
Thread

Block Warp
Grid

Register
KernelShared memory

Global memory

Local memory
Occupancy

CUDA Programming Model

1

Ming Yang
Apr 5, 2016

???

• What are the scheduling units in Streaming
Multiprocessor (SM)??

• warps. How are they scheduled?

• How is the occupancy computed??

• anything to do with block/thread/registers/shared
memory? Yes! All of them.

2

…
dim3 dimGrid(2, 2, 1);
dim3 dimBlock(4, 2, 1);
vectorAdd<<<dimGrid, dimBlock>>>(a, b, c);
…

of threads:
(2*2) * (4*2) = 32

Thread hierarchy

How are these
threads assigned to
the SMs??

Grid

Block (0, 0)

thread (0, 0) thread (1, 0) thread (2, 0) thread (3, 0)

thread (0, 1) thread (1, 1) thread (2, 1) thread (1, 3)

Block (1, 0)

thread (0, 0) thread (1, 0) thread (2, 0) thread (3, 0)

thread (0, 1) thread (1, 1) thread (2, 1) thread (1, 3)

Block (0, 1)

thread (0, 0) thread (1, 0) thread (2, 0) thread (3, 0)

thread (0, 1) thread (1, 1) thread (2, 1) thread (1, 3)

Block (1, 1)

thread (0, 0) thread (1, 0) thread (2, 0) thread (3, 0)

thread (0, 1) thread (1, 1) thread (2, 1) thread (1, 3)

3

4

Streaming Multiprocessor (SM)

Thread Blocks Assignment

Block (0, 0) Block (1, 0) Block (0, 1) Block (1, 1)

… … … …

… … … …

… … … …

• Threads are assigned to SM in block granularity
• Blocks in one grid can be assigned to different SMs
• SM manages/schedules thread execution.

• how??

Warps as Scheduling Units

• Each block is executed
as 32-thread warps 31…0 1 63…32 33 64 65

Warp 0 Warp 1 Warp 2

• Warps are scheduling units in SM

• how are they scheduled?

• Threads in a warp execute in SIMT

• what is SIMT (Single Instruction Multiple Thread)?

• What about control divergence?

5

Warps as Scheduling Units

• Warps are scheduling units in SM

Streaming Multiprocessor (SM)

Ti
m

e
(c

yc
le

)

Pool of warps

Warp 0

Warp 2

Warp 3

Warp 1

 …

Warp 63

Warp 0 Warp 2Warp 1

Warp 2 Warp 4 Warp 5Warp 3

Warp 0 Warp 1

…
…

(cont.)

6

• Threads in a warp execute in SIMT

Processing Unit

ALU
Register

File

Processing Unit

ALU
Register

File

Warps as Scheduling Units (cont.)

Memory
I/O

Processing Unit

ALU
Register

File

Control Unit

PC IR

7

Review

• Threads are organized by block/grid

• Threads are assigned to SM in block granularity

• Threads are scheduled in the unit of warp, and in the
way of SIMD

8

Occupancy

• Occupancy = # of active warps / Maximum number of
resident warps per SM

• Occupancy limiters:

• Register usage

• Shared memory usage

• Block size

9

Compute Capabilities
Technical Specifications 2.x 3.0 3.2 3.5 3.7 5.0 5.2 5.3

Maximum number of resident
warps per SM 48 64

Memory hierarchy

10

thread (0, 0)

Block (1, 0)
thread (3,
0)

thread (0,
0)

thread (1,
0)

thread (2,
0)

thread (0,
1)

thread (1,
1)

thread (2,
1)

thread (1,
3)

Grid
Block (0, 0)

thread (0,
0)

thread (1,
0)

thread (2,
0)

thread (3,
0)

thread (0,
1)

thread (1,
1)

thread (2,
1)

thread (1,
3)

Block (1, 0)
thread (0,
0)

thread (1,
0)

thread (2,
0)

thread (3,
0)

thread (0,
1)

thread (1,
1)

thread (2,
1)

thread (1,
3)

Block (0, 1)
thread (0,
0)

thread (1,
0)

thread (2,
0)

thread (3,
0)

thread (0,
1)

thread (1,
1)

thread (2,
1)

thread (1,
3)

Block (1, 1)
thread (0,
0)

thread (1,
0)

thread (2,
0)

thread (3,
0)

thread (0,
1)

thread (1,
1)

thread (2,
1)

thread (1,
3)

Per-thread local
memory

Per-block
shared memory

Global Memory

Occupancy limiter: Register usage

• Example 1 (capability = 3.0)

• Kernel uses 21 registers per thread

• # of active threads = 64K / 21 ≈⋲ 3121

• > 2048 thus an occupancy of 100%

11

Compute Capabilities
Technical Specifications 2.x 3.0 3.2 3.5 3.7 5.0 5.2 5.3

Maximum number of 32-bit
registers per thread block 32 K 64 K 32 K

Maximum number of resident
threads per SM 1536 2048

Occupancy limiter: Register usage

• Example 2 (capability = 3.0)

• Kernel uses 64 registers per thread

• # of Active threads = 64K / 64 = 1024

• # of warps = 1024 / 32 = 32

• Occupancy = 32 / 64 = 50%

12

Compute Capabilities
Technical Specifications 2.x 3.0 3.2 3.5 3.7 5.0 5.2 5.3

Maximum number of 32-bit
registers per thread block 32 K 64 K 32 K

Maximum number of resident
threads per SM 1536 2048

Maximum number of resident
warps per SM 48 64

(cont.)

Occupancy limiter: Shared memory

• Example 1 (capability = 3.0)

• Kernel uses 16 bytes of shared memory per thread

• # of Active threads = 48K / 16 = 3072

• > 2048 thus an occupancy of 100%

13

Compute Capabilities
Technical Specifications 2.x 3.0 3.2 3.5 3.7 5.0 5.2 5.3

Maximum amount of shared
memory per SM 48 KB 112

KB
64
KB

96
KB

64
KB

Maximum number of resident
threads per SM 1536 2048

Maximum number of resident
warps per SM 48 64

Occupancy limiter: Shared memory

• Example 2 (capability = 3.0)

• Kernel uses 32 bytes of shared memory per thread

• # of Active threads = 48K / 32 = 1536

• # of warps = 1536 / 32 = 48

• Occupancy = 48 / 64 = 75%

14

Compute Capabilities
Technical Specifications 2.x 3.0 3.2 3.5 3.7 5.0 5.2 5.3

Maximum amount of shared
memory per SM 48 KB 112

KB
64
KB

96
KB

64
KB

Maximum number of resident
threads per SM 1536 2048

Maximum number of resident
warps per SM 48 64

(cont.)

Occupancy limiter: Block size

• capability = 3.0

15

Compute Capabilities
Technical Specifications 2.x 3.0 3.2 3.5 3.7 5.0 5.2 5.3

Maximum number of resident
blocks per multiprocessor 8 16 32

Maximum number of resident
threads per SM 1536 2048

Maximum number of resident
warps per SM 48 64

Block size Active threads Active warps Occupancy
32 32 * 16 = 512 512 / 32 = 16 16 / 64 = 25%

64 1024 32 50%

128 2048 64 100%

192 3072 (2048) 64 100%

256 4096 (2048) 64 100%

Warp size=32

Occupancy

• Do we want higher occupancy?

• Maybe yes. Latency (of memory op. and algorithmic
op.) can be hidden with more threads running.

• Is occupancy a metric of performance?

• No!! It’s just one of the contributing factors.

16

17

Reference:
http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
http://on-demand.gputechconf.com/gtc/2010/video/S12238-Better-Performance-at-Lower-
Occupancy.mp4

http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
http://on-demand.gputechconf.com/gtc/2010/video/S12238-Better-Performance-at-Lower-Occupancy.mp4

Review

• Calculation formula for occupancy

• # of active warps / maximum number of warps per SM

• Occupancy limiters:

• register, shared memory, block size

• Understanding of occupancy

• occupancy is not equivalent to performance

• but we still want higher occupancy usually

18

Case study: cublasSgemm

• Matrix multiplication of single-precision real number

• SGEMM performs one of the matrix-matrix operations

• C := alpha*op(A)*op(B) + beta*C

• where op(X) is one of

• op(X) = X or op(X) = X**T (transposed)

• It’s used by the fully-connected (fc) layer in Caffe (when
batch size is larger than 1)

19

always this one in our case

1.0 0.

Reasons of case-studying cublasSgemm

• sgemm_largek_lds64

• it’s the kernel used by
cublasSgemm

• it decreases fastest with
batch size increasing

• it’s the only kernel I
observed of which
occupancy changes with
different batch sizes

20

point missed

Experiment

• Use cublasSgemm:

• Inputs: Matrix A (M*K), B (K*N)

• Output: Matrix C (M*N) = A*B

• Variables used here are consistent with the usage in the
fully-connected layer in Caffe)

• M: batch size (2, 4, 8, …, 1024)

• K: 9216/4096/4096

• N: 4096/4096/1000

21

Results

22

Ex
ec

ut
io

n
tim

e
(m

s.)

0

300

600

900

1200

O
cc

up
an

cy

0

0.25

0.5

0.75

1

Batch size (M)

2 4 8 16 32 64 128 256 512 1024

1,085.0

542.6

269.5

135.1
64.6

97.296.6
40.533.553.3

sgemm_largek_lds64
<<<64*1*8, 32*4*1>>>

sgemm_largek_lds64
with different parameters<<<128*1*4, 16*16*1>>>

maxwell_sgemm_128x64_nn <<<32*1*1, 128*1*1>>>

maxwell_sgemm_128x128_nn <<<32*1*1, 256*1*1>>>

Summary

• Thread hierarchy

• Streaming multiprocessor scheduling

• Memory hierarchy

• Occupancy

• Case study on `cublasSgemm`

23

References

• (Coursera class) Heterogeneous Parallel Programming by
Wen-mei W. Hwu (https://class.coursera.org/hetero-004)

• http://docs.nvidia.com/cuda/cuda-c-programming-
guide/

• http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf

24

https://class.coursera.org/hetero-004
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf

25

Backup slides (about stream and concurrency) after this

They’re basically copied from
http://on-demand.gputechconf.com/gtc-express/2011/presentations/
StreamsAndConcurrencyWebinar.pdf

http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf

Streams

• A sequence of operations that execute in issue-order on the GPU

• Programming model used to effect concurrency

• CUDA operations in different streams may run concurrently
CUDA operations from different streams may be interleaved

• Rules:

• A CUDA operation is dispatched from the engine queue if:

• Preceding calls in the same stream have completed,

• Preceding calls in the same queue have been dispatched, and

• Resources are available

26

Example

27

Example

28

