Re-thinking CNN Frameworks for Time-Sensitive Autonomous-Driving Applications: Addressing an Industrial Challenge

NORTH CAROLINA at CHAPEL HILL

- Ming Yang¹, Shige Wang², Joshua Bakita¹, Thanh Vu¹, F. Donelson Smith¹, James H. Anderson¹, and Jan-Michael Frahm¹
 - ¹The University of North Carolina at Chapel Hill ²General Motors Research

Re-thinking CNN Frameworks for Time-Sensitive Autonomous-Driving Applications: Addressing an Industrial Challenge

Ming Yang¹, Shige Wang², Joshua Bakita¹, Thanh Vu¹, F. Donelson Smith¹, James H. Anderson¹, and Jan-Michael Frahm¹

¹The University of North Carolina at Chapel Hill ²General Motors Research

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

З

З

З

З

https://blogs.nvidia.com/blog/2016/01/04/ automotive-nvidia-drive-px-2/

https://blogs.nvidia.com/blog/2016/01/04/ automotive-nvidia-drive-px-2/

Icons made by <u>Freepik</u> from <u>Flaticon</u> is licensed by <u>CC 3.0 BY</u>

https://blogs.nvidia.com/blog/2016/01/04/

Icons made by <u>Freepik</u> from <u>Flaticon</u> is licensed by <u>CC 3.0 BY</u>

https://blogs.nvidia.com/blog/2016/01/04/

2. Accuracy

Icons made by <u>Freepik</u> from Flaticon is licensed by CC 3.0 BY

https://blogs.nvidia.com/blog/2016/01/04/

- 2. Accuracy
- 3. Throughput

Icons made by <u>Freepik</u> from Flaticon is licensed by CC 3.0 BY

https://blogs.nvidia.com/blog/2016/01/04/ automotive-nvidia-drive-px-2/

- 1. Response time
- 2. Accuracy
- 3. Throughput

Ming Yang - RTAS 2019

Our focus

https://blogs.nvidia.com/blog/2016/01/04/ automotive-nvidia-drive-px-2/

- 1. Response time
- 2. Accuracy
- 3. Throughput

Ming Yang - RTAS 2019

Our focus

NVIDIA TEGRA

https://blogs.nvidia.com/blog/2016/01/04/ automotive-nvidia-drive-px-2/

- 1. Response time
- 2. Accuracy
- 3. Throughput

CNN software underutilizes the hardware.

Our focus

Issues:

Issues:

1. Memory requirements multiply, limiting the number of instances.

Issues:

- 1. Memory requirements multiply, limiting the number of instances. 2. Context switches on GPU cause overheads.

Issues:

- 1. Memory requirements multiply, limiting the number of instances.
- 2. Context switches on GPU cause overheads.
- 3. Fast synchronization between cameras becomes harder.

- 2. Context switches on GPU cause overheads.
- 3. Fast synchronization between cameras becomes harder.

Part I:

Part II:

Ming Yang - RTAS 2019

Parallel Execution for CNN frameworks

Multi-camera Composite Images to provide high throughput for multiple cameras.

Proposed Solutions

Part I:

Ming Yang - RTAS 2019

Parallel Execution for CNN frameworks

Multi-camera Composite Images to provide high throughput for multiple cameras.

Part I:

Parallel **Execution**

Part I:

Parallel **Execution** CNN models are graphs of layers.

Part I:

Parallel Execution

- CNN models are graphs of layers.
- Processing of images can be independent, e.g., object detection.

Part I:

Parallel Execution

Ming Yang - RTAS 2019

- CNN models are graphs of layers.
- Processing of images can be independent, e.g., object detection.

shared CNN for multiple cameras.

We enable *parallel execution* for CNN frameworks and

- Generalize concept of layers into stages
- Communicate data between stages using **PGMRT** (a processing graph management tool)

- Generalize concept of layers into stages
- Communicate data between stages using **PGMRT** (a processing graph management tool)
- Share CNN among multiple cameras

Different Execution Methods

Part I:

Parallel Execution

Different Execution Methods

SERIAL

Part I:

Parallel Execution

Ming Yang - RTAS 2019

private CNN in one process

Different Execution Methods

SERIAL

Part I:

Parallel **Execution**

Part II:

Multicamera Composite Images

Ming Yang - RTAS 2019

PIPELINE

shared CNN that has one thread per stage

private CNN in one process

Different Execution Methods

SERIAL

Part I:

Parallel Execution

Part II:

Multicamera Composite Images

PIPELINE

PARALLEL

shared CNN that has *multiple* threads per stage

Ming Yang - RTAS 2019

private CNN in one process

shared CNN that has one thread per stage

Part I:

Parallel **Execution**

PIPELINE

Part II:

Multicamera Composite Images

PARALLEL

Part I:

Parallel **Execution**

PIPELINE

Part II:

Multicamera Composite Images

PARALLEL

Part I:

Parallel **Execution**

PIPELINE

Part II:

Multicamera Composite Images

PARALLEL

Part I:

Parallel **Execution**

PIPELINE

Part II:

Multicamera Composite Images

PARALLEL

Part I:

Parallel **Execution**

PIPELINE

Part II:

Multicamera Composite Images

PARALLEL

Part I:

Parallel **Execution**

PIPELINE

Part II:

Multicamera Composite Images

PARALLEL

Part I:

Parallel **Execution**

PIPELINE

Part II:

Multicamera Composite Images

PARALLEL

Part I:

Parallel Execution

PIPELINE

Part II:

Multicamera Composite Images

PARALLEL

Part I:

Parallel Execution

PIPELINE

Part II:

Multicamera Composite Images

PARALLEL

Part I:

Parallel Execution

PIPELINE

Part II:

Multicamera Composite Images

PARALLEL

Part I:

Parallel Execution

PIPELINE

Part II:

Multicamera Composite Images

PARALLEL

Ming Yang - RTAS 2019

14

Parallel **Execution**

- - SERIAL \bullet
 - SERIAL x6
 - PIPELINE
 - PARALLEL
- Darknet

Ming Yang - RTAS 2019

Evaluation

We compared latency and throughput between

• With CNN model **Tiny YOLOv2** on CNN framework

• On hardware platform: NVIDIA Drive PX 2.

Evaluation (Hardware)

Part I:

Parallel Execution

Multicamera Composite Images

Parallel **Execution**

Multicamera Composite Images

Ming Yang - RTAS 2019

Evaluation (Hardware)

Parallel Execution

Part II: Multicamera Composite Images

Ming Yang - RTAS 2019

Evaluation Results

Camera frame rate (frames per second)

Part II: Multicamera Composite Images

Ming Yang - RTAS 2019

Evaluation Results

Evaluation Results

Part I:

Parallel Execution

Part II:Multi-
camera
Composite
Images

Parallel Execution

Part II: Multicamera Composite Images

Ming Yang - RTAS 2019

Evaluation Results

Camera frame rate (frames per second)

Parallel Execution

Part II: Multicamera Composite Images

Ming Yang - RTAS 2019

Evaluation Results

Parallel Execution

Part II: Multicamera Composite Images

Ming Yang - RTAS 2019

Evaluation Results

Camera frame rate (frames per second)

Parallel Execution

Part II: Multicamera Composite Images

Ming Yang - RTAS 2019

Evaluation Results

Camera frame rate (frames per second)

Evaluation Results (cont.)

Part I:

Parallel Execution

Part II:

Multicamera Composite Images

Ming Yang - RTAS 2019

SERIAL

SERIAL X6

PIPELINE

(Single thread per stage

PARALLEL

(10 threads per stage)

	CPUs (%)	Memory (MB)
	92	774
	536	4,644
e)	219	1,132
	239	1,136

Evaluation Results (cont.)CPUs (%)Memory (MB)

Part I:

Parallel Execution

Part II:

Multicamera Composite Images

Ming Yang - RTAS 2019

SERIAL

SERIAL X6

PIPELINE

(Single thread per stage)

PARALLEL

(10 threads per stage)

Evaluation Results (cont.) CPUs (%) Memory (MB)

92

Part I:

Parallel Execution SERIAL

PIPELINE

(Single thread per stage)

PARALLEL

(10 threads per stage)

Part II: Multicamera Composite Images

Ming Yang - RTAS 2019

774

Evaluation Results (cont.)

Part I:

Parallel Execution

Enabling intra-stage parallelism takes slight overheads.

Multicamera Composite Images

PIPELINE

(Single thread per stage)

PARALLEL

(10 threads per stage)

Ming Yang - RTAS 2019

CPUs (%)

Memory (MB)

Parallel **Execution**

Part I: Parallel Execution

- to 71 FPS
- No accuracy loss

Ming Yang - RTAS 2019

Pipeline and Parallel improve throughput from 28 FPS

With acceptable overheads and

Part I:

Execution

Part II:

Multicamera Composite Images

Ming Yang - RTAS 2019

Icons made by **Butterflytronics** from **Flaticon** is licensed by <u>CC 3.0 BY</u>

Part I:

Execution

Part II:

Multicamera Composite Images

Ming Yang - RTAS 2019

Icons made by **Butterflytronics** from **Flaticon** is licensed by <u>CC 3.0 BY</u>

Part I:

Execution

Part II:

Multicamera Composite Images

Ming Yang - RTAS 2019

Icons made by **Butterflytronics** from **Flaticon** is licensed by <u>CC 3.0 BY</u>

Part I:

Parallel Execution

Part II:

Multicamera Composite Images

Part I:

Parallel Execution

Part II:

Multicamera Composite Images

Virtual Camera

Part I:

Part II: Multicamera Composite Images

Virtual Camera

Ming Yang - RTAS 2019

Images are from PASCAL dataset

Part I:

Part II: Multicamera Composite Images

Virtual Camera

Ming Yang - RTAS 2019

Shared CNN

Images are from PASCAL dataset

Multi-camera Composite Images

Part I:

Parallel Execution

Part II:

Multicamera Composite Images

Ming Yang - RTAS 2019

Multi-camera Composite Images

Part I:

Parallel **Execution**

Part II:

Multicamera Composite Images

Ming Yang - RTAS 2019

Part I:

Part II:

Multicamera Composite Images

- between
 - Full-size images

Ming Yang - RTAS 2019

Evaluation

We compared latency, throughput and accuracy

• Four-camera composite images

Ming Yang - RTAS 2019

Part I:

Part II:

Multicamera Composite Images

Ming Yang - RTAS 2019

Part I:

Part II:

Multicamera Composite Images

Classes: bicycle, bus, car, motorbike, train, bird, person, cat, cow, dog, horse, sheep

Ming Yang - RTAS 2019

Table 1: accuracy (mAPs) of object classes relevant to autonomous driving

Original YOLO

Part II: Multicamera Composite Images

Parallel

Execution

Classes: bicycle, bus, car, motorbike, train, bird, person, cat, cow, dog, horse, sheep

Ming Yang - RTAS 2019

Part I:

Table 1: accuracy (mAPs) of object classes relevant to autonomous driving

Part I:

Parallel Execution

Part II:

Multicamera Composite Images

Original YOLO

Retrained YOLO

Classes: bicycle, bus, car, motorbike, train, bird, person, cat, cow, dog, horse, sheep

Ming Yang - RTAS 2019

Table 1: accuracy (mAPs) of object classes relevant to autonomous driving

Conclusions

• We presented an industrial study that addresses the challenge of supporting multiple cameras.

Parallel execution

Multi-camera composite image

- Evaluation results showed \bullet
 - Significant throughput improvements

- No accuracy loss with parallel execution
- ~7.4% accuracy drop with multi-camera composite image (but 4-fold throughput improvement!)

Table 1: mAPs of object classes relevant to autonomous driving

	Full-size Test	Composite Test
Original YOLO	63.66	44.91
Retrained YOLO	66.20	56.21

Conclusions

٠ We presented an industrial study that addresses the challenge of supporting multiple cameras.

Parallel execution

Multi-camera composite image

- **Evaluation results** showed \bullet
 - Significant throughput improvements

- No accuracy loss with parallel execution
- ~7.4% accuracy drop with multi-camera composite image (but 4-fold throughput improvement!)

Other considerations in the paper:

- Configurable stages
- Multi-GPU execution

Table 1: mAPs of object classes relevant to autonomous driving

	Full-size Test	Composite Test
Original YOLO	63.66	44.91
Retrained YOLO	66.20	56.21

Future Work

 Dynamically apply composite-image technique with criticality change

• Finer granularity of stages

• Dynamically share CNN among multiple models

Ming Yang - RTAS 2019

Thank you!

Re-thinking CNN Frameworks for Time-Sensitive Autonomous-Driving Applications: Addressing an Industrial Challenge

Ming Yang¹, Shige Wang², Joshua Bakita¹, Thanh Vu¹, F. Donelson Smith¹, James H. Anderson¹, and Jan-Michael Frahm¹

¹The University of North Carolina at Chapel Hill ²General Motors Research

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Ming Yang - RTAS 2019

