
Making OpenVX Really
“Real Time”

Ming Yang1, Tanya Amert1, Kecheng Yang1,2, Nathan Otterness1,
James H. Anderson1, F. Donelson Smith1, and Shige Wang3

1The University of North Carolina at Chapel Hill
2Texas State University

3General Motors Research

700 ms

A new approach for

graph scheduling

Shorter response time
+

Less capacity loss

1. State of the art

2. Our approach

3. Future work

!6

!7 Source: https://www.khronos.org/openvx/

OpenVX
Node

OpenVX
Node

OpenVX
Node

OpenVX
Node

Example OpenVX Graph

Native
Camera
Control

Downstream
Application
Processing

Graph-based
architecture

Application Application

GPU FPGA DSP

Portability to diverse
hardware

Does OpenVX really target “real-time” processing?

!8 Source: https://www.khronos.org/openvx/

1. It lacks real-time concepts

OpenVX
Node

OpenVX
Node

OpenVX
Node

OpenVX
Node

Example OpenVX Graph

Native Camera
Control

Downstream
Application
Processing

2. Entire graphs = monolithic schedulable entities

Does OpenVX really target “real-time” processing?

!9 Source: https://www.khronos.org/openvx/

1. It lacks real-time concepts
2. Entire graphs = monolithic schedulable entities

D
C

B
A

Does OpenVX really target “real-time” processing?

DCBA

!10 Source: https://www.khronos.org/openvx/

1. It lacks real-time concepts
2. Entire graphs = monolithic schedulable entities

D
C

B
A

Monolithic scheduling
Time

A …A B C D

Does OpenVX really target “real-time” processing?

Prior Work
• OpenVX nodes = schedulable entities [23, 51]

!11

Coarse-grained scheduling

D

C

B

A

Coarse-grained scheduling
Time

A

B

C

D …

Task A:

Task B:

Task C:

Task D:

D
C

B
A

Prior Work
• OpenVX nodes = schedulable entities [23, 51]

!12

Coarse-grained scheduling

Remaining problems:
1. More parallelism to be explored

2. Suspension-oblivious analysis was applied and

causes capacity loss.

Fine-Grained Scheduling
This Work

!14

1. Coarse-grained vs. fine-grained

2. Response-time bounds analysis

3. Case study

!15

1. Coarse-grained vs. fine-grained

2. Response-time bounds analysis

3. Case study

Coarse-Grained Scheduling

!16

Time
…

Task A:

Task B:

Task C:

Task D:

D
C

B
A

Suspension for GPU
execution

Time

Task A:

Task E:

Task C:

Task D:

Task F:

Task G:

D
C

A

GPU execution

E F G

Fine-Grained Scheduling

!17

1. Coarse-grained vs. fine-grained

2. Response-time bounds analysis

3. Case study

Deriving Response-Time
Bounds for a DAG*

Step 1: Schedule the nodes as sporadic tasks

Step 2: Compute bounds for every node

Step 3: Sum the bounds of nodes on the critical path

!18

* C. Liu and J. Anderson, “Supporting Soft Real-Time DAG-based Systems on Multiprocessors with No Utilization Loss,” in RTSS, 2013.

!19

Deriving Response-Time
Bounds for a DAG

D
C

A
B E F

!20

Deriving Response-Time
Bounds for a DAG

D
C

A
B E F

CPU

GPU

!21

Deriving Response-Time
Bounds for a DAG

D
C

A
B

E

F

…

…

Need a
response-time
bound analysis
for GPU tasks

20
48

20
48

A system model of GPU Tasks

!22

τ1 = (3076,6,2,1024)

SM
1

SM
0

0 6 Time3

τi = (Ci, Ti, Bi, Hi)

Period

Number of
blocks

Number of
threads per
block (or
block size)

Per-block
worst-case
workload

C1

B1

H1 = 1024

T1

Response-Time Bounds
Proof Sketch

!23

τk,j

rk,j + Rk
τk

1. We first show the necessity of a total utilization bound
and intra-task parallelism via counterexamples.

Response-Time Bounds
Proof Sketch

!24

τk,j

rk,j + Rk
τk

1. We first show the necessity of a total utilization bound
and intra-task parallelism via counterexamples.

Time

Releases:

1 2 3 4 5

1

2

3

4

5

Without intra-task
parallelism:

With intra-task
parallelism:

Response-Time Bounds
Proof Sketch

!25

τk,j

rk,j + Rk
τk

SM
1

SM
0

Time

Rk

τk,j

rk,j

2. We then bound the
unfinished workload
from jobs released at

or before .rk,j

3. We prove
the job
finishes
before

 .
rk,j + Rk

1. We first show the necessity of a total utilization bound
and intra-task parallelism via counterexamples.

!26

1. Coarse-grained vs. fine-grained

2. Response-time bounds analysis

3. Case study

Case Study: Comparing Fine-Grained/
Coarse-Grained/Monolithic Scheduling

!27

Resize Image Compute
Gradients

Compute
Orientation
Histograms

Normalize
Orientation
HistogramsResize Image

Resize Image
Compute
GradientsCompute

Gradients

Compute
Orientation
Histograms
Compute

Orientation
Histograms

Normalize
Orientation
Histograms

Normalize
Orientation
Histograms

vxHOGCells
NodevxHOGCells

Node
vxHOGFeature

sNodevxHOGFeature
sNodevxHOGFeatures
Node

vxHOGCells
Node

• Application: Histogram of Oriented Gradients (HOG)

CPU+GPU Execution (Coarse-Grained) GPU Execution (Fine-Grained)

• Application: Histogram of Oriented Gradients (HOG)

• 6 instances

• 33 ms period

• 30,000 samples

• Platform: NVIDIA Titan V GPU + Two eight-core Intel
CPUs.

• Schedulers: G-EDF, G-FL (fair-lateness)

!28

Case Study: Comparing Fine-Grained/
Coarse-Grained/Monolithic Scheduling

!29

Left is better

Time

%
 o

f s
am

pl
es

50% samples have
response time less

than 60 ms

Case Study: Comparing Fine-Grained/
Coarse-Grained/Monolithic Scheduling

!30

 FL: fair-lateness

[1] Fine-grained (G-FL) [2] Coarse-grained (G-EDF) [3] Monolithic (G-EDF)
Average Response Time (ms) 65.99 136.57 84669.47

Maximum Response Time (ms) 125.66 427.07 170091.06

Case Study: Comparing Fine-Grained/
Coarse-Grained/Monolithic Scheduling

!31

 FL: fair-lateness

[1] Fine-grained (G-FL) [2] Coarse-grained (G-EDF) [3] Monolithic (G-EDF)
Average Response Time (ms) 65.99 136.57 84669.47

Maximum Response Time (ms) 125.66 427.07 170091.06

Half the average
response time

[1] [2]

Case Study: Comparing Fine-Grained/
Coarse-Grained/Monolithic Scheduling

!32

 FL: fair-lateness

[1] Fine-grained (G-FL) [2] Coarse-grained (G-EDF) [3] Monolithic (G-EDF)
Average Response Time (ms) 65.99 136.57 84669.47

Maximum Response Time (ms) 125.66 427.07 170091.06

Half the average
response time

One-third the maximum
response time

[1] [2]

Case Study: Comparing Fine-Grained/
Coarse-Grained/Monolithic Scheduling

!33

 FL: fair-lateness

[1] Fine-grained (G-FL) [2] Coarse-grained (G-EDF) [3] Monolithic (G-EDF)
Average Response Time (ms) 65.99 136.57 84669.47

Maximum Response Time (ms) 125.66 427.07 170091.06

[1] [2]

[3]

Half the average
response time

One-third the maximum
response time

Case Study: Comparing Fine-Grained/
Coarse-Grained/Monolithic Scheduling

!34

 FL: fair-lateness

[1] Fine-grained (G-FL) [2] Coarse-grained (G-EDF) [3] Monolithic (G-EDF)
Average Response Time (ms) 65.99 136.57 84669.47

Maximum Response Time (ms) 125.66 427.07 170091.06

[1] [2]

[3]

[3]

Half the average
response time

One-third the maximum
response time

Case Study: Comparing Fine-Grained/
Coarse-Grained/Monolithic Scheduling

!35

 FL: fair-lateness

[1] Fine-grained (G-FL) [2] Coarse-grained (G-EDF) [3] Monolithic (G-EDF)
Average Response Time (ms) 65.99 136.57 84669.47

Maximum Response Time (ms) 125.66 427.07 170091.06

Analytical Bound (ms) N/A

[1] [2]

[3]

[3]

Case Study: Comparing Fine-Grained/
Coarse-Grained/Monolithic Scheduling

!36

 FL: fair-lateness

[1] Fine-grained (G-FL) [2] Coarse-grained (G-EDF) [3] Monolithic (G-EDF)
Average Response Time (ms) 65.99 136.57 84669.47

Maximum Response Time (ms) 125.66 427.07 170091.06

Analytical Bound (ms) N/A N/A

[1] [2]

[3]

[3]

Case Study: Comparing Fine-Grained/
Coarse-Grained/Monolithic Scheduling

!37

 FL: fair-lateness

[1] Fine-grained (G-FL) [2] Coarse-grained (G-EDF) [3] Monolithic (G-EDF)
Average Response Time (ms) 65.99 136.57 84669.47

Maximum Response Time (ms) 125.66 427.07 170091.06

Analytical Bound (ms) 542.39 N/A N/A

[1] [2]

[3]

[3]

Case Study: Comparing Fine-Grained/
Coarse-Grained/Monolithic Scheduling

!38

 FL: fair-lateness

[1] Fine-grained (G-FL) [2] Coarse-grained (G-EDF) [3] Monolithic (G-EDF)
Average Response Time (ms) 65.99 136.57 84669.47

Maximum Response Time (ms) 125.66 427.07 170091.06

Analytical Bound (ms) 542.39 N/A N/A

[1] [2]

[3]

[3]

An alert driver takes
700 ms to react.

Case Study: Comparing Fine-Grained/
Coarse-Grained/Monolithic Scheduling

!39

 FL: fair-lateness

[1] Fine-grained (G-FL) [2] Coarse-grained (G-EDF) [3] Monolithic (G-EDF)
Average Response Time (ms) 65.99 136.57 84669.47

Maximum Response Time (ms) 125.66 427.07 170091.06

Analytical Bound (ms) 542.39 N/A N/A

[1] [2]

[3]

[3]

An alert driver takes
700 ms to react.

• Fair-lateness-based scheduler is
beneficial as it reduced node response
times by up to 9.9%.

• Overheads of supporting fine-grained
scheduling was 14.15%.

Case Study: Comparing Fine-Grained/
Coarse-Grained/Monolithic Scheduling

Conclusions

1. Fine-grained scheduling

2. Response-time bounds analysis for
GPU tasks

3. Case study

!40

Future Work

1. Cycles in the graph

2. Other resource constraints

3. Schedulability studies

!41

Thanks!

