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Abstract

As two of the five traditional human senses (sight, hear-
ing, taste, smell, and touch), vision and sound are basic
sources through which humans understand the world. Often
correlated during natural events, these two modalities com-
bine to jointly affect human perception. In this paper, we
pose the task of generating sound given visual input. Such
capabilities could help enable applications in virtual reality
(generating sound for virtual scenes automatically) or pro-
vide additional accessibility to images or videos for people
with visual impairments. As a first step in this direction, we
apply learning-based methods to generate raw waveform
samples given input video frames. We evaluate our mod-
els on a dataset of videos containing a variety of sounds
(such as ambient sounds and sounds from people/animals).
Our experiments show that the generated sounds are fairly
realistic and have good temporal synchronization with the
visual inputs.

1. Introduction

The visual and auditory senses are arguably the most
important channels through which humans perceive their
surrounding environments, and they are often entertwined.
From life-long observations of the natural world, people
are able to learn the association between vision and sound.
For instance, when seeing a flash of lightning in the sky,
one might cover their ears subconsciously, knowing that
the crack of thunder is coming next. Alternatively, hear-
ing leaves rustling in the wind might conjure up a picture of
a peaceful forest scene.

In this paper, we explore whether computational mod-
els can learn the relationship between visuals and sound.
Models of this relationship could be fundamental for many
applications such as combining videos with automatically
generated ambient sound to enhance the experience of im-
mersion in virtual reality; adding sound effects to videos au-
tomatically to reduce tedious manual sound editing work;
Or enabling equal accessibility by associating sound with
visual information for people with visual impairments (al-
lowing them to “see” the world through sound). While all
of these tasks require powerful high-level inference and rea-

soning ability, in this work we take a first step toward this
goal, narrowing down the task to generating audio for video
based on the viewable content.

Specifically, we train models to directly predict raw au-
dio signals (waveform samples) from input videos. The
models are expected to learn associations between gener-
ated sound and visual inputs for various scenes and object
interactions. Existing works [15, 4] handle sound genera-
tion given input of videos/images under experimental set-
tings (e.g., to generate a hitting sound or where the input
videos are recorded indoor with fixed background). In our
work, we deal with generating natural sound from videos
collected in the wild.

To enable learning, we introduce a dataset that is de-
rived from AudioSet [7]. AudioSet is a dataset collected
for audio event recognition but not ideal for our task be-
cause many of videos and audios are loosely related; the
target sound might be covered by other sounds (like music);
and the dataset contains some mis-classified videos. All of
these sources of noise tend to deter the models from learn-
ing the correct mapping from video to audio. To alleviate
these issues, we clean a subset of the data, including sounds
of humans/animals and other natural sounds, by verifying
the presence of the target objects for both videos and audios
respectively (at 2 second intervals) to make them suitable
for the generation task (Sec. 3).

Our model learns a mapping from video frames to au-
dio using a video encoder plus sound generator structure.
For sound generation, we use a hierarchical recurrent neu-
ral network proposed by [14]. We present 3 variants to en-
code the visual information, which can be combined with
the sound generation network to form a complete frame-
work (Sec. 4). To evaluate the proposed models and the
generated results, we conduct both numerical evaluations
and human experiments (Sec. 5). Please see our supple-
mentary video to see and hear sound generation results.

The innovations introduced by our paper are: 1) We pro-
pose a new problem of generating sounds from videos in
the wild; 2) We release a dataset containing 28109 cleaned
videos (55 hours in total) spanning 10 object categories; 3)
We explore model variants for the generation architectures;
4) Numerical and human evaluations are provided as well
as an analysis of generated results.
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2. Related work

Video and sound self-supervision: The observation that
audio and video may provide supervision for each other has
drawn attention recently. [2, 16, 3, 9] make use of the con-
current property of video and sound as the supervision to
train a network using unlabeled data. [2] presents a two-
stream neural network which takes video frames and an
audio as inputs to determine whether there is a correspon-
dence (from one video) or not. The network is able to learn
both visual and sound semantics through unlabeled videos
in a unsupervised manner. Similarly, [9] predicts similarity
scores for input images and spoken audio spectrum to un-
derstand captions based on visual supervision. [3] trains a
network to embed visual and audio to learn a deep repre-
sentation of natural sound without ground truth labels. And
[16] predicts sound based on associated video frames, in-
stead of generating sound, the goal is to learn visual feature
with the guidance of sound clustering.

Speech synthesis: The task of speech synthesis is to gen-
erate human speech based on input text. Text to speech
(TTS) has been studied for a long time from traditional ap-
proaches [25, 11, 27, 24, 26] to deep learning based ap-
proaches [23, 14, 20], among which, WaveNet [23] has at-
tracted much attention due to the improved generation qual-
ity. WaveNet presents a convolutional neural networks with
dilation structure to predict new audio digits based on pre-
viously generated digits. SampleRNN [14] also achieves
appealing results in TTS, proposing a hierarchical recurrent
neural network (RNN) to recursively generate raw wave-
form samples temporally. Its hierarchical RNN structure
shows the potential to handle long sequence generation. A
follow-up work [20] demonstrates a novel Reader-Vocoder
model and uses SampleRNN [14] as the vocoder to generate
raw speech signals.

Mapping visual to sound: Instead of learning a repre-
sentation by taking advantage of the natural synchroniza-
tion property between visual and sound, the goal of [15, 4]
is to directly generate audio conditioned on input video
frames. Specifically, [15] predicts hitting sound based
on different materials of objects and physical interactions.
A dataset, Greatest Hits (human hit/scratch diverse ob-
jects using a drum stick), has been collected for this pur-
pose. [4] proposes two generation tasks Sound-to-Image
and Image-to-Sound networks using generative adversar-
ial network [8]. The data used to train the models shows
subjects playing various musical instruments indoor with
a fixed background. Recent work [28] presents a synthe-
sized audio-visual dataset built by physics/graphics/audio
engines. Fine-grained attributes have been controlled for
synthesis. Our work has a similar goal, but differs in that
instead of mapping visual to sound under constrained set-
tings, we train neural networks to directly synthesize wave-

form and handle more diverse and challenging real-world
scenarios.

3. Visually Engaged and Grounded AudioSet
(VEGAS)

The goal of this work is to generate realistic sound based
on video content and simple object activities. As mentioned
in Sec. 1, we do not explicitly handle high-level visual rea-
soning during sound prediction. For the training videos, we
expect visual and sound are directly related (predicting dog
sound when seeing a dog) most of the time.

Most existing video datasets [1, 12] include both video
and audio channels. However, they are typically intended
for visual understanding tasks, thus organized based on vi-
sual entities/events. A better choice for us is AudioSet [7],
a large-scale object-centric video dataset organized based
on audio events. Its ontology includes events such as fowl,
baby crying, engine sounds. Audioset consists of 10-second
video clips (with audios) from Youtube. The presence of
sounds has been manually verified. But as a dataset de-
signed for audio event detection, AudioSet still cannot per-
fectly fit our needs because of the following three reasons.
First, visual and sound are not necessarily directly related.
For instance, sometimes the source of a sound may be out
of frame. Second, the target sound might have been largely
covered by other noise like background music. Third, mis-
classification exists.

We ran several baseline models using the original data
and found that the generated sounds are not clean and often
accompanied with other noise like chaotic human chatting.
To make the data useful for our generation task, we select a
subset of videos from AudioSet and further clean them.

3.1. Data collection

We select 10 categories from AudioSet (each includ-
ing more than 1500 videos) for further cleaning. The se-
lected data includes human/animal sound as well as ambi-
ent sounds (specifically they are: Baby crying, Human snor-
ing, Dog, Water flowing, Fireworks, Rail transport, Printers,
Drum, Helicopter and Chainsaw). For the categories con-
taining more data than needed, we randomly select 3000
videos for each.

We use Amazon Mechanical Turk (AMT) for data clean-
ing, asking turkers to verify the presences of an object/event
of interest for the video clip in both the visual and audio
modalities. If both modalities are verified we consider it a
clean video. For most of the videos, noise does not dom-
inate for the entire videos. Therefore, to retain as much
data as possible, we segment each video into 2-second short
clips for separate labeling. For each short clip, we divide the
video and audio for independent annotation.

To clean the audio modality, we ask turkers to annotate
the presence of a sound from a target object (e.g. flowing
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Figure 1. Video frames of 4 categories from the VEGAS dataset with their corresponding waveforms. The color of the image borders is
consistent with the mark on the waveform, indicating the position of the current frame in the whole video.

water for water flowing category). Turkers are provided
with three choices: ’Yes — the target sound is dominant
over other sounds’, ’Sort of — competitive, ’No — other
sounds are dominant’. To clean the visual modality, we sim-
ilarly ask turkers to annotate the presence of a target object
with three choices: ’Yes — the target objects appear all the
time’, ’Sort of — appearing partially’, ’No — the target ob-
jects do not appear or barely appear’. For each segment, we
collect annotations from 3 turkers and pick the majority as
the final annotation. We reject turkers with low accuracy to
ensure annotation quality.

We remove the clips where either video and audio has
been labeled as ’No’ and keep the ’Yes’ and Sort of’ labeled
clips to introduce more variation in the collected data. Fi-
nally, we combine the verified adjacent short clips to form
longer videos, resulting in videos ranging from 2-10 sec-
onds.

3.2. Data statistics

In total, we annotated 132,209 clips in both the visual
and audio modalities, each labeled by 3 turkers, and re-
moved 34,392 clips from the original data. After merging
adjacent short clips, we have 28,109 videos in total with an
average length of 7 seconds and a total length of 55 hours.
The left table in Fig. 2 shows the number of videos and
the average length with the standard deviation for each cat-
egory respectively. The pie chart demonstrates the distri-
bution of lengths, showing that the majority of videos are
longer than 8 seconds. Fig. 1 shows some example frames
with their corresponding waveforms. We can see how sound
correlates with the motion of target objects as well as scene
events, such as water flowing (bottom right) where the am-
bient sounds are temporally uniform. Due to the verified
properties of the current dataset, we call it the Visually En-
gaged and Grounded AudioSet (VEGAS).

Figure 2. Dataset statistics: the table shows the number of videos
with averaged length for each category, while the pie chart presents
the distribution of video lengths.

4. Approaches
In this work, we formulate the task as a conditional gen-

eration problem, for which we train a conditional generative
model to synthesize raw waveform samples from an input
video. Specifically, we estimate the following conditional
probability:

p(y1, y2, ..., yn|x1, x2, ..., xm) (1)

where x1, ..., xm represent input video frame representa-
tions and y1, ..., yn are output waveform values which is
a sequence of integers from 0 to 255 (the raw waveform
samples are real values ranging from -1 to 1, we rescale
and linearly quantize them into 256 bins in our model see
Sec. 4.1). Note that typically m << n because the sam-
pling rate of audio is much higher than that of video, thus
the audio waveform sequence is much longer than video
frame sequence for a synchronized video.

We adopt an encoder-decoder architecture in model de-
sign and experiment with three variants of this type. In gen-
eral, our models consist of two parts: video encoder and
sound generator. In the following sections, we first discuss
the sound generator in Sec. 4.1, then we talk about three
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different variations of encoding visual information and the
concrete systems in Sec. 4.2, Sec. 4.3 and Sec. 4.4.

4.1. Sound generator

Our goal is to directly synthesize waveform samples with
a generative model. As mentioned before, in order to ob-
tain audios of reasonable quality (i.e., sounds natural), we
adopt a high sampling rate at 16kHz. This requirement re-
sults in extremely long sequences, which poses challenges
to a sound generator. For this purpose, we choose the re-
cently proposed SampleRNN [14] as our sound generator.
SampleRNN is a hierarchically structured recurrent neural
network. Its coarse-to-fine structure enables the model to
generate extremely long sequences and the recurrent struc-
ture of each layer captures the dependency between distant
samples. SampleRNN has been applied to speech synthe-
sis and music generation tasks previously. Here we apply it
to generate natural sound for videos in the wild, which typi-
cally contain much larger variations, less structural patterns,
and more noise than speech or music data.

Specifically, Fig. 3(a) (upper-left corner brown box)
shows the simplified overview of the SampleRNN model.
Note, this simplified illustration shows 2 tiers, but more
tiers are possible (we use 3). This model consists of multi-
ple tiers, the fine tier (bottom layer) is a multilayer percep-
tron (MLP) which takes the output from the next coarser
tier (upper layer) and the previous k samples to generate a
new sample. During training, the waveform samples (real
numbers from -1 to 1) have been linearly quantized to inte-
gers ranging from 0 to 255, and the MLP of the finest tier
can be considered a 256-way classification to predict one
sample at each timestep (then mapped back to real values
for the final waveform). The coarser (upper) tiers are recur-
rent neural networks which can be a GRU [5], LSTM [10],
or any other RNN variants, and the nodes contain multi-
ple waveform samples (2 in this illustration), meaning that
this layer predicts multiple samples jointly at each time step
based on previous time steps and predictions from coarser
tiers. The green arrow represents the hidden state. Note that
we tried using the model from WaveNet [23] on the natural
sound generation task, but it sometimes failed to generate
meaningful sounds for categories like dog, and was out-
performed by SampleRNN consistently for all object cat-
egories. Therefore, we did not pursue it further. Due to
space limit, we omit the technical details of SampleRNN.
For more information regarding SampleRNN, please refer
to [14].

4.2. Frame-to-frame method

For the video encoder component, we first propose a
straight-forward frame-to-frame encoding method. We rep-
resent the video frames as xi = V (fi), where fi is the
ith frame and xi is the corresponding representation. Here,

V (.) is the operation to extract the fc6 feature of VGG19
network [18] which has been pre-trained on ImageNet [6]
and xi is a 4096-dimensional vector.

In this model, we encode the visual information by
uniformly concatenating the frame representation with the
nodes (samples) of the coarsest tier RNN of the sound
generator as shown in Fig. 3(b) (content in dotted green
box). Due to the difference of sampling rates between
the two modalities, to maintain the alignment between
them, for each xi, we duplicate it s times, so that vi-
sual and sound sequences have the same length. Here
s = ceiling[sraudio/srvideo], where sraudio is the sam-
pling rate of audio, srvideo is that of video. Note that we
only feed the visual features into the coarsest tier of Sam-
pleRNN because of the importance of this layer as it guides
the generation of all finer tiers as well as for computational
efficiency.

4.3. Sequence-to-sequence method

Our second model design has a sequence to sequence
type of architecture [22]. In this sequence-to-sequence
model, the video encoder and sound generator are clearly
separated, and connected via a bottleneck representation,
which feeds encoded visual information to the sound gen-
erator. As Fig. 3(c) (content in the middle red dotted box)
shows, we build a recurrent neural network to encode video
features. Here the same deep feature (fc6 layer of VGG19)
is used to represent video frames as in Sec. 4.2. After vi-
sual encoding (i.e., deep feature extraction and recurrent
processing), we use the last hidden state from the video en-
coder to initialize the hidden state of the coarsest tier RNN
of the sound generator, then sound generation starts. There-
fore the sound generation task becomes:

p(y1, ..., yn|x1, ..., xm) =

n∏
i=1

p(yi|H, y1, ..., yi−1) (2)

where H represents the last hidden state of the video en-
coding RNN or equivalently the initial hidden state of the
coarsest tier RNN of the sound generator.

Unlike the frame based model mention above, where we
explicitly enforce the alignment between video frames and
waveform samples. In this sequence-to-sequence model, we
expect the model to learn such alignment between the two
modalities through encoding and decoding.

4.4. Flow-based method

Our third model further improves the visual representa-
tion to better capture the content and motion in input videos.
As motivation for this variant, we argue that motion signals
in the visual domain, even though sometimes subtle, are
critical to synthesize realistic and well synchronized sound.
For instance, the barking sound should be generated at the

4



Figure 3. (a) (brown box) shows the simplified architecture of the sound generator, where the fine tier MLP takes as input k previously
generated samples and output from the coarse tier to guide generation of new samples. (b) (green dotted box) presents the frame-to-frame
structure, where we concatenate the visual representation (the blue FC6 cuboid) with the nodes from the coarsest tier. And (c) (red dotted
box) shows the model architecture for sequence-to-sequence and flow-based methods, we recurrently embed visual representations and
use the last encoding hidden state (the bold yellow arrow) to initialize the hidden state of the coarsest tier RNN of the sound generator.
The MLP tier of the sound generator does 256-way classification to output integers within [0, 255], which are linearly mapped to raw
waveforms [−1, 1]. The legends in the bottom-left gray dotted box summarize the meaning of the visualization units and the letters in the
end ((a)/(b)/(c)) point to the part where the unit can be found.

moment when the dog opens its month and maybe the body
starts to lean forward. This requires our model to be sen-
sitive to activities and motion of target objects. However,
the previously used VGG features are pre-trained on object
classification tasks, which typically result in features with
rotation and translation invariance. Although the VGG fea-
tures are computed along consecutive video frames, which
implicitly include some motion signals, it may still fail to
capture them. Therefore, to explicitly capture the motion
signal, we add an optical flow-based deep feature to the vi-
sual encoder and call this method the flow-based method.
The overall architecture of the current method is identical
to the sequence-to-sequence model (as Fig. 3(c) shows),
which encodes video features xi recurrently through RNN
and decodes with SampleRNN. The only difference is that
here xi = cat[V (fi), F (oi)] (cat[.] indicates concatena-
tion operation); oi is the optical flow of ith frame; and F(.)
is the function to extract the optical flow-based deep fea-
ture. We pre-compute optical flow between video frames
using [21] and feed the flows to the temporal ConvNets
from [17], which has been pre-trained on optical flows of
UCF-101 video activity dataset [19], to get the deep fea-
ture. We extract the fc6 layer of temporal ConvNets, a
4096-dimensional vector.

5. Experiments

In this section, we first introduce the model structure and
training details (Sec. 5.1). Then, we visualize the generated

audio to qualitatively evaluate the results (Sec. 5.2). Quanti-
tatively, we report the loss values for all methods and eval-
uate generated results on a video retrieval task (Sec. 5.3).
Additionally, we also run 3 human evaluation experiments
to subjectively evaluate the results from the different pro-
posed models (Sec. 5.4).

5.1. Model and training details

We train the 3 proposed models on each of the 10 cate-
gories of our dataset independently. All training videos have
been padded to the same length (10 secs) by duplicating and
concatenating up to the target length. We sample the videos
at 15.6 FPS (156 frames for 10 seconds) and sample the au-
dios at approximately 16kHz, specifically 159744 times per
10 seconds. For the frame based method, step size s is set
to 1024.
Sound generator: We apply a 3-tier SampleRNN with one-
layer RNN for the coarsest and second coarsest tiers, and
a MLP for the finest tier. For the finest tier, new sample
generations are based on the previous k generated samples
(k = 4). We use GRU as the recurrent structure. The num-
ber of samples included by each node from coarse to fine
tiers are: 8, 2 ,1 with hidden state size of 1024 for the coars-
est and second coarsest tiers.
Frame-to-frame model (Frame): To concatenate the vi-
sual feature (4096-D) with the nodes from the coarsest tier
GRU, we first expand the node (8 samples) to 4096 by ap-
plying a fully connected operation. After combining with
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Figure 4. Waveforms of generated audio aligned with corresponding video key frames. From left to right showing: Dog, Fireworks, Drum,
and Rail transport categories. For each case the 4 waveforms (from top to bottom) are from Frame, Seq, Flow methods, and the original
audio. The border color of the frames indicates which flagged position is shown and descriptions indicate what is happening in the video
at that moment.

the visual feature, we obtain a 8192-D vector to feed into
the coarsest tier of the sound generator.
Sequence-to-sequence (Seq) & flow based model
(Flow): These two models have the same architecture. For
the visual encoding recurrent neural network, we also use an
one-layer-GRU structure with the hidden state size equal to
1024. The only difference is that for the flow based model,
the visual feature is the concatenation of the deep image
feature (4096-D) and deep flow feature (4096-D) resulting
in a 8192-D vector.

We randomly select 128 videos from each category for
testing, leaving the remaining videos for training. No data
augmentation has been applied. During training, we ap-
ply Adam Stochastic Optimization [13] with learning rate
0.001 and minibatch of size 128 for all models. For our
experiments we train models for each category indepen-
dently. As an additional experiment, aiming to handle mul-
tiple audio-visual objects within the same video, we also
train a multi-category model where we combine data from
all categories. We show some results of the multi-category
model on videos from the Internet containing multiple in-
teracting objects in the supplementary video.

5.2. Qualitative visualization

We visualize the generated waveform results from the
three proposed models as well as the original audio and cor-
responding video frames in Fig. 4. Results from four cate-
gories are shown from left to right: Dog, Fireworks, Drum,
and Rail transport. The former three are synchronization-
sensitive categories, though that doesn’t mean the waveform
needs to be exactly aligned with the ground truth for good
human perception. For instance in the fireworks example
(second left), we show the waveforms from Frame, Seq,
Flow methods and the real audio from top to bottom. Com-
pared to the real audio, the Flow waveform (third) shows
several extra light explosions (high peaks). When we lis-
ten to it, these extra peaks sound like far away explosions,
which reasonably fits the scene. The Rail transport category
is not that sensitive to the specific speed of the objects but

Frame Seq Flow
Training 2.6143 2.5991 2.6037
Testing 2.7061 2.6866 2.6839

Table 1. Average cross-entropy loss for training and testing of 3
methods. Frame represents frame-to-frame method; Seq means
sequence-to-sequence method and Flow is flow based method. We
mark the best results in bold.

some of the videos like the depicted example have the obvi-
ous property that the amplitude of the sound is affected by
the distance of the target object (when the train approaches,
the sound gets louder). All three of our models can implic-
itly learn this effect. We show more qualitative results in the
supplementary video.

5.3. Numerical evaluation

In this section, we provide quantitative evaluations of the
models.

Loss values: First we show the average cross-entropy loss
(the finest layer of sound generator does 256-way classi-
fication for each sample prediction) for training and test-
ing of Frame, Seq and Flow models in Table. 1. We can
see that Flow and Seq methods achieve lower training and
testing loss than Frame method, and they are competitive.
Specifically Seq method has the lowest training loss after
converging, while Flow works best on testing loss.

Retrieval experiments: Since direct quantitative evalua-
tion of waveforms is quite challenging, we design a retrieval
experiment that serves as a good proxy. Since our task is
to generate audio given visual representations, well trained
models should have the capability of mapping visual infor-
mation to their corresponding correct (or reasonable) au-
dio signal. To evaluate our models in this direction, we de-
sign a retrieval experiment where visual features are used as
queries and audio with the maximum sampling likelihood is
retrieved. Here the audios from all testing videos are com-
bined into a database of 1280 audios, and audio-retrieval
performance is measured for each testing video.

If our models have learned a reasonable mapping, the re-
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Frame Seq Flow
Category Top1 40.55% 44.14% 45.47%

Top5 53.59% 58.28% 60.31%
Instance Top1 4.77% 5.70% 5.94%

Top5 7.81% 9.14% 10.08%

Table 2. Top 1 and top 5 audio retrieval accuracy. ’Category’ mea-
sures category-level retrieval, while ’Instance’ indicates instance-
level retrieval.

trieved audio should be (1) from the same category as the
query video (category-level retrieval), and more ideally (2)
the exact audio corresponding to the query video (instance-
level retrieval). Note that this can be very challenging since
videos may contain very similar contents. In Table. 2 we
show the average top1 and top5 retrieval accuracy for cate-
gory and instance retrieval. We observe that all methods are
significantly better than chance (where chance for category
retrieval is 10% and for instance retrieval is 0.78%). The
flow based method achieves the best accuracy under both
metrics.

5.4. Human evaluation experiments

As in image or video generation tasks, the quality of gen-
erated results can be very subjective. For instance, some-
times even though the generated sound or waveforms might
not be very similar to the ground truth (the real sound), the
generation may still sound like a reasonable match to the
video. This is especially true for ambient sound categories
(e.g. water flow, printer) where the overall pattern may be
more important than the specific frequencies, etc. Thus,
comparing generated sounds with ground truth by apply-
ing distance metrics might not be the ideal way to evaluate
quality. In this section, we directly compare the sound gen-
eration results from each proposed method in three human
evaluation experiments on AMT.
Methods comparison task: This task aims to directly com-
pare the sounds generated by the three proposed methods in
a forced-choice evaluation. For each test video, we show
turkers the video with audio generated by: the Frame, Seq
and Flow methods. Turkers are posed with four questions
and asked to select the best video-audio pair for each ques-
tion. Questions are related to: 1) the correctness of the gen-
erated sound (which one sounds most likely to come from
the visual contents); 2) which contains the least irritating
noise; 3) which is best temporally synchronized with the
video; 4) which they prefer overall. Each question for each
test video has been labeled by 3 different turkers and we
aggregate their votes to get the final results.

Table. 3 shows the average preference rate for all cate-
gories (the higher the better) on each question. We can see
that both Seq and Flow outperform Frame based method
with Flow performing best overall. Flow outperforms Seq
the most on question 3 which demonstrates that adding the
deep flow feature helps with improving the temporal syn-
chronization of visual and sound during generation. Fig. 5

Frame Seq Flow
Correctness 29.74% 34.92% 35.34%
Least noise 28.65% 35.31% 36.04%
Synchronization 28.57% 34.37% 37.06%
Overall 28.52% 34.74% 36.74%

Table 3. Human evaluation results in a forced-choice selection
task. Here we show the average selection rate percentage over
all categories for each of 4 questions.

Figure 5. Human evaluation of forced-choice experiments for four
questions broken down by category.

shows the results for each category. We observe that the ad-
vantage of the Flow method is mainly gained on categories
that are sensitive to synchronization, such as Fireworks and
Drum (see question 3 and question 2 histograms).

Visual relevance task: Synchronization between video and
audio can be one of the fundamental factors to measure the
realness of sound generated from videos, but synchroniza-
tion tolerance can vary between categories. For example,
we easily detect discordance when a barking sound fails to
align to the correct barking motion of a dog. While for other
categories like water flowing, we might be more tolerant,
and may not notice if we swapped the audio from one river
to a another. Inspired by this observation, we design a task
in which each test video is combined with two audios, and
ask the turkers to pick the video-audio pair that best cor-
responds. One of the audios is generated from the video,
while the other is randomly chosen from another video of
the same category. This task measures whether the audio
we generate is discriminative for the input video.

Table. 4 shows the percentage of matched audios being
correctly selected. Results are reported for the sounds gen-
erated by our three methods (the first three columns) as
well as the real sounds (the last column). Each test sam-
ple is rated by three turkers. The results are consistent with
our intuition – real sounds are generally discriminative for
the corresponding videos, though some categories like heli-
copter or water are less discriminative. Our three methods
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Frame Seq Flow Real
Dog 57.29% 58.85% 63.02% 75.00%
Chainsaw 56.25% 57.03% 58.07% 70.31%
Water flowing 49.22% 52.34% 52.86% 59.90%
Rail transport 53.39% 56.51% 55.47% 66.14%
Fireworks 61.98% 67.97% 68.75% 79.17%
Printer 46.09% 50.52% 47.14% 60.16%
Helicopter 51.82% 54.95% 54.17% 58.33%
Snoring 51.82% 53.65% 54.95% 63.02%
Drum 55.21% 59.38% 62.24% 73.44%
Baby crying 52.60% 57.55% 56.77% 70.57%
Average 53.56% 56.88% 57.34% 67.60%

Table 4. Human evaluation results: visual relevance. Rows show
the selection accuracy for each category and their average. ‘Real’
stands for using original audios.

Frame Seq Flow Base Real
Dog 61.46% 64.32% 62.24% 54.69% 89.06%
Chainsaw 71.09% 73.96% 76.56% 68.23% 93.75%
Water flowing 70.83% 77.60% 81.25% 77.86% 87.50%
Rail transport 79.69% 83.33% 80.47% 74.74% 90.36%
Fireworks 76.04% 76.82% 78.39% 75.78% 94.01%
Printer 73.96% 73.44% 71.35% 75.00% 89.32%
Helicopter 71.61% 74.48% 78.13% 78.39% 91.67%
Snoring 67.71% 73.44% 73.18% 77.08% 90.63%
Drum 62.24% 64.58% 70.83% 59.64% 93.23%
Baby crying 57.29% 64.32% 61.20% 69.27% 94.79%
Average 68.69% 72.63% 73.36% 71.07% 91.43%

Table 5. Human evaluation results: real or fake task where people
judge whether a video-audio pair is real or generated. Percentages
indicate the frequency of a pair being judged as real.

achieve reasonable accuracy in some categories like Dog
and Fireworks (outperforming 50% chance by a large mar-
gin). For more ambient sound categories, the discrimination
task is challenging for both generated and real audio.

Real or fake determination: In this task, we would like to
see whether the generated audios can fool people into think-
ing that they are real. We provide instructions to the turkers
that the audio of the current video might be either real (orig-
inally belonging to this video) or fake (synthesis by comput-
ers). The criteria of being fake can be bad synchronization
or poor quality such as containing unpleasing noise. In ad-
dition to the generated results from our proposed methods,
we also include videos with the original audio as a control.
As an additional baseline, we also combine the video with
a random real audio from the same category. This baseline
is rather challenging as it uses real audios. Each evaluation
is performed by 3 turkers and we aggregate the votes.

The percentages for the audios being rated as real are
shown in Table. 5 for all methods including the baseline
(Base) and the real audio. Seq and Flow methods out-
perform the Frame method except for the printer category.
Unsurprisingly, Base achieves decent results on categories
that are insensitive to synchronization like Printer and Snor-
ing, but much worse than our methods on categories sensi-
tive to synchronization such as Dog and Drum. One of the
reasons that turkers consider some of the real cases as fake
is that a few original audios might include light background
music or other noise which appears not fitting with the vi-
sual content.

5.5. Additional experiments

Multi-category results: We test our multi-category model
on the VEGAS dataset by conducting the real/fake experi-
ment in Sec 5.4 and find on average 46.29% of the generated
sound can fool human (versus 73.63% of the best single-
category model). Note a random baseline is virtually 0%
as humans are very sensitive to sound. Another solution of
multi-category results can be achieved by utilizing the state-
of-the-art visual classification algorithms to get the category
label before applying the per-category models.

Comparison with [15]: [15] presents a CNN stacked with
RNN structure to predict sound features (cochleagrams) at
each time step, and audio samples are reconstructed by
example-based retrieval. We implement an upper bound
version by assuming the cochleagrams of ground truth
sound are given for test videos. And we retrieve the sound
from training data with the stride of 2s. This provides
a baseline stronger than the method in [15]. We do not
observe noticeable artifacts on the boundary of retrieved
sound segments, but the synthesized audio does not syn-
chronized very well with the visual content. We also con-
duct the same real/fake evaluation on the Dog and Drum cat-
egories, and the generated sound with this upper bound can
fool 40.16% and 43.75% of human subjects respectively,
which are largely outperformed by our results (64.32% and
70.83%).

On the other hand, we also test our model on the Great-
est Hits dataset from [15]. Note that our model has been
trained to generate much longer audios (10s) than those in
[15] (0.5s). We evaluate the model via a similar psychology
study as described in Sec 6.2 of [15]. 41.50% of our gener-
ated sounds are favored by humans over real sound, which is
competitive with the method in [15] that achieves 40.01%.
The experiments show the generalization capability of our
model.

6. Conclusion

In this work, we introduced the task of generating realis-
tic sound from videos in the wild. We created a dataset for
this purpose, sampled from the AudioSet collection, based
on which we trained three different visual-to-sound deep
network variants. We also provided qualitative, quantitative
and subjective experiments to evaluate the models and the
generated audio results. Evaluations show that over 70% of
the generated sound from our models can fool humans into
thinking that they are real. Future directions include explic-
itly recognizing and reasoning about objects in the video
during sound generation, and reasoning beyond the pixels
and temporal duration of the input frames for more contex-
tual generation.
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