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2. Our approach 

3. Future work
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1. It lacks real-time concepts
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Prior Work
• OpenVX nodes = schedulable entities [23, 51]
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Coarse-grained scheduling
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Prior Work
• OpenVX nodes = schedulable entities [23, 51]
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Coarse-grained scheduling

Remaining problems: 
1. More parallelism to be explored

2. Suspension-oblivious analysis was applied and 

causes capacity loss. 



Fine-Grained Scheduling
This Work



!14

1. Coarse-grained vs. fine-grained 

2. Response-time bounds analysis 

3. Case study
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Coarse-Grained Scheduling
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1. Coarse-grained vs. fine-grained 

2. Response-time bounds analysis 

3. Case study



Deriving Response-Time 
Bounds for a DAG*

Step 1: Schedule the nodes as sporadic tasks


Step 2: Compute bounds for every node


Step 3: Sum the bounds of nodes on the critical path

!18

* C. Liu and J. Anderson, “Supporting Soft Real-Time DAG-based Systems on Multiprocessors with No Utilization Loss,” in RTSS, 2013.
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Deriving Response-Time 
Bounds for a DAG
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A system model of GPU Tasks
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Response-Time Bounds 
Proof Sketch
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τk,j

rk,j + Rk
τk

1. We first show the necessity of a total utilization bound 
and intra-task parallelism via counterexamples.
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1. Coarse-grained vs. fine-grained 

2. Response-time bounds analysis 

3. Case study



Case Study: Comparing Fine-Grained/
Coarse-Grained/Monolithic Scheduling
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• Application: Histogram of Oriented Gradients (HOG)
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• Application: Histogram of Oriented Gradients (HOG)


• 6 instances


• 33 ms period


• 30,000 samples


• Platform:  NVIDIA Titan V GPU + Two eight-core Intel 
CPUs.


• Schedulers: G-EDF, G-FL (fair-lateness)
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Case Study: Comparing Fine-Grained/
Coarse-Grained/Monolithic Scheduling
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 FL: fair-lateness

[1] Fine-grained (G-FL) [2] Coarse-grained (G-EDF) [3] Monolithic (G-EDF)
Average Response Time (ms) 65.99 136.57 84669.47

Maximum Response Time (ms) 125.66 427.07 170091.06

Case Study: Comparing Fine-Grained/
Coarse-Grained/Monolithic Scheduling
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Half the average 
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Coarse-Grained/Monolithic Scheduling
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 FL: fair-lateness

[1] Fine-grained (G-FL) [2] Coarse-grained (G-EDF) [3] Monolithic (G-EDF)
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 FL: fair-lateness
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 FL: fair-lateness
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 FL: fair-lateness

[1] Fine-grained (G-FL) [2] Coarse-grained (G-EDF) [3] Monolithic (G-EDF)
Average Response Time (ms) 65.99 136.57 84669.47

Maximum Response Time (ms) 125.66 427.07 170091.06

Analytical Bound (ms) 542.39 N/A N/A
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An alert driver takes 
700 ms to react.

• Fair-lateness-based scheduler is 
beneficial as it reduced node response 
times by up to 9.9%. 

• Overheads of supporting fine-grained 
scheduling was 14.15%.

Case Study: Comparing Fine-Grained/
Coarse-Grained/Monolithic Scheduling



Conclusions

1. Fine-grained scheduling 

2. Response-time bounds analysis for 
GPU tasks 

3. Case study

!40



Future Work

1. Cycles in the graph 

2. Other resource constraints 

3. Schedulability studies
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Thanks!


