to our system consist of Sound20K (Zhang et al., 2017d) videos that may contain

multiple sounding objects, possibly of similar sizes, shapes, and/or materials. This synthetic video dataset

contains audio and video data for multiple objects colliding in a scene. Sound20K consists of 20,378

videos generated by rigid-body simulation and impact sound synthesis pipeline (Doug L. James and Pai,
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Figure 7.4: We separately train audio and visual autoencoders to learn encodings and fine-tune for our 3D
reconstruction task. We replace the 2D decoder by a five deconvolutional layer 3D decoder to generate a
303 voxel grid. The separate audio-visual LSTM autoencoders are flattened and merged to form the dense
layer. Here, the predicted 3D shape voxels are displayed based on a threshold of 0.3.

2006). Visually, Sound20K (Zhang et al., 2017d) objects can be separated from one another through track-

ing of bounding boxes. However, audio source separation can be more challenging, particularly for un-

known objects. While Sound20K provides separate audio files for each object that can be used, the audio

data can also be used to train sound source separation techniques (Wang et al., 2014; Koretzky et al., 2017;

Scallie et al., 2017) to learn to unmix audio to individual objects by geometry and material. As future

work, we will compare the impact on reconstruction quality and performance if we were to use combined,

unmixed audio for each object. We will also compare impact of using source separated sounds versus

ground truth unmixed audio.

7.4 3D-MOV Network Structure

Our 3D-MOV network is a multi-modal LSTM autoencoder optimized for 3D reconstructions of mul-

tiple objects from video. Like 3D-R2N2 (Choy et al., 2016), it is recurrent and generates a 3D voxel rep-

resentation. However, to the best of our knowledge, our 3D-MOV network is the first audio-visual recon-

struction network for 3D object reconstruction. After object tracking and sound source separation, we

separately train autoencoders to extract visual and audio feature from each frame (Section 7.4.1). While

the 2D encoder weights are reused, the 2D decoders are discarded (blue rectangles in Fig. 7.4) and re-
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placed with 3D decoders for learning to reconstruct voxel outputs of the tracked objects based on given 2D

images and spectrograms. Using a merge layer such as addition, concatenation, or a bilinear model (Yu

and Tao, 2014), our method 3D-MOV fuses the results of the audio and visual subnetworks comprised of

LSTM autoencoders.

7.4.1 Single Frame Feature Extraction

The autoencoder consists of two convolutional layers for spatial encoding followed by a LSTM con-

volutional layer for temporal encoding. As a general rule of thumb, we use small filters (3x3 and at most

5x5), except for the very first convolutional layer connected to the input, and strides of four and two for

the two conv layers (Li et al., 2020). The decoder mirrors the encoder to reconstruct the image (Fig. 7.5).

After each convolutional layer, we employ layer normalization, which is equivalent to batch normalization

for recurrent networks (Ba et al., 2016). It normalizes the inputs across features and is defined as:

µj =
1

m

m∑
j=1

xij ;σ
2
j =

1

m

m∑
j=1

(xij − µj)2; x̂ij =
xij − µj√
σ2
j + ε

(7.3)

where xij is batch i, feature j of the input x across m features.

7.4.2 Frame Aggregation

In chronological order, the training video frames make a temporal sequence. LSTM convolutional lay-

ers are used to preserve content and spatial information. To generate more training sequences, we perform

data augmentation by concatenating frames with strides 1, 2, and 3. For example, we use a skipping stride

of 2 to generate a sequence of every other frame. We use a 10-frame sequence size as a sliding window

technique for aggregation of the encodings. The encoder weights learned here are used to then learn 3D

decoder weights to output a 3D voxel reconstruction based on audio-visual inputs from audio-augmented

ModelNet with impact sound synthesis and Sound20K video.

7.4.3 Modality Fusion and 3D Decoder

After encoding our inputs with LSTM convolutional layers, we flatten to a fully connected layer for

each audio and visual subnetwork. These dense layers are fused together prior to multiple Conv3D trans-
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Figure 7.5: Hidden layer representations Vi and Ai are trained to spatially encode object geometry and
impact sounds, where i is each video frame. These learned weights are subsequently used during test time
to generate 3D shapes from audio-visual inputs. For sequence modeling, LSTM layers are reliable for
temporal consistency and establishing dependencies over time. More specifically, we use convolutional
LSTM layers rather than fully connected to also preserve spatial information.

pose layers for the 3D decoder. Prior work in multimodal deep learning, such as visual question and an-

swering systems, have merged modalities for classification tasks using addition and MFB (Yu and Tao,

2014). A 3D decoder accepts the fusion of audio-visual LSTM encodings and maps it to a voxel grid with

five deconvolutional layers, similar to T-L Network (Girdhar et al., 2016). Unlike T-L’s 203 voxel grid, we

use 303 voxels for greater resolution and apply a single, audio-based material classification to all voxels.

Deconvolution, also known as fractionally-strided or transposed convolution, results in a 3D voxel shape

by broadcasting input X through kernel K (Zhang et al., 2020).

h∑
i=0

w∑
j=0

Y [i : i+ h, j : j + w] += (X[i, j] ∗K) (7.4)

7.5 Results

In this section, we present our implementation, training, and evaluation metrics along with 3D-MOV

reconstructed objects (Fig. 7.8). Please see a comparative analysis of loss and accuracy against baseline

methods by dataset and number of views. For each of the datasets ShapeNet and Sound20K, we evaluate

the network architecture described in Section 7.4 against audio, visual, and audio-visual methods using

binary cross entropy loss and intersection over union (IoU) reconstruction accuracy.
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Figure 7.6: Reconstructed objects from using multiple frames and impact sounds. Please see our supple-
mentary materials for a complete review of results for ShapeNet and Sound20K datasets using binary cross
entropy loss and reconstruction accuracy comparing audio, visual, and audio-visual methods by number of
views. Our method is able to obtain better reconstruction results for concave internal structures and scenes
with multiple objects by fusing temporal audio-visual inputs.

7.5.1 Implementation

Our framework was implemented using Tensorflow (Abadi et al., 2015) and Keras (Chollet et al.,

2015). Training was run on Ubuntu 16.04.6 LTS with a single Titan X GPU. Voxel representations were

rendered based on Matlab visualization code from 3D-GAN (Wu et al., 2016). From Sound20K videos,

images were grayscale with dimensions 84 x 84 x 1 and audio spectrograms were 64 x 25 x 1, zero padded

to equivalent dimensions. Visual data was augmented with resizing, cropping, and skipping strides.

7.5.2 Training

Since joint optimization can be difficult to perform, we train our reconstruction autoencoder and fused

audio-visual networks separately and then jointly optimize to fine-tune the final network. Mean square

error is used for the 2D reconstruction loss to train the encoder to reconstruct input images and audio

spectrograms. Binary cross entropy loss is calculated between ground truth and reconstructed 3D voxel

grids. During testing, we reconstruct from encoded vector representation of audio-visual inputs to a 3D

voxel reconstruction output.

Previous work has used symmetry induced volume refinement to constrain and finalize GAN volu-

metric outputs (Niu et al., 2018). Other methods have used multiple views to continuously refine the out-

put (Choy et al., 2016). Furthermore, most adversarial generating methods create examples by perturbing
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existing data, limiting the solution space. Our approach constrains the space of possible 3D reconstructions

for objects in the scene by temporal consistency, aggregation, and fusion of audio and visual inputs.

7.5.3 Evaluation metrics

Methods were evaluated against voxel Intersection-over-Union (IoU), also known as the Jaccard in-

dex (Jaccard, 1901), between the 3D reconstruction and ground truth voxels as well as cross-entropy loss.

This can be represented as area of overlap divided by the area of union. More formally:

IoU =

∑
i,j,k[I(p(i,j,k) > t)I(y(i,j,k)]∑

i,j,k[I(I(p(i,j,k) > t) + I(y(i,j,k)))]
(7.5)

where yi,j,k ∈ 0, 1 is the ground truth occupancy, pi,j,k the Bernoulli distribution output at each voxel, I(·)

an indicator function, and t for threshold. Higher IoU means better reconstruction quality.

Please see Table 7.1 for results by dataset against baseline methods: Figure 7.7 for example Model-

Net10 reconstructions and Figure 7.8 for exemplary Sound20K reconstructions, and Figure 7.9 for training

loss for audio, visual, and audio-visual.

7.6 ML Reproducibility

In this section of our supplementary document, we discuss setup of our experiments and datasets for

reproducibility and future research.

7.6.1 Experimental Results

Average runtime for 3D-MOV audio-visual training of the Sound20K dataset was about 1.5 minutes

per epoch for a sequence size of 10 and strides of 1, 2, and 3. Using 20 epochs, average training time was

30 minutes. For sequence size of 5, 10k training examples took about 4 minutes per. For sequence size

of 1, 50k training examples completed in roughly 10 minutes per epoch. Methods were evaluated against

voxel Intersection-over-Union (IoU), also known as the Jaccard index (Jaccard, 1901), between the 3D

reconstruction and ground truth voxels as well as cross-entropy loss.
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Table 7.1: 3D-MOV was evaluated against baselines for loss (mean square error and binary cross entropy)
and reconstruction accuracy (intersection over union). A view consists of both an image and audio frame.
Decreases in 3D-MOV accuracy as ShapeNet views increase requires further investigation but may suggest
impact sounds of different hit points are needed rather than using the same sound across views. *We use
the T-L Network (Girdhar et al., 2016) fused with audio as an overall baseline comparator with 0.67 loss
and 18.0% IoU for an instance of the MN10 chair class. ** Reported in (Choy et al., 2016)

Dataset ShapeNet (Chang et al., 2015) Sound20K (Zhang et al., 2017d)
Method Input 1 view 5 views 10 views

3D-MOV-A (Ours) A 21.2% N/A 37.15%
3D-R2N2 (Choy et al., 2016) V 56.0%** 63.1%** N/A
3D-MOV-V (Ours) V 22.7% 22.5% 65.7%
T-L Network (Girdhar et al., 2016) AV 18.0%* N/A N/A
3D-MOV-AV (Ours) AV 32.6% 31.0% 69.8%

7.6.2 Datasets

We use a server with Ubuntu 16.04.6 LTS and a single Titan X GPU. Training and hold-out test splits

were 80% and 20% respectively. With Sound20K sequence size of 10 and strides 1-3, we have 9,800 train-

ing and 1,960 test examples of RGB image and audio mel-scaled spectrograms. For ModelNet10, we used

voxelized objects since the sound synthesis pipeline requires watertight meshes. Downloadable versions

of the datasets used can be found for audio-visual Sound20K synthetic videos (Zhang et al., 2017d), Mod-

elNet10 (Chang et al., 2015), and voxelized ModelNet10 with impact sounds (Auston Sterling and Lin,

2018). Future work is to explore the impact of increases in dataset size on performance. Pre-processing

of audio involved converting sound files to mel-scaled spectrograms. Each spectrogram is 3 seconds for

a single frame (ShapeNet) and 0.03 seconds per multi-frame (Sound20K). For visual data, segmented

frames are grayscaled and resized to a consistent input size of 88 by 88 pixels. While resizing, aspect ratio

was maintained and padded to square the image. These dimensions were chosen to account for the size of

objects in our Sound20K and ModelNet10 datasets to capture their semantic information.

7.7 Conclusions

To the best of our knowledge, this is the first method to use audio and visual inputs from ShapeNet

objects and Sound20K video of multiple objects in a scene to generate 3D object reconstructions with

material. While multi-view approaches can improve reconstruction accuracy, transparent objects, interior
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Figure 7.7: 3D-MOV-AV reconstructed image and audio inputs for single view voxelized ModelNet10
classes (top, bathtub; middle, chair; bottom, bed). These results are using a single image and single impact
sound, fusing the two modalities with an addition merge layer, training for 60 epochs on a single GPU,
and using a voxel threshold of 0.4. 3D-MOV-AV performs the best on ModelNet10 single views, showing
audio augmenting visual data.

Figure 7.8: Reconstructed objects from using multiple frames and impact sounds. Please see Table 7.1 for
results from ShapeNet and Sound20K datasets using binary cross entropy loss and reconstruction accuracy
comparing audio, visual, and audio-visual methods by number of views. Audio-visual 3D-MOV-AV
performs the best for Sound20K sequence size of 10 views.
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Figure 7.9: Training loss and accuracy for ModelNet10 dataset of 60 epochs. 3D-MOV-AV concludes
training with the best performance in terms of binary cross entropy loss and accuracy based on Model-
Net10 single views, showing audio augmenting visual data.

Figure 7.10: Training loss and accuracy for Sound20K dataset of 40 epochs using a sequence size of 10.
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concave structures, self-occlusions, and multiple objects remain a challenge. As objects collide, audio

provides a complementary sensory input that can enhance the reconstruction model to improve results. In

this paper, we demonstrate that augmenting image encodings with corresponding impact sounds refine

reconstructions of multimodal LSTM autoencoder neural network outputs.

Limitations: our approach is currently implemented and evaluated with fixed-grid shapes. Further experi-

mentation with other resolutions, residual architectures (He et al., 2015a), adaptive grids, and multi-scale

reasoning (Denton et al., 2015) are worth exploring. Material classification is predicted based on audio

alone, given the textureless image renderings of the datasets used. Also, only a single material is inferred

for the entire geometry rather than per voxel classification. Finally, the trade-off between additional views

and additional auditory inputs could be further explored.

Future Work: evaluation of other real-time object trackers, such as YOLO and Faster R-CNN, can be

performed and trained on other existing datasets, such as COCO and SUN RGB-D. Further investigations

can also examine how the error introduced by object tracking propagates to reconstruction error. Same

applies to errors from sound source separation and being able to accurately associate unmixed sounds with

their corresponding visual object tracks. Next, while audio helps classify the material of the reconstructed

geometry, we assume a single material classification based on audio alone and apply that to all voxels. Re-

search on classifying material per voxel using both audio and visual data could expand part segmentation

research into reconstructing objects with different materials. Rather than being fully deterministic, fusing

audio and visual information for generative models to reconstruct geometry and material may also be of

interest to the research community. Then, there may be more than one possible 3D reconstruction for a

given image or sound. Beyond reconstruction, audio may also enhance image and sound generation, as

well as memory and attention models. For instance, image generation using an audio conditioned GAN

and sound generation based on image conditioning could be explored, similar to WaveNet (van den Oord

et al., 2016a) local and global conditioning techniques. Finally, testing on real data in the wild and larger

datasets of annotated audio and visual data allow for continued research in this area.
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CHAPTER 8: SUMMARY AND CONCLUSIONS

This dissertation was motivated by the advances in computer vision and the possibility of realizing the

potential benefits of single model audio and multimodal audio-visual learning. Whether by coupling a fluid

and structure to form a rigid double body for sound synthesis or fusing audio and visual inputs for object

classification, tracking, and reconstruction, audio is readily available for use along with its corresponding

images when datasets are generated from video.

Certain conditions also lend themselves more preferably to one modality or a combination of multiple

modes. For example, vision-based methods are sufficient for most static objects and scenes. However,

reflective and textureless surfaces may be better suited for audio methods since visual data may be ambigu-

ous or changing over time and viewpoint. Finally, audio-visual techniques can use scheduling to use the

appropriate inputs given the current state, account for drift error of dynamic objects and scenes, and handle

occlusions from cluttered scenes.

8.1 Summary of Results

I have presented a fast and practical method for simulating the sound of non-empty objects containing

fluids. This work is enhanced the sound synthesis equation in the rigid body audio pipeline method and

was demonstrated for use in interactive 3D systems, where live sound synthesis is important. The key con-

tribution was to account for the fluid force on an object at the fluid-structure boundary. This was achieved

by adding pre-processing steps to identify the mesh nodes of a tetrahedralized object that are in contact

with the liquid and to apply an added mass operator to those structural boundary nodes and adjacent solid

domain nodes. The added mass is applied to the bounding elements in the mass matrix proportional to

the liquid’s volume and density, which may vary with temperature and/or type of fluid. The technique

generalizes to any impermeable tetrahedral mesh representing the rigid objects and inviscid liquids.

To estimate the weight of a liquid poured into a target container, perform overflow detection, and

classify liquid and target container, I introduced a novel audio-based and audio-augmented techniques,
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Fluid-structure
coupling used added

mass operator for
sound synthesis

Pouring Sequence
Neural Network

(PSNN) for weight
estimation of liquid

Audio-Visual Object
Tracker (AVOT)

Echo-Reconstruction:
audio-augmented

scene reconstruction
on mobile devices

3D-MOV:
audio-visual LSTM
autoencoder for 3D
reconstruction of

multiple objects from
video

Table 8.1: Summary of contributions

in the form of multimodal convolutional neural networks (CNNs). The audio-based neural network uses

the sound from a pouring sequence—a liquid being poured into a target container. Audio inputs consist

of converting raw audio into mel-scaled spectrograms. Our audio-augmented network fuses this audio

with its corresponding visual data based on video images. Only a microphone and camera are required,

which can be found in any modern smartphone or Microsoft Kinect. Our approach improves classification

accuracy for different environments, containers, and contents of the robot pouring task. Our Pouring Sound

Neural Networks (PSNN) are trained and tested using the Rethink Robotics Baxter Research Robot. To

the best of our knowledge, this is the first use of audio-visual neural networks to analyze liquid pouring

sequences by classifying their weight, liquid, and receiving container.

Existing state-of-the-art object tracking can run into challenges when objects collide, occlude, come

close to one another, or appear similar but are of different materials. By using audio of the impact sounds

from object collisions, rolling, etc., I presented an audio-visual object tracking (AVOT) neural network

that can reduce tracking error and drift. AVOT is trained end to end and uses audio-visual inputs over all

frames. Our audio-based technique may be used in conjunction with other neural networks to augment
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visually based object detection and tracking methods. It is evaluated in terms of runtime frames-per-second

(FPS) performance and intersection over union (IoU) performance against OpenCV object tracking imple-

mentations and a deep learning method. Experiments include using the synthetic Sound-20K audio-visual

dataset and demonstrating that AVOT outperforms single-modality deep learning methods, when there is

audio from object collisions. A proposed scheduler network to switch between AVOT and other methods

based on audio onset maximizes accuracy and performance over all frames in multimodal object tracking.

I proposed ”Echoreconstruction”, an audio-visual method that uses the reflections of sound to aid in

geometry and audio reconstruction. This system aids in reconstructing reflective and textureless surfaces

such as windows, mirrors, and walls that are often poorly reconstructed and filled with depth discontinu-

ities and holes. The mobile phone prototype emits pulsed audio, while recording video for RGB-based 3D

reconstruction and audio-visual classification. Reflected sound and images from the video are input into

our audio (EchoCNN-A) and audio-visual (EchoCNN-AV) convolutional neural networks for surface and

sound source detection, depth estimation, and material classification. The inferences from these classifica-

tions enhance scene 3D reconstructions containing open spaces and reflective surfaces by depth filtering,

inpainting, and placement of unmixed sound sources in the scene.

I proposed a multimodal single- and multi-frame neural network for 3D reconstructions using audio-

visual inputs. The trained reconstruction LSTM autoencoder 3D-MOV accepts multiple inputs to account

for a variety of surface types and views. The neural network produces high-quality 3D reconstructions

using voxel representation. Based on Intersection-over-Union (IoU), it is evaluated against other baseline

methods using synthetic audio-visual datasets ShapeNet and Sound20K with impact sounds and bounding

box annotations. To the best of our knowledge, our single- and multi-frame model is the first audio-visual

reconstruction neural network for 3D geometry and material representation.

8.2 Limitations and Future Work

Overall, the immediate next research steps to further enhance audio-visual performance and processing

is further analysis of tasks that can capture audio in their datasets and benefit from its signal (e.g. inference,

tracking, reconstruction), gating or scheduling of when single or multiple modalities are used, more neural

network architectures, loss functions, and fusion models, and augmenting with even more modes.
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Sound synthesis for fluid-structure coupling has limitations in the form of simplifications to maintain

interactive performance in VR applications. First, while the work assumes that liquids are inviscid, re-

main steady, and are not mixed, it should be extensible to handle mixed fluids. This remains future work to

evaluate. Next, the granularity of the solid mesh discretization also influences the results since the modifi-

cations to the mass matrix occur at the level of the mesh nodes. Finally, investigation of acoustic transfer,

harmonic pressure, and user evaluation on auditory perception would offer additional insight.

Future directions for analyzing liquid pouring sequences include data augmentation to improve classifi-

cation accuracy and generalization. As the task involves temporal data, sequential layers can be introduced

into the neural network model, such as recurrent, LSTM, or GRU layers or HMM filtering and evaluated

for performance. This may be especially helpful for audio only PSNN-A classification at the beginning

and end of pouring sequences. Using a multiple output neural network rather than separately trained neural

networks for poured weight, content, and target container classification may also help as well as using a

ratio of volume over the target container volume or a combination. Finally, further research can explore if

this approach can be applied to other granular materials.

Future work for audio-visual object tracking may consist of expanding the size of the training set by

annotating more objects in the Sound-20K dataset, increasing the number of object classes that we are pre-

dicting, evaluating alternative fusion methods, and performing sensitivity analysis on scaling factors and

aspect ratios. This object tracking has been used for audio-visual input for 3D reconstruction of tracked

objects. Further investigations can examine how the error introduced by object tracking propagates to re-

construction error. Also, while audio helps classify the material of the reconstructed geometry, we assume

a single material classification based on audio alone and apply that to all voxels. Research on classifying

material per voxel using both audio and visual data could expand part segmentation research into recon-

structing objects with different materials.

In addition to object reconstruction, I also presented enhanced scene reconstruction. To further extend

this particular area of audio-visual research, a primary focus could be on the reception, and 3D reconstruc-

tion simultaneously and in real time instead of having a staged approach. An integrated approach may

prove not only to be more efficient but also more effective by using audio feedback as part of the recon-

struction code. Another possible avenue of exploration is to investigate the impact of live audio for training

and/or testing our neural network variations.
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8.3 Conclusion

In research and practice, sound is a key contributor to the level of immersion and sense of presence in

virtual and imaginative environments. A distraction from any of the senses can cause a ‘break in presence’.

A goal in computer graphics is to continue to enhance rendering pipelines with new technology, methods,

and data. While vision-based methods cover many use cases, alternate modalities such as audio can aug-

ment the level of detail and coverage of tasks in computer vision, graphics, augmented, and virtual reality.

Since many sound models are physics-based and training data generated from video, established visual

pipelines and datasets can be extended to generate and use sound based on the same physics and video cap-

ture used for visual data. Much of the research conducted on visual data is also relevant to sound sources.

This presents opportunities for audio-based research to advance quickly based learnings from decades of

vision research as well as novel directions for fusing audio, visual, and other data for multimodal learning.
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Relja Arandjelović and Andrew Zisserman. Look, listen and learn, 2017.

Anurag Arnab, Michael Sapienza, Stuart Golodetz, Julien Valentin, Ondrej Miksik, Shahram Izadi, and
Philip Torr. Joint object-material category segmentation from audio-visual cues. In Proceedings of the
British Machine Vision Conference (BMVC), 09 2015. doi: 10.5244/C.29.40.

Matan Atzmon, Haggai Maron, and Yaron Lipman. Point convolutional neural networks by extension
operators. CoRR, abs/1803.10091, 2018. URL http://arxiv.org/abs/1803.10091.

Sam Lowe Auston Sterling, Justin Wilson and Ming C. Lin. Isnn: Impact sound neural network for audio-
visual object classification. In Proceedings of the European Conference on Computer Vision (ECCV),
2018.

Yusuf Aytar, Carl Vondrick, and Antonio Torralba. Soundnet: Learning sound representations from unla-
beled video. ArXiv, abs/1610.09001, 2016.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Boris Babenko, Ming-Hsuan Yang, and Serge J. Belongie. Visual tracking with online multiple instance
learning. 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 983–990, 2009.

106

https://www.tensorflow.org/
https://arxiv.org/abs/1812.11941
http://arxiv.org/abs/1803.10091


Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling, 2018.

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learning: A survey
and taxonomy. CoRR, abs/1705.09406, 2017. URL http://arxiv.org/abs/1705.09406.

J. Basic. Analytical and numerical computation of added mass in ship vibration analysis, 2012.

Yuri Bazilevs, Kenji Takizawa, and T. E. Tezduyar. Computational fluid-structure interaction: Methods and
applications. 2013.

Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, and Philip H. S. Torr. Fully-
convolutional siamese networks for object tracking. ArXiv, abs/1606.09549, 2016.

Michael Bianco, Peter Gerstoft, James Traer, Emma Ozanich, Marie Roch, Sharon Gannot, and Charles
Deledalle. Machine learning in acoustics: Theory and applications. The Journal of the Acoustical Society
of America, 146:3590–3628, 11 2019. doi: 10.1121/1.5133944.

David S. Bolme, J. Ross Beveridge, Bruce A. Draper, and Yui Man Lui. Visual object tracking using
adaptive correlation filters. 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 2544–2550, 2010.

Davide Boscaini, Jonathan Masci, Emanuele Rodolà, and Michael M. Bronstein. Learning shape cor-
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Colin Lea, Michael D. Flynn, René Vidal, Austin Reiter, and Gregory D. Hager. Temporal convolutional
networks for action segmentation and detection. CoRR, abs/1611.05267, 2016. URL http://arxiv.
org/abs/1611.05267.
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