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Abstract

For applications in navigation and robotics, estimating
the 3D pose of objects is as important as detection. Many
approaches to pose estimation rely on detecting or track-
ing parts or keypoints [11, 21]. In this paper we build on
a recent state-of-the-art convolutional network for sliding-
window detection [10] to provide detection and rough pose
estimation in a single shot, without intermediate stages of
detecting parts or initial bounding boxes. While not the first
system to treat pose estimation as a categorization problem,
this is the first attempt to combine detection and pose esti-
mation at the same level using a deep learning approach.
The key to the architecture is a deep convolutional network
where scores for the presence of an object category, the off-
set for its location, and the approximate pose are all es-
timated on a regular grid of locations in the image. The
resulting system is as accurate as recent work on pose esti-
mation (42.4% 8 View mAVP on Pascal 3D+ [21] ) and sig-
nificantly faster (46 frames per second (FPS) on a TITAN X
GPU). This approach to detection and rough pose estima-
tion is fast and accurate enough to be widely applied as a
pre-processing step for tasks including high-accuracy pose
estimation, object tracking and localization, and vSLAM.

1. Introduction
Detecting and estimating the pose of objects in everyday

scenes is a basic capability needed for automatic visual un-
derstanding of the world around us, including augmented
reality applications, surveillance, navigation, manipulation,
and robotics in general. For these applications it is neces-
sary for systems to perceive the pose of objects in addition
to the presence and location of an object. A wide range
of recent work on object detection in computer vision of-
fers one way to attack this problem. It is now possible,
and relatively straightforward, to build detectors for some
object categories, for example opened laptops. While clas-
sical approaches to estimating the pose of objects worked
on instances of specific objects, often by finding keypoints

Figure 1. Default Box Predictions. At each of a fixed set of loca-
tions, indicated by solid boxes, predictions are made for a collec-
tion of “default” boxes of different aspect ratios. In the SSD detec-
tor, for each default box a score for each object categery (Conf) is
predicted, as is an offset in the positioning of the box (Loc). This
work adds a prediction for the pose of an object in the default box,
represented by one of a fixed set of possible poses, P1 . . . Pn.

whether through detection or tracking, object category de-
tection offers another possible approach. Detecting cate-
gories of objects instead of tracking a specific object pro-
vides robustness, allows success with previously unseen ob-
jects, and can act as initialization or re-initialization for
tracking-based approaches to pose estimation. Recently
some approaches for object category detection have been
extended to estimate the pose of objects, usually in a two
stage approach, first detecting objects and then classifying
the bounding box around a detected object into a set of
coarse pose categories.

In this paper we push further along the direction of
category-level object detection and pose estimation by in-
tegrating a pose estimation computation directly into a new,
state-of-the-art, object detector [10]. This detector uses a
deep convolutional network to predict both the presence of
a category and adjustments to a bounding box at each of
a large set of possible bounding box locations in an im-
age (depicted as the dashed boxes in Fig. 1). We extend
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these predictions to include object pose (the red dashed box
in Fig. 1). To our knowledge this is the first time a deep-
network based approach has been used to perform object de-
tection and pose estimation at the same level. Previous work
combining the two built on the deformable parts (DPM) ap-
proach [21, 11] adding pose estimation as part of a DPM-
based structured prediction model.

By integrating pose estimation directly into a very fast
object detection pipeline, instead of adding it as a secondary
classification stage, the resulting detection and pose estima-
tion system is very fast, up to 46 frames per second (FPS)
on a Titan X GPU, at least 7x faster than Faster R-CNN [12]
and close to 100 times faster than R-CNN [7]. Those sub-
routines are used as pre-processing in almost all other recent
category detection and pose estimation pipelines, so the en-
tire compute time is even longer. This speed allows the new
system to be run as a pre-processing step for other compu-
tations, e.g. initializing a more computationally expensive
high-accuracy pose estimation system based on dense corre-
spondence, or adding robustness to a real-time object track-
ing system, or as part of a visual simultaneous localization
and mapping (visual SLAM) tool. Employing coarse pose
estimation as a pre-processing step makes sense, and the
relatively low compute requirements of our approach make
this much more tenable than previous work.

We present the new detection and pose estimation
pipeline in Sec. 3, and evaluate it on the standard Pascal
3D+ dataset [21] in Sec. 4.1. The Pascal 3D+ data comes
from the Pascal VOC detection dataset, which was collected
from web images. In order to further validate our approach,
we also evaluate on a new collection of images of every-
day environments taken with a low-quality RGB camera,
Sec. 4.2. There we compare models trained on Pascal 3D+,
models trained on Pascal 3D+ and fine tuned on the new
data, and models trained only on the new dataset.

2. Previous Work
Pose estimation is a well-studied problem in computer

vision. Initially, research on the topic focused primarily on
instance-level pose estimation [20, 1, 13, 3]. In instance-
level pose estimation, the model is trained on each specific
object instance. Given enough training images of a single
instance, the problem essentially reduces to constructing a
3D model of the instance and then finding the pose of the
3D model that best matches the test instance.

More recently, however, the field has shifted to working
on category-level pose estimation [15, 8, 6]. This presents
many new challenges; most notably, the model must learn
how the pose changes with the appearance of the object
while simultaneously handling the intra-category variation
of instances within a category.

One of the earlier attempts at category-level detection
and pose estimation was done by Pepik et al. [11]; they for-

mulate the joint object detection and pose estimation prob-
lem as a structured prediction problem. They propose a
structural SVM, which predicts both the bounding box and
pose jointly. This will be referred to as DPM-VOC+VP.
Similarly, Xiang et al. [21] extend the original DPM method
such that each mixture component represents a different az-
imuth section. This will be referred to as VDPM.

While these earlier methods sought to perform joint de-
tection and pose estimation, many of the more recent deep
learning approaches to pose estimation have separated the
problem into two stages (Fig. 2 (a)). Stage one requires
using an off the shelf detector: [18] and [8] use RCNN [7],
but more recent detectors such as Faster RCNN [12] could
naturally be substituted (although the change in object pro-
posal might affect the accuracy). Stage two requires crop-
ping the image for the detected regions, which are individ-
ually processed by a separate network (e.g., Alexnet [9] or
VGG [17]) fine-tuned for pose estimation.

Tulisani et al. [19] treat pose estimation as a classifi-
cation problem and use a Convolutional Neural Network
(CNN) for predicting the pose. Their pose estimation net-
work is initialized with VGG [17] and finetuned for pose
estimation using ground truth annotations from Pascal 3D+.
In order to perform object detection and pose estimation
they first use R-CNN [7] to detect objects and then use the
detected regions as input to their pose estimation network.
Their results are the current state of the art for detection and
pose estimation on Pascal 3D+. In Sec. 4, we compare our
detection and pose estimation model to theirs and demon-
strate similar accuracy. Additionally, in table 5 we show a
timing comparison between our proposed model and theirs.
This table shows that even if their method used the fastest
region based detector (Faster RCNN) our method still pro-
vides a 46x increase in speed with similar accuracy.

Similarly, Su et al. [18] use the same formulation as [19]
for pose estimation. However, with their rendering pipeline
they are able to generate more than 2 million synthetic im-
ages with ground truth pose annotations. They use these
synthetic images to train a pose estimation network, which
surpasses [19] in viewpoint estimation accuracy. Finally,
they too perform two-stage detection and pose estimation
with R-CNN detections. In Sec. 4, we compare our detec-
tion and pose estimation model to [18] and show significant
increases in accuracy.

Even if a two-staged pipeline for detection and pose es-
timation uses a fast detector (e.g., Faster RCNN [12]) in
stage one, it will still be slower than performing joint detec-
tion and pose estimation, since the detected objects must be
cropped and then processed by a separate network. In con-
trast, the method presented in this paper is a joint detector
and pose estimator, which requires just one network and a
single evaluation of the image (Fig. 2 (b)).



Figure 2. Two-stage vs. Proposed. (a) The two-stage approach separates the detection and pose estimation steps. After object detection,
the detected objects are cropped and then processed by a separate network for pose estimation. This requires resampling the image at least
three times: once for region proposals, once for detection, and once for pose estimation. (b) The proposed method, in contrast, requires no
resampling of the image and instead relies on convolutions for detecting the object and its pose in a single forward pass. This offers a large
speed up because the image is not resampled, and computation for detection and pose estimation is shared.

3. Model

For an input RGB image, a single evaluation of the
model network is performed and produces scores for cat-
egory, bounding box offset directions, and pose, for a con-
stant number of boxes. These are filtered by non-max sup-
pression to produce the final output. The network is a vari-
ant of the single shot detection (SSD) network from [10]
with additional outputs for pose. Here we present the net-
work’s design choices, structure of the outputs, and training.

An SSD-style detector [10] works by adding a sequence
of feature maps of progressively decreasing spatial resolu-
tion to an image classification network such as VGG [17].
These feature layers replace the last few layers of the image
classification network, and 3x3 and 1x1 convolutional fil-
ters are used to transform one feature map to the next along
with max-pooling. See Fig. 3 for a depiction of the model.

Predictions for a regularly spaced set of possible detec-
tions are computed by applying a collection of 3x3 filters
to channels in one of the feature layers. Each 3x3 filter
produces one value at each location, where the outputs are
either classification scores, localization offsets, and, in our
case, discretized pose predictions for the object (if any) in a
box. See Fig. 1. Note that different sized detections are pro-
duced by different feature layers instead of taking the more
traditional approach of resizing the input image or predict-
ing different sized detections from a single feature layer.

We take one of two different approaches for pose predic-
tions, either sharing outputs for pose across all the object
categories (share) or having separate pose outputs for each
object category (separate). One output is added for each of

Nθ possible poses. With Nc categories of objects, there are
Nc × Nθ pose outputs for the separate model and Nθ pose
outputs for the share model. While we do add a 3x3 filter for
each of the pose outputs, this added cost is relatively small
and the original SSD pipeline is quite fast, so the result is
still faster than two stage approaches that rely on a (often
slower) detector followed by a separate pose classification
stage. See Fig. 2 (a).

3.1. Pose Estimation Formulation

There are a number of design choices for a joint detection
and pose estimation method. This section details three par-
ticular design choices, and Sec. 4.1.1 shows justifications
for them through experimental results.

One important choice is in how the pose estimation task
is formulated. A possibility is to train for continuous pose
estimation and formulate the problem as a regression. How-
ever, in this work we discretize the pose space into Nθ dis-
joint bins and formulate the task as a classification problem.
Doing so not only makes the task feasible (since both the
quantity and consistency of pose labels is not high enough
for continuous pose estimation), but also allows us to mea-
sure the confidence of our pose prediction. Furthermore,
discrete pose estimation still presents a very challenging
problem.

Another design choice is whether to predict poses sepa-
rately for theNc object classes or to use the same weights to
predict poses for all classes. Sec. 4.1.1 assess these options.

The final design choice is the resolution of the input im-
age. Specifically, we consider two resolutions for input:



Figure 3. Our Model Architecture. Detection and pose estimation network for the “Share 300” model that shares a single pose prediction
across all categories at each location and resizes images to 300x300 before using them as input to the network. Feature maps are added in
place of the final layers of a VGG-16 network and small convolutional filters produce estimates for class, pose, and bounding box offsets
that are processed through non-max suppression to make the final detections and pose estimates. Red indicates additions to the architecture
of SSD [10]

300x300 and 500x500. In Sec. 4.1.1, we compare models
trained on both resolutions. Using 500x500 images should
provide better accuracy because higher resolution images
provide finer details that assist in determining the pose.
However, processing 500x500 images reduces the speed of
computation. Previous deep learning pose estimation for-
mulations [19, 18] crop the detected regions then resize the
region to a fixed size of 227x227. This has the advantage of
always providing a higher res view of the object. However,
with our 300x300 model, an object can take up far less than
a 100x100 region in the image since there is no cropping
step in our pipeline; therefore, we are fighting against a low
resolution. As a result, the higher resolution helps combat
this issue.

3.2. Training

The training objective is composed of a weighted sum of
three losses: Lcls, Lloc, and Lpose (the class, localization,
and pose loss, respectively). In order to compute the loss
and backpropagate through our network, we need to first
match the ground truth detection and pose annotations to
the appropriate default boxes. We follow the approach pre-
sented in [10] and match a default box with a ground box
if their IoU > 0.5. As a result, one ground truth bounding
box can be matched to multiple default boxes.

Let N be the total number of default boxes matched to a
ground truth box. Normalizing our training objective by N ,
our total loss is

Ltot =
1

N
(Lcls + α1Lloc + α2Lpose), (1)

where α1 is set to 1 and α2 is set to 1.5 through cross vali-
dation. Our Lcls and Lpose losses are both softmax losses,
whereas our Lloc loss is a Smooth L1 regression loss. Ad-
ditionally, we adopt the same hard negative mining strategy

as [10]. However, we do not include their full sampler. They
sample patches from the image with a minimum overlap of
[0.3, 0.5, 0.7, and 0.9] with a ground truth box. In contrast,
we sample patches with overlaps of [0.7 and 0.9] because
it’s too difficult to predict the pose otherwise.

4. Experiments

To evaluate our model, we ran several experiments for
detection and pose estimation on two different datasets:
Pascal 3D+ and a dataset that we collected for detection
and pose estimation in real-world scenes. We found that
our SSD model performs comparably to the state-of-the-art
two-stage pipeline methods; this is surprising, considering
the 46x speedup that our method has. We evaluate our re-
sults using the AVP metric proposed by Xiang et al. [21].
AVP is an extension of the standard AP metric used to eval-
uate object detection. For object detection, the AP metric
labels a prediction as a true positive if its bounding box has
IoU > 0.5 with the ground truth bounding box and the cor-
rect class label. AVP adds an additional requirement that
the predicted pose label must also be correct. AVP is eval-
uated at different levels of discretization of the pose space
into Nθ bins: 4, 8, 16, and 24 bins.

4.1. Pascal 3D+ Dataset

The Pascal 3D+ dataset [21] is made up of images from
the Pascal [2] and ImageNet [14] datasets that have been
labeled with both detection and continuous pose annota-
tions for the 12 rigid object categories that appear in Pas-
cal VOC12 [2] Train and Val set. In our experiments on
this dataset, we follow the standard split and use the labeled
Pascal Val images for evaluating our models.

The first set of experiments discussed below justify sev-
eral design decisions selected for our base model. The sec-



ond set of experiments compares our best models with pre-
viously published methods.

4.1.1 Training Choices

Share vs. Separate
First, we compare training on shared and separate pose

estimation (Table 1). The shared model, as anticipated,
provides significant speed improvements over the separate
model, as explained in Sec. 3. Surprisingly, however, we
observe that our share model performs better than the sepa-
rate method. We hypothesize that this is because training a
separate pose estimator requires more data, and Pascal 3D+
only has an average of 3091 images per class. Based on
these findings, the remaining experiments use only the share
model.

Method 4 View 8 View 16 View 24 View
Share 300 48.1 42.3 31.9 27.7
Separate 300 47.6 40.6 29.8 25.5

Table 1. Share vs Seperate.

300x300 vs. 500x500
Our next experiment analyzes the effects of using higher

resolution images for training. Table 4 shows the perfor-
mance of our models using 300x300 and 500x500 images
on each object class. In all cases we achieve greater than 2%
improvement with the higher resolution 500x500 model for
the average case. On the other hand, the 500x500 reduces
the FPS from 46 to 17. Since our goal is to build a joint
detector and pose estimator suitable for real-time systems,
we use the 300x300 model in subsequent experiments.

Pascal + Imagenet vs. Pascal
Recall that the Pascal 3D+ dataset provides detection and

pose ground truths for images from Pascal and Imagenet.
The test set consists only of Pascal images, which presents
a problem, as there are more labeled images in the Ima-
genet dataset than the Pascal dataset. Nevertheless, pose
labels are an expensive resource to collect, so we cannot
afford to ignore the additionally labeled Imagenet images.
Furthermore, our deep learning approach benefits from the
additional data. Consequently, it is essential that we use the
labels from both the Pascal and Imagenet images.

If one naively trains on the union of the labeled Pascal
and Imagenet images, then the results on the Pascal test set
will be diminished by the presence of Imagenet images. To
resolve this issue and counteract the effects of the Imagenet
images, we replicate the Pascal images so that the number
of Pascal and Imagenet images in our training set are equal,
ensuring that the number of images from each are approxi-
mately the same in each sampled minibatch.

Method 4 View 8 View 16 View 24 View
Share 300 48.1 42.3 31.9 27.7
Share 300 Pascal 43.2 36.3 22.8 20.7

Table 2. Training with vs. without ImageNet annotations.

To verify the benefit of training with both the Pascal and
Imagenet images, we trained a shared 300 model using both
Pascal and Imagenet training images as well as a Shared
model using only Pascal training images (Table 2). As hy-
pothesized, the absence of Imagenet images negatively af-
fects the performance of our model; therefore, the remain-
ing experiments are trained with both Pascal and Imagenet
images.

Fine-grained training vs. Coarse-grained training
We also present results training on 24 bin pose dis-

cretization and testing on 4 and 8 bins (Table 3). Theo-
retically, the 24 bin model tested on a coarser discretization
of angles would provide results equal to models trained di-
rectly for 4 or 8 bins.

In our case we find that the 24 bin model performs com-
parably to the 4 and 8 bin models; however, in all cases the
coarse-grained training performs better.

Method 4 View 8 View
Share 300 45.5 40.9
Share 300 24-V 43.4 34.7
Share 500 48.0 43.3
Share 500 24-V 47.0 38.0

Table 3. 24 view model tested on other binnings.

4.1.2 Comparison to state-of-the-art

Su et al. [18] represents the state-of-the-art on pose esti-
mation while Tulisani et al. [19] represent the state-of-the-
art for object detection and pose estimation on Pascal 3D+.
Both methods follow a similar two-stage pipeline for object
detection and pose estimation: the first stage uses RCNN
for detection, and the second stage uses a CNN finetuned
for pose estimation.

In table 5 we compare the speed of our model to [19].
We achieve a very significant 46x increase in speed, which
opens up a wide range of settings in which the system can be
used. Furthermore, in Table 4 we demonstrate comparable
results in accuracy to [19] and even surpass [18].

It is important to note that [18] renders more than 2
million synthetic images, which is approximately 50 times
larger than the original Pascal 3D+ dataset. These addi-
tional images are particularly useful for deep learning meth-
ods. Therefore, we suspect that using a large of amount of



Methods aero bicycle boat bus car chair table mbike sofa train monitor Avg.
Joint Object Detection and Pose Estimation (4 View AVP)

VDPM [21] 34.6 41.7 1.5 26.1 20.2 6.8 3.1 30.4 5.1 10.7 34.7 19.5
DPM-VOC+VP [11] 37.4 43.9 0.3 48.6 36.9 6.1 2.1 31.8 11.8 11.1 32.2 23.8
RCNN+Alex [18] 54.0 50.5 15.1 57.1 41.8 15.7 18.6 50.8 28.4 46.1 58.2 39.7
VpKps [19] 63.1 59.4 23.0 69.8 55.2 25.1 24.3 61.1 43.8 59.4 55.4 49.1
Ours Share 300 63.6 54.7 25.0 67.7 47.3 10.8 38.5 59.4 41.8 65.0 55.8 48.1
Ours Share 500 64.6 62.1 26.8 70.0 51.4 11.3 40.7 62.7 40.6 65.9 61.2 50.7

Joint Object Detection and Pose Estimation (8 View AVP)
VDPM [21] 23.4 36.5 1.0 35.5 23.5 5.8 3.6 25.1 12.5 10.9 27.4 18.7
DPM-VOC+VP [11] 28.6 40.3 0.2 38.0 36.6 9.4 2.6 32.0 11.0 9.8 28.6 21.5
RCNN+Alex [18] 44.5 41.1 10.1 48.0 36.6 13.7 15.1 39.9 26.8 39.1 46.5 32.9
VpKps [19] 57.5 54.8 18.9 59.4 51.5 24.7 20.5 59.5 43.7 53.3 45.6 44.5
Ours Share 300 57.6 50.8 20.9 58.4 43.1 9.1 34.2 52.3 37.2 55.6 46.7 42.4
Ours Share 500 58.6 56.4 19.9 62.4 45.2 10.6 34.7 58.6 38.8 61.2 49.7 45.1

Joint Object Detection and Pose Estimation (16 View AVP)
VDPM [21] 15.4 18.4 0.5 46.9 18.1 6.0 2.2 16.1 10.0 22.1 16.3 15.6
DPM-VOC+VP [11] 15.9 22.9 0.3 49.0 29.6 6.1 2.3 16.7 7.1 20.2 19.9 17.3
RCNN+Alex [18] 27.5 25.8 6.5 45.8 29.7 8.5 12.0 31.4 17.7 29.7 31.4 24.2
VpKps [19] 46.6 42.0 12.7 64.6 42.7 20.8 18.5 38.8 33.5 42.5 32.9 36.0
Ours Share 300 45.4 33.4 13.7 52.9 32.9 5.3 27.2 38.8 27.3 37.4 36.2 31.9
Ours Share 500 45.9 39.6 14.0 54.0 35.4 7.4 26.4 40.4 29.2 41.5 35.8 33.6

Joint Object Detection and Pose Estimation (24 View AVP)
VDPM [21] 8.0 14.3 0.3 39.2 13.7 4.4 3.6 10.1 8.2 20.0 11.2 12.1
DPM-VOC+VP [11] 9.7 16.7 2.2 42.1 24.6 4.2 2.1 10.5 4.1 20.7 12.9 13.6
RCNN+Alex [18] 21.5 22.0 4.1 38.6 25.5 7.4 11.0 24.4 15.0 28.0 19.8 19.8
VpKps [19] 37.0 33.4 10.0 54.1 40.0 17.5 19.9 34.3 28.9 43.9 22.7 31.1
Ours Share 300 35.7 23.6 10.8 51.7 33.8 6.2 23.6 26.9 20.4 46.9 25.3 27.7
Ours Share 500 33.4 29.4 9.2 54.7 35.7 5.5 22.9 30.3 27.5 44.1 24.3 28.8

Table 4. Category specific results on Pascal 3D+.

similar synthesized data could improve the accuracy of the
method presented here. We leave this as a potential future
work.

We also provide qualitative results on test images from
Pascal 3D+ in Fig. 4.

Method Detector (FPS) Pose (FPS) Total (FPS)
VpsKps[19] 7 (F-RCNN[12]) 0.713 0.647
Ours - - 46

Table 5. Speed comparison.

4.2. Household Dataset

In addition to using the Pascal 3D+ dataset, we col-
lected over 3,700 images using a Kinect v2 sensor in five
real-world household scenes. These five scenes include a
bedroom and four open kitchen/living rooms. From these
scenes we label four of the Pascal categories: chair, dining

table, monitor, and sofa. See the supplementary material for
additional information regarding the number of images and
objects in each scene.

We are able to cheaply and easily collect labels for all
images by first sparsely reconstructing each scene using
COLMAP [16], and then densely reconstructing the scene
using CMVS [4, 5]. Following reconstruction, we label
each object in the dense 3D point cloud and project the la-
beled point cloud to a bounding box in each image. Using
depth data from the Kinect, we are able to automatically
adjust the bounding boxes projected from the point cloud
to account for occlusion. Moreover, we are also able to get
consistent object pose information for every image in the
scene by labeling just a single image per object and using
the camera positions from the reconstruction to discern the
pose of the object in every image.



Scene 1
Method 4 View AVP 8 View AVP

chair table sofa monitor Avg chair table sofa monitor Avg
Scratch 11.9 15.2 35.4 49.4 28.0 16.3 9.9 31.8 45.1 25.8
P3D 2.9 17.4 37.4 18.3 19.0 2.1 11.1 25.2 6.1 11.2
P3D Finetuned 13.4 26.4 43.9 53.0 34.2 20.0 12.1 33.7 24.6 22.6
Results on P3D+ 10.8 38.5 41.8 55.8 36.7 9.1 34.2 37.2 46.7 31.8

Scene 2
4 View AVP 8 View AVP

chair table sofa monitor Avg chair table sofa monitor Avg
Scratch 18.1 36.7 44.5 45.3 36.1 13.1 14.8 42.1 38.1 27.0
P3D 9.9 35.1 59.7 45.7 37.6 5.0 25.1 44.9 34.8 27.4
P3D Finetuned 28.7 43.9 63.6 66.4 50.6 16.1 25.4 56.3 36.0 33.4
Results on P3D+ 10.8 38.5 41.8 55.8 36.7 9.1 34.2 37.2 46.7 31.8

Scene 3
4 View AVP 8 View AVP

chair table sofa monitor Avg chair table sofa monitor Avg
Scratch 1.8 28.8 46.3 66.1 35.7 0.6 9.9 32.7 25.8 17.3
P3D 7.6 13.0 41.4 47.7 27.4 8.0 6.2 31.1 30.5 18.9
P3D Finetuned 5.3 27.7 48.9 56.3 34.6 4.4 11.1 36.3 38.0 22.5
Results on P3D+ 10.8 38.5 41.8 55.8 36.7 9.1 34.2 37.2 46.7 31.8

Scene 4
4 View AVP 8 View AVP

chair table sofa monitor Avg chair table sofa monitor Avg
Scratch 22.6 22.9 - 10.5 18.6 11.4 28.7 - 12.2 17.4
P3D 55.5 46.5 - 1.6 34.5 52.4 34.0 - 3.1 29.8
P3D Finetuned 40.8 32.3 - 17.6 30.2 30.7 32.1 - 27.4 30.1
Results on P3D+ 10.8 38.5 41.8 55.8 36.7 9.1 34.2 37.2 46.7 31.8

Scene 5
4 View AVP 8 View AVP

chair table sofa monitor Avg chair table sofa monitor Avg
Scratch 21.8 21.2 47.0 21.4 27.9 11.0 5.7 34.4 7.3 14.6
P3D 6.2 18.3 41.2 21.0 21.7 4.7 9.0 27.3 14.4 13.8
P3D Finetuned 23.8 5.4 41.8 39.8 27.7 25.0 4.5 36.0 14.9 20.1
Results on P3D+ 10.8 38.5 41.8 55.8 36.7 9.1 34.2 37.2 46.7 31.8

Table 6. Results on the Household Dataset. Evaluation on the household data, results are shown for our model trained on (P3D), then
fine-tuned on the household data (P3D+finetune), and for our model trained only on the household data (scratch). We include the results of
our P3D model on the P3D+ dataset in order to roughly compare the difficulty of the datasets for these categories.

4.2.1 Experiments on Household Dataset

Using our household dataset for real world scenes, we set
out to evaluate how our detection and pose estimator trained
on Pascal 3D+ performs on real-world scenes. Addition-
ally, we compare training a detection and pose estimation
model from scratch on the collected dataset (Scratch), using
our detector trained on Pascal 3D+ (P3D), and finetuning
the Pascal 3D+ detector on the training scenes (P3D Fine-
tuned). When training our model on our Household Dataset,
we train on four scenes and test on the held out scene.

Table 6 presents the results of these experiments. Un-

surprisingly, our model generally performs best when first
trained on the Pascal 3D+ dataset then finetuned on labels
from our real-world scenes. We provide qualitative results
in the supplementary material.

5. Conclusion

We have extended the fast SSD detector to estimate
object pose. Our model achieves comparable accuracy
to state-of-the-art methods on the standard Pascal 3D+
dataset[21], while offering at least a 46x speedup. The abil-
ity to simultaneously detect and estimate the pose of an ob-



Figure 4. Pascal 3D+ Qualitative Results. Results on 8 bin detection and pose estimation on the Pascal 3D+ dataset. Each image has a
corresponding detection class confidence, pose confidence, predicted pose label, and ground truth pose label, respectively. Columns one
and two show correct pose predictions with high and low detection scores; column three shows pose predictions that are off by one bin;
and column four shows some difficult examples where our system fails.

ject opens the door for a variety of use cases. Addition-
ally, we have collected a dataset consisting of five everyday
scenes with object bounding boxes and poses labeled. Our
results on this dataset demonstrate that the model proposed
in this paper has the capacity to quickly and accurately per-
form simultaneous object detection and pose estimation in
real-world scenes.
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