- CUDA Programming Model

Ming Yang
Apr 5, 2016
Thread
Occupancy Block Warp

Grid
Kernel

772

+ What are the scheduling units in Streaming

Multiprocessor (SM)??

+warps. How are they scheduled?

How is the occupancy computed??

- anything to do with block/thread/registers/shared
memory? Yes! All of them.

Thread hierarchy

' thread (0, 0) [thread (1,0) | thread (2,0) [thread (3,0) ' ' thread (0,0) £ thread (1,0) | thread (2,0) [thread (3,0) ‘ # Of threadS'

A RN BAE i % (2*2)*(4*2)?32

thread (0, 1) [thread (1, 1) [thread (2, 1) [thread (1, 3) ’ thread (0, 1) [thread (1, 1) [thread (2

HEEE

' thread (0, 0) thread (1, 0) B thread (2, 0) thread (3, 0) " thread 0,0) B thread (1,0)

thread (0, 1) B thread (1, 1) B thread (2, 1) B thread (1, 3) f thread (0, 1) B thread (1, 1)
How are these

threads assigned to
dim3 dimGrid(2, 2, 1); . the SMs??

dim3 dimBlock(4, 2, 1);
vectorAdd<<<dimGrid, dimBlock>>>(a, b, ¢); &

Thread Blocks Assignment

- Threads are assigned to SM in block granularity
+ Blocks in one grid can be assigned to different SMs
- SM manages/schedules thread execution.

- how??

Warps as Scheduling Units

Fach block is executed +
as 32-thread warps

+ Warps are scheduling units in SM

+ how are they scheduled?

+ Threads in a warp execute in SIMT

- what is SIMT (Single Instruction Multiple Thread)?

- What about control divergence?

Warps as Scheduling Units (cont.)

Warps are scheduling units in SM

Streaming Multiprocessor (SM)
Pool of warps

Warp
W

Warp 2

"

Warps as Scheduling Units (cont.)

-+ Threads in a warp execute in SIMT

Processing Unit

Register
B\

Control Unit

Review

+ Threads are organized by block/
- Threads are assigned to SM in block granularity

- Threads are scheduled in the unit of warp, and in the
way of SIMD

Occupancy

Occupancy = # of active warps / Maximum number of
resident warps per SM

Compute Capabilities
Technical Specifications 2x 3.03.2353.75.05.253

48 64

Occupancy limiters:
Register usage
Shared memory usage

Block size

Memory hierarchy

} thread (1,

7}0)

| thread (1,]thread (2, B thread (1, |

1)

| thread (0, [thread (1,

| i
!_______1 5

read (0 thread (1,

|

B 0)

||
|
|
|
H
1

thread (0, 0)

I

11) i<3)

thread (2, | thread (3
0)

: "%

j read (2, 1 thread (1, |
1
i

£ 1'%

1

' thread (2, || thread (3, |

read (O, |

i ,

1, | thread (2, | thread (3,

] thread Q,

1 thread (2, | thread (1, |

11) 3)

read (2, | thread (3, ;

0)

N
ho
i
[|
i

Per-thread local
memory

Per-block
shared memory

Global Memory

10

Occupancy limiter: Register usage

Compute Capabilities
Technical Specifications 2x 303235375052 53

32K 64 K 32K

1536 2048

Example 1 (capability = 3.0)
Kernel uses 21 registers per thread
+ # of active threads = 64K / 21 = 3121
> 2048 thus an occupancy of 100%

11

Occupancy limiter: Register usage (cont.)

Compute Capabilities
Technical Specifications 2x 303235375052 53

Example 2 (capability = 3.0)
Kernel uses 64 registers per thread

. # of Active threads = 64K / 64 = 1024
- # of warps = 1024 / 32 = 32
+ Occupancy =32 /64 =50%

12

Occupancy limiter: Shared memory

Compute Capabilities
Technical Specifications 2x 3.0 3.2 35 3.7 505253

11216496 | 64
KB | KB KB | KB

2048

64

Example 1 (capability = 3.0)
Kernel uses 16 bytes of shared memory per thread
+ # of Active threads = 48K / 16 = 3072
> 2048 thus an occupancy of 100%

13

Occupancy limiter: Shared memory (cont.)

Compute Capabilities
Technical Specifications 2x 3.0 3.2 35 3.7 505253

11216496 | 64
KB | KB KB | KB

2048

64

Example 2 (capability = 3.0)

Kernel uses 32 bytes of shared memory per thread
- # of Active threads = 48K/ 32 = 1536

- # of warps = 1536 / 32 =48

+ Occupancy =48 /64 =75%

14

Occupancy limiter: Block size

Compute Capabilities
Technical Specifications 2x 3.0 3.2 35 3.7 505253

+capability = 3.0

Warp size=32

Block size Active|threads Active\warps Occupancy
32*16=512 512/32=16 16/ 64 = 25%

1024 32 50%

2048 64 100%

3072 (2048) 64 100%
4096 (2048) 64 100%

15

Occupancy

-+ Do we want higher occupancy?

- Maybe yes. Latency (of memory op. and algorithmic
op.) can be hidden with more threads running.

+|s occupancy a metric of performance?

+ Nol!l It's just one of the contributing factors.

16

100%

80%

60%

40%

20%

0%

fixed instruction
paralleism (ILP=1)

256 512 768 1024
Thread parallelism

Reference:

http://www.cs.berkeley.edu/~volkov/volkov10-GTC pdf
http://on-demand.gputechconf.com/gtc/2010/video/S12238-Better-Performance-at-Lower-

Occupancy.mp4

100%

80%

60%

40%

20%

0%

0

1

fixed thread parallelism
(12.5% occupancy)

2

3

[

4

5

Instruction parallelism

6

http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
http://on-demand.gputechconf.com/gtc/2010/video/S12238-Better-Performance-at-Lower-Occupancy.mp4

Review

Calculation formula for occupancy

of active warps / maximum number of warps per SM

Occupancy limiters:

register, shared memory, block size

Understanding of occupancy
occupancy is not equivalent to performance

but we still want higher occupancy usually

18

Case study: cublasSgemm

- Matrix multiplication of single-precision real number
- SGEMM performs one of the matrix-matrix operations
-+ C:=alpha*op(A)*op(B) + beta*C
1.0

0.

- where op(X) is one of

- op(X)=X or op(X)=X*T (transposed)

always this one in our case

- It's used by the fully-connected (fc) layer in Caffe (when
batch size is larger than 1)

19

Reasons of case-studying cublasSgemm

sgemm_largek_lds64

it's the kernel used by
cublasSgemm

it decreases fastest with
batch size increasing

it's the only kernel |
observed of which
occupancy changes with
different batch sizes

)
)
=
S
O
O
2
=
E
O
@)
S
E
i
O
of
Q
E
F

sgemm_largek 1ds64

sgemm sm35 ldg nn 64x16x64x16x16

void caffe::im2col gpu kernel<float>(int, float co
void caffe::MaxPoolForward<float>(int, float const

- void caffe::ReLUForward<float>(int, float const *,

30
Batch size

20

Experiment

Use cublasSgemm:
Inputs: Matrix A (M*K), B (K*N)
+ Qutput: Matrix C (M*N) = A*B
+ Variables used here are consistent with the usage in the
fully-connected layer in Caffe)
+ M:batch size (2,4, 8, ..., 1024)
K: 9216/4096/4096
N: 4096/4096/1000

21

Results

0.751 1 900
E
o P g
© - . =
S 05: I 600 =
O : : kS
@) >
o
0
0.25" I 300
o: S)
- 2 4 128 256 512 1024 :
sgemm_largek_lds64 BatchES|ze (M) ".: maxwell_sgemm_128x128_nn <<<32*1*1,256*1*1>>>
<<<64%1%8,32%4%1>>> = : ,
- . maxwell_sgemm_128x64_nn <<<32*1*1, 128%1*1>>>

sgemim largek Idss4 <<<128%1%4, 16161 >>>
with different parameters ’ 22

Summary

- Thread hierarchy

+ Streaming multiprocessor scheduling
+ Memory hierarchy

- Occupancy

+ Case study on "cublasSgemm®

23

References

+ (Coursera class) Heterogeneous Parallel Programming by
Wen-mei W. Hwu (https://class.coursera.org/hetero-004)

+ http://docs.nvidia.com/cuda/cuda-c-programming-
quide/

- http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf

24

https://class.coursera.org/hetero-004
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf

Backup slides (about stream and concurrency) after this

They’re basically copied from

http://on-demand.gputechconf.com/gtc-express/2011/presentations/
StreamsAndConcurrencyWebinar.pdf

25

http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf

Streams

- A sequence of operations that execute in issue-order on the GPU

Programming model used to effect concurrency

+ CUDA operations in different streams may run concurrently
CUDA operations from different streams may be interleaved

Rules:

- A CUDA operation is dispatched from the engine queue if:
Preceding calls in the same stream have completed,
Preceding calls in the same queue have been dispatched, and

Resources are available

20

© Two streams, stream 1 is issued first

Example

& Stream 1 : HDa1, HDb1, K1, DH1 (issued first)
® Stream 2 : DH2 (completely independent of stream 1)

issue order

-

program

| HDb1 |

HDb1
K1
DH1

DH2

=)

H2D queue : compute queue

CUDA operations
get added to queues
in issue order

D2H queue

DH1

DH2

'
-t

*

within queues, stream dependencies are lost

=

time

execution

DH1 blocks
completely
independent DH2
DH1 *

DH2

runtime =5

27

Example

© Two streams, stream 2 is issued first

& Stream 1 : HDa1, HDb1, K1, DH1
& Stream 2 : DH2 (issued first)

issue order

HI

-

program

issue order matters!

H2D queue

)| =T

CUDA operations
get added to queues
in issue order

compute queue

¥

'
'
'
.
'
'
'
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

D2H queue

DH2
DH1

within queues, stream dependencies are lost

time

execution
concurrent

p DH2

HDa1 &

DH1

runtime = 4

28

