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ABSTRACT

HANSONG ZHANG: E�ective Occlusion Culling for the Interactive

Display of Arbitrary Models.

(Under the direction of Dinesh Manocha.)

As an advanced form of visibility culling, occlusion culling detects hidden objects

and prevents them from being rendered. An occlusion-culling algorithm that can

e�ectively accelerate interactive graphics must simultaneously satisfy the following

criteria:

� Generality. It should be applicable to arbitrary models, not limited to architec-

tural models or models with many large, polygonal occluders.

� Signi�cant Speed-up. It should not only be able to cull away large portions of

a model, but do so fast enough to accelerate rendering.

� Portability and Ease of Implementation. It should contain as few assumptions

as possible on special hardware support. It must also be robust (i.e. insensitive

to 
oating-point errors).

Based on proper problem decomposition and e�cient representations of cumula-

tive occlusion, this dissertation presents algorithms that satisfy all three of the criteria

listed above. Occlusion culling is decomposed into two sub-problems|in order for

an object to be occluded by the occluders, its screen-space projection must be inside

the cumulative projection of the occluders, and it must not occlude any visible parts

of the occluders. These two necessary conditions are veri�ed by the overlap tests

and the depth tests, respectively. The cumulative projection and the depth of the

occluders are represented separately to support these tests.

Hierarchical occlusion maps represent the cumulative projection to multiple res-

olutions. The overlap tests are performed hierarchically through the pyramid. The

multi-resolution representation supports such unique features as aggressive approx-

imate culling (i.e. culling away barely-visible objects), and leads to the concept of

levels of visibility.
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Two depth representations, the depth estimation bu�er and the no-background

Z-bu�er, have been developed to store the depth information for the occluders. The

former conservatively estimates the far boundary of the occluders; the latter is derived

from a conventional Z-bu�er and captures the near boundary.

A framework for a two-pass variation of our algorithms is presented. Based on

the framework, a system has been implemented on current graphics workstations.

Testing of the system on a variety of models (from 300,000 to 15 Million polygons)

has demonstrated the e�ectiveness of our algorithms for the interactive display of

arbitrary models.
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Chapter 1

Introduction

A major focus of research in computer graphics has been the interactive display of

large 3-D models. Massive models are commonly produced in many applications such

as computed-aided design (CAD) of large mechanical systems, architectural visual-

ization, and urban planning. Driven by the need to render large models quickly, the

capabilities of hardware graphics systems have been increasing considerably over the

years. State-of-the-art high-end commercial systems have peak throughputs of tens

of million polygons per second and support advanced rendering features like lighting,

texture mapping, and anti-aliasing in real-time. This is a dramatic improvement com-

pared to ten years ago, when high-end systems were capable of only tens of thousands

of shaded polygons per second, without texture mapping or anti-aliasing. However,

the size and complexity of 3-D models have increased in a more dramatic fashion,

as more and more large-scale design and manufacturing projects resort to computer

assistance to reduce cost and shorten the development cycle. For example, the model

of a Boeing 777 jet passenger airliner has about 2 million parts and a total of 500 mil-

lion polygons. The brute-force rendering of this model (by sending all the polygons

directly to the hardware system) at 20 frames per second would require a graphics

system capable of drawing 10 billion polygons per second. Current graphics hardware

is not even close to meeting this requirement.

As interactive rendering of large models exceeds the performance limit of hardware

systems, measures must be taken to reduce the number of primitives (polygons or

curved surfaces) that have to be rendered for each frame. This reduction, however,

should not introduce too many visual artifacts, if any at all. Visibility culling, model

simpli�cation, and image impostors are among the commonly used primitive reduction

techniques. Often, several techniques must be employed at the same time to bring

down the primitive count to levels that the graphics hardware can handle at interactive



rates.

Visibility culling is based on the fact that an object does not have to be rendered

if the viewer cannot see it; i.e. only visible (or partially visible) objects need to be

drawn. Visibility culling algorithms detect objects not visible from the viewer, and

prevent them from being rendered. An object in a scene may be non-visible to the

viewer for various reasons. For example, objects outside the �eld of view cannot be

seen; removing these objects is called view-frustum culling, since the �eld of view is

typically de�ned by a frustum. If a scene is comprised of closed objects, and the

viewer is always on their outside, surfaces facing away from the viewer (back-faces)

are always non-visible and can thus be omitted from rendering by back-face culling.

Furthermore, surfaces inside the �eld of view and facing the viewer may still not be

visible because they can be occluded by other surfaces that are opaque and nearer

to the viewer. Detecting such occluded objects and removing them from rendering

is called occlusion culling. This dissertation presents a new approach to occlusion

culling.

Occlusion is one of the most common phenomena in the human visual experience,

whether in a virtual environment or in the real world. In typical models, most objects

are not visible to the viewer from most viewpoints. This means that, for each frame,

only a small portion of the total primitives needs to be rendered. As an example,

Figure 1.1 shows the notional model of the auxiliary machine room (AMR) in a

submarine, with a total of 632,252 polygons. From the particular view de�ned by the

view-frustum shown in the �gure, over 80% of the model (the parts drawn in red) are

occluded by the parts shown in blue; in other words, approximately 500K polygons

can be culled away with occlusion culling.

If the AMR model is rendered using a typical hardware graphics system with

depth-bu�er visibility but without occlusion culling, the non-visible parts will con-

sume many system resources (coordinate transformations, lighting, scan-conversion,

etc.) before they are discarded by the depth comparison. Although the depth bu�er

determines visibility correctly, it is located at the end of the rendering pipeline and

cannot prevent unnecessary computation on occluded parts in earlier stages. The aim

of occlusion culling is to detect large numbers of non-visible primitives and remove

them as early as possible. If done in software, it prevents occluded objects from being

sent to the hardware graphics system at all.

Occlusion culling has been successfully applied to some specially structured virtual

environments such as building interiors. However, the majority of the 3-D models in

2



            

Figure 1.1: Occlusion in the notional model of the auxiliary machine room in a
submarine

typical applications (like CAD) are of a general, unrestricted nature. For these mod-

els, occlusion culling has not been widely used due to the lack of e�ective occlusion

culling algorithms. We believe that an e�ective occlusion culling algorithm for inter-

active graphics must satisfy all of the following criteria:

� Generality. The algorithm must be applicable to arbitrary models, not limited

to architectural models or models with plenty of big, polygonal occluders.

� Signi�cant Culling and Speed-up. It must be able to cull away large por-

tions of a model, and do so quickly enough to accelerate interactive graphics.

The time taken by occlusion culling should not exceed that taken by brute-force

rendering of the culled-away portions of scene (although with proper pipelining

of culling and rendering, this constraint is no longer necessary.)

� Portability and Ease of Implementation. The algorithm should make few

assumptions as to graphics hardware features|especially those rarely supported

or di�cult to implement. It should also be robust, so that implementations are

not 
awed by 
oating point errors.
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My Thesis and Main contributions. The goal of this dissertation is to provide a

new approach to e�ective occlusion culling, thereby pave the way for the wide-spread

use of occlusion culling in interactive 3-D graphics. My thesis is: By employing a

proper decomposition of the occlusion culling problem and e�cient representations

of occlusion, we can obtain e�ective occlusion culling algorithms and systems that

simultaneously meet all our criteria. More speci�cally, our major contributions are

as follows:

� We decompose the occlusion culling problem into overlap tests and depth tests.

The overlap tests are 2-D, image-space operations and can thus take advantage

of image analysis techniques. In our algorithm, occlusion is represented in part

by a gray-scale image called an occlusion map. The analysis of the occlusion map

is based on hierarchical occlusion maps (HOM), which form an image pyramid

based on the occlusion map.

� The occlusion map pyramid supports fast overlap tests and high-level occlusion

estimation. The latter has led to the notion of levels of visibility, and (among

others) the unique feature of approximate culling that can remove barely-visible

objects.

� For depth tests, we use the depth estimation bu�er to conservatively estimate

the depth ranges beyond which occlusion takes e�ect. It replaces the z-bu�er

for occlusion culling purposes and eliminate the need for ordering of objects

in depth. As an alternative, we also use a variation of the z-bu�er, called the

no-background z-bu�er, when the hardware graphics system supports a user-

accessible, conventional z-bu�er.

� We have implemented a system that performs e�ective occlusion culling on real-

world models. To the best of our knowledge, this is the �rst general-purpose

occlusion-culling system that runs at interactive frame rates on commercial

graphics systems, accelerating the display of arbitrary, large-scale and real-

world models.

This dissertation is organized as follows. In Chapter 2 we de�ne the basic termi-

nology, present several of our observations, and review the previous work. In chapter

4



3, we describe our decomposition of the occlusion culling problem into 2-D overlap

tests and depth tests, and give an outline of our algorithms. Chapter 4 introduces

hierarchical occlusion maps, the basic data structure on which our algorithm is based.

Chapter 5 discusses how the occlusion maps are used in overlap tests, highlighting

the special features of our algorithm. We present several depth determination meth-

ods in Chapter 6 to round out the occlusion tests. Chapter 7 presents algorithms

for occlusion selection, both as pre-processing and at run-time. Finally, Chapter 8

discusses the implementation of our algorithm on commercial graphics platforms, and

analyzes the performance we have obtained for di�erent kinds of models. We draw

conclusions and propose future work in Chapter 9.
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Chapter 2

Background

2.1 Terminology and Observations

In the following discussions we use objects to refer to the geometric elements that

comprise the scene. A object may be a collection of graphics primitives (polygons or

free-form surfaces) or a single primitive; it may or may not correspond to real-world

objects such as a table or a chair.

2.1.1 Occluders and Occludees

In the context of occlusion culling, objects in a scene can be classi�ed as occluders and

occludees, i.e. those hiding other objects and those hidden. Since visibility changes

dynamically as the viewer moves, this classi�cation potentially di�ers for each frame.

Occlusion culling begins inevitably with selecting some of the objects as occluders,

since without these there is no occlusion. The amount of occlusion we will have

depends directly on the choice of occluders. The optimal occluder set includes only

objects that really contribute to occlusion; that is, it should contain only visible

objects, and the visible portions of partially visible objects. An occluded object can

also occlude other objects, but its occlusion is redundant in the sense that objects it

occludes are also hidden by its own occluders. By removing it from the occluder set

we do not lose any occlusion.

The problem of selecting an optimal occluder set is therefore the visibility problem

(or equivalently, the occlusion culling problem) itself. This is a typical \chicken-and-

egg" situation, in which the exact solution to a sub-problem requires a solution to the

problem itself. Because of this, we do not seek to compute the optimal occluder set,



View
Point

A

B

Figure 2.1: Cumulative occlusion

but instead use some heuristics to estimate it. The estimation is made up of potential

occluders, some of which may be occluded by others.

An object going through occlusion tests is called a potential occludee before it is

determined to be occluded (or not).

2.1.2 The Fundamental Property of Occlusion

A fundamental fact that must be taken into account in occlusion determination is that

the cumulative occlusion of multiple objects can be far greater than the sum of what

they are able to occlude separately. This is illustrated in 2-D in Figure 2.1 with two

occluders A and B. Neither A nor B can individually occlude any of the gray shapes;

so if we simply take the union of objects they separately occlude, the gray shapes

will still not be considered their occludees. However, A and B do occlude the gray

shapes if their occluding e�ects are combined to produce the cumulative occlusion,

which is equivalent to the occlusion of the dotted line from the particular view. A

more extreme case is shown in Figure 2.2, where the scene has a dense population

of small objects. In this case, the simple sum of the objects' separate occlusions is

probably zero since no object completely occludes any other objects. But, in fact,

there is good occlusion in this scene|one is not able to see very deep into the scene

before the cumulative occluding e�ects of the small objects completely block the view.

Computing cumulative occlusion is called occluder fusion.

Note that cumulative occlusion is largely view-dependent, i.e. total occlusion

provided by the same set of objects can vary greatly depending on the viewpoint.

Thus, in general, cumulative occlusion has to be dynamically computed at each frame.

7



            

Figure 2.2: A \forest" of smaller objects

An occlusion culling algorithm must be able to perform occluder fusion dynamically

and e�ciently to be e�ective in general environments. In fact, their not being able

to do so is a major reason why most object-space occlusion culling algorithms are

limited to special environments, where occluder fusion is less important due to the

abundance of large polygonal occluders (see section 2.2, Previous Work, for details).

2.1.3 Occlusion Representation

The fundamental property of occlusion discussed in the previous section immediately

points to a need for a separate representation of cumulative occlusion from multiple

objects. The scene representation itself usually does not contain this view-dependent

information. The representation of individual objects cannot well accommodate it

either, since it is of a more global nature and at the multi-object level. A good

representation of cumulative occlusion must be easy to compute from given occluders,

and it must be easy to use for occlusion tests.

An occlusion representation can be in object space or image space. In object

space, the result of occluder fusion for the scene and view shown in Figure 2.1 would

be represented by the dotted poly-line. Analogously, in 3-D, the fusion could be

8



Initialize occlusion representation (OR) to empty;

For each object�

Perform occlusion test(s) against OR;

If occluded

Discard object (cull);

else

Render object;

Update OR;

�
The objects have to be traversed in roughly front-to-back order in order for objects

traversed later to take advantage of occlusion from objects traversed earlier.

Figure 2.3: Progressive occlusion culling

represented by a polygonal mesh. However, computing such representations geomet-

rically for arbitrary object con�gurations is a very di�cult problem. An image-space

representation is easier to obtain. For example, the depth bu�er from the rendering

of occluders represents their cumulative occlusion; actually, it can be regarded as a

discrete representation of the polygonal mesh we have just mentioned. This process

is robust and easily accelerated by ordinary graphics hardware.

The representation of occlusion is the most important aspect of an occlusion

culling algorithm, and largely decides its capabilities. As will be seen in the fol-

lowing chapters, the advantages of our approach to occlusion culling is rooted in our

new occlusion representations that treat the occluders' screen projection and depth

separately.

2.1.4 Progressive vs. Multi-pass Occlusion Culling

Occlusion determination is by nature progressive in the sense that any object, once

determined visible, becomes an occluder. Its contribution should be accumulated in

the occlusion representation before the next object goes through occlusion tests, since

the next object might be occluded because of the newly added occlusion. The process

of progressive occlusion culling is shown in Figure 2.3. Note that to cull as much as

possible, the objects have to be traversed in roughly front-to-back order, so that any

given object is likely to be farther away than previously traversed objects, and thus

likely to be able to take advantage of the cumulative occlusion.

A problem with this approach is that each update to the occlusion representation

9



OR: the occlusion representation

PO: the set of potential occluders to be accumulated into OR

Initialize OR to empty;

Initialize PO to empty;

For each object

Perform occlusion test(s) against OR;

If occluded (culled)

Discard object;

else

Render object;

Add object to PO;

If PO is large enough

Update OR with objects in PO;
Reset PO to empty;

Figure 2.4: Multip-pass occlusion culling

may have some constant but non-trivial overhead which makes per-object updates too

expensive to implement. For example, in the algorithm proposed in this dissertation,

updating the occlusion representation involves reading part of the frame bu�er. Each

read takes substantial time to set up on typical graphics hardware. In this case,

multi-pass occlusion culling has to be used instead of progressive culling to reduce

the number of updates.

When an object is determined to be visible, its contribution to occlusion is not

accumulated to the occlusion representation immediately. Rather, it is put into a

potential-occluder set. Contributions from objects in the set are merged into the

representation in a single update in the future. That is, an update to the occlusion

representation in a multi-pass algorithm is performed for the multiple objects in the

potential occluder set. The set contains only potential occluders because an object

in the set may well have been detected as occluded, had the occlusion of some other

objects in the set been accumulated promptly in the occlusion representation (as in the

case of progressive culling). But since the update is not progressive, no object in the

set can be occluded due to the contributions of other objects in the set. Consequently,

an object may be used to update the occlusion representation even if it is occluded.

This wasted computation, which does not exist in progressive occlusion culling, is a

trade-o� in an e�ort to reduce the number of updates.
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An update can be triggered by a variety of criteria. For example, we may set

a limit on the total number of polygons in the potential occluder set. Once the

limit is exceeded, an update is performed and the set is emptied. An update to

the occlusion representation corresponds to a pass in multi-pass occlusion culling.

Progressive occlusion culling can be conveniently viewed as multip-pass culling with

one pass per object. The general multi-pass algorithm is outlined in Figure 2.4.

We have found that one-pass occlusion culling (in which the occlusion representa-

tion is updated only once per frame) has often to be used to minimize the overhead of

updating the occlusion representation. This special case of the multi-pass algorithm

is executed in the following steps:

1. Select occluders;

2. Build occlusion representation;

3. Occlusion culling;

4. Final Rendering;

2.2 Related Work

The �elds of visibility determination, and in particular occlusion culling, have been

areas of active research ever since the early days of computer graphics. We now review

some of the previous work, classi�ed into three categories:

� Hidden surface removal algorithms, for computing the visible portions of a col-

lection of geometric surfaces.

� Global visibility algorithms, which compute and store visibility information to

support visibility queries between pairs of primitives, or track visibility changes

as the viewer moves

� Occlusion culling algorithms, which detect and discard the hidden portions of

a model in large groups to speed up rendering.

We will mention important work in the �rst two categories quickly, and have a

detailed look at the previous occlusion culling algorithms.

2.2.1 Hidden Surface Removal

At the very least, computer graphics systems should be able to display surfaces with

correct visibility. This makes hidden surface removal (or equivalently, visible sur-
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face determination) a fundamental problem in computer graphics. Given a geometric

model (most often a collection of polygons) and the viewing parameters, hidden sur-

face algorithms �nd out which surfaces or parts of surfaces are visible to the viewer.

Sutherland et. al. [SSS74] presents a characterization of the algorithms. The book by

Foley et. al. [FDFH90] has a chapter on visible-surface determination that includes

most of the algorithms developed so far. Speci�cally, algorithms for hidden surface

removal include visible-line determination [Rob63, App67], the z-bu�er (or depth-

bu�er) algorithm [Cat74], the depth-sort algorithm [NNS72], scan-line algorithms

[WREE67, BK70, Bou70, Wat70], area-subdivision algorithms [War69, WA77] and

ray-tracing [App68].

Visibility determination is closely related to depth sorting of primitives. Once

the primitives are ordered in depth, they can be rendered back-to-front for correct

visibility. The binary space partitioning (BSP) algorithms [FKN80] produce an or-

ganization of polygons from which their depth ordering can be quickly derived. More

recently, Naylor ([Nay92]) described a algorithm which projects a 3-D BSP tree in

object space into a 2D BSP tree in screen space for depth ordering and occlusion

culling. In general, the problem with BSP-trees is that polygons frequently have to

be split as they are registered in the tree, and, for an n-polygon scene, the splitting

can generate O(n2) new polygons in the worst case. Although the worst case hardly

ever happens in practice, splitting the polygons involves computing intersections of

the polygons, which is not numerically robust. Also, dynamic model changes are a

challenge for BSP algorithms.

There has been signi�cant research in visible surface computation in computa-

tional geometry, and many algorithms have been proposed [Mul89, McK87] (see

[Dor94] for a recent survey). However, the practical utility of these algorithms is

unclear at the moment.

2.2.2 Global Visibility

Global visibility algorithms pre-compute visibility information for arbitrary viewer

positions in the 3-D space and store it in special data structures. At run-time, correct

visibility is retrieved from the data structures according to the current view point.

Aspect graphs have been extensively investigated in computer vision for appli-

cations like object recognition for robots [GM90, GCS91, PD90, CH92]. The goal

for this research is to characterize changes in aspect, i.e. topological appearance, of

surfaces as the viewer moves in space. The changes are called visual events. As an
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(a) (b) (c)

Figure 2.5: Changes in topological appearance

example, Figure 2.5 shows three views of the same tetrahedron. The �rst two views,

(a) and (b), share the same topological appearance, whereas view (c) is topologically

di�erent from (a) and (b). The 3-D space is subdivided into volumes of constant

aspect (i.e. the same topological appearance), separated by boundaries across which

visual events occur. The dual of this subdivision is called the aspect graph. [PD90]

presented algorithms for generating the aspect graph under parallel or perspective

projections, for convex or non-convex polyhedra. They also introduced a complex

data structure named asp to store the results. [CH92] presented a di�erent aspect

graph algorithm for non-convex polyhedra under perspective projections.

Form-factor computation in radiosity algorithms (for simulating global di�use il-

lumination) requires global visibility information among pairs of patches. Solutions

to this problem bear much resemblance to the construction of aspect graphs. [TH93]

introduced an algorithm which conservatively supports visibility queries between two

patches, as well as providing a list of blocking objects between them. The visibility

complex [Poc92, PV95] stores 2-D global visibility information for \
atland" radiosity

(i.e. the imaginary \radiosity" computation among lines on a plane). Its 3-D exten-

sion, the 3-D visibility complex [DDP96], is similar to the asp. More recent research

along this line includes the visibility skeleton [DDP97], which aims to simplify the

intricate data structures of the visibility complex.

The application of global visibility algorithms in interactive display of complex

models is limited by the fact that the worst-case complexity is these algorithms is as

high as n6. Although the worst case is seldom encountered in practice, interactive

graphics has had di�culty handling even the much lower complexity of n2. In general,

computing and storing global visibility into a database as preprocessing and then

querying the visibility database at run-time do not constitute a feasible solution to

the visibility determination problem for large models.
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2.2.3 Visibility Culling Algorithms

The traditional hidden-surface removal algorithms focus on generating images with

correct visibility relationships among objects. They are ine�cient for a scene with

many polygons because they have to explicitly traverse and process every polygon

in the scene to generate a visibility solution. Visibility culling algorithms, on the

other hand, seek to quickly detect and remove large portions of a scene not seen by

the viewer, and thus accelerate image generation. Visibility culling algorithms do not

replace traditional hidden surface algorithms, because they do not resolve visibility at

the �ne level (e.g. at the pixel level for raster graphics) required for the �nal graphics

output. The two types of algorithms must work together to generate a rendered

frame: visibility culling �rst removes large groups of hidden polygons quickly, and

traditional hidden-surface algorithms will then process the remaining polygons and

generate the �nal output.

Visibility culling is based on two key ideas: hierarchical data structures and po-

tentially visible sets.

2.2.3.1 Hierarchical Data Structures

Geometric models often contain millions of primitives. Traversing all the primitives

to compute visibility for each of them is too expensive to do in real-time. Hierarchical

organization of primitives helps to reduce this per-primitive operation to an e�cient

logarithmic search.

Clark [Cla76] proposed a tree-structured bounding-volume hierarchy to accelerate

the rendering of complex models. Every object has a bounding volume, which is sim-

ple in shape and spatially contains the object. For instance, the axis-aligned bounding

box is one of the most commonly used bounding volumes. Using a regularly-shaped

bounding volume instead of the object itself greatly accelerates visibility determina-

tion. An object cannot possibly be visible if its bounding volume is not. However,

there is no guarantee that the object will be partially visible if the bounding volume

is partially visible, since the bounding volume generally encloses more space than the

object itself. So if we determine an object to be partially visible because of its par-

tially visible bounding volume, and thus decide to render the object, we may actually

end up rendering a non-visible object. Thus the use of bounding volumes actually

introduces the concept of conservative culling, which will be further discussed when

we review the notion of potentially visible sets in the next section.
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From bounding volumes of objects, higher-level bounding volumes can be built by

grouping adjacent volumes into larger ones. This process can be applied recursively

to construct in a tree of bounding volumes called the bounding-volume hierarchy. In

the hierarchy, the leaves are the bounding volumes of objects and the root bounding

volume encloses the whole scene. The main purpose of having a bounding volume

hierarchy is to take advantage of the spatial coherence of the model: objects close to

each other tend all to be either visible or non-visible at the same time. The bound-

ing volume hierarchy collects and bounds spatially adjacent objects so that spatial

coherence can be exploited, in a hierarchical fashion, in visibility tests. If a non-leaf

bounding volume is determined to be totally non-visible, so must all its descendant

bounding volumes; thus they can be culled away without being tested individually

for visibility. On the other hand, if the non-leaf bounding volume is only partially

visible, then its child bounding volumes may have a chance to be completely hidden

due to their smaller spatial extent. So we descend into the child bounding volumes

to perform further visibility tests. This process of hierarchical visibility culling is

an e�cient logarithmic search for non-visible objects that removes large groups of

non-visible geometry without inspecting individual primitives. Clark proposed hi-

erarchical view-frustum culling, which has since been widely used. However, the

\recursive descent visible-surface algorithm" he proposed is unlikely to be e�cient

for lack of a representation of cumulative occlusion.

Spatial proximity determines how objects are (recursively) clustered in forming a

bounding volume hierarchy, but it is not the only possible criterion for grouping object

in a hierarchical model organization. For example, the special-purpose hierarchy used

in hierarchical back-face culling ([KMGL96] has been built with both spatial and

normal distributions in mind.

Hierarchical data structures for model representation exploit the spatial coherence

among 3-D primitives. For 2-D images, data structures have also been proposed to

take advantage of image-space coherence, the fact that pixels near to each other tend

to have the same properties (color, opacity, etc.). This type of coherence means

blocks of pixels with similar properties can be considered as a whole without each

being inspected separately. Such blocks are often formed hierarchically in a quad-tree

structure, with tree nodes at di�erent levels representing di�erent block sizes. The

quad-tree is commonly called an image pyramid [TP75].

Image pyramids are typically employed for analyzing and accessing images in

multiple resolutions. The pyramid supports viewing of the scene at a higher, more
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general level (i.e. through a larger aperture or at a greater distance), with the details

\smoothed out" but global features preserved. An examples of this is the use of

mip-maps[Wil83], or hierarchical textures, to alleviate aliasing in texturing an object

at di�erent distances. Burt [Bur88] designed and implemented the Pyramid Vision

Machine based on the hierarchical (pyramidal) representation of images. The image

pyramid was used to support coarse-to-�ne searches and �ne-to-coarse measurement

of the images, which facilitates the author's e�orts to achieve \smart sensing" (i.e.

selectively gathering visual information critical to the task at hand).

As we will demonstrate in this dissertation, image pyramids are useful tools in the

analysis of occlusion. In particular, we use an occlusion-map pyramid as part of our

representation of occlusion.

2.2.3.2 Potentially Visible Set

The ultimate goal of occlusion culling is to increase frame rates. Consequently, the

time taken by identifying visible or hidden objects must be well controlled. Finding

the exact set of visible objects often takes much more time than that saved by not

rendering non-visible objects, in which case visibility culling actually leads to slower

frame rates. So most algorithms seek to �nd only the potentially visible set (PVS),

proposed by [ARB90], which is a superset of the exact set of visible objects; in other

words, a typical PVS contains all the visible objects and some non-visible objects.

The PVS is less expensive to �nd than the exact set and can still be signi�cantly

smaller than the original model. Finding a PVS is often called conservative visibility

culling. The quality of a PVS is measured by how conservative it is, i.e. the degree to

which it approximates the minimal visible set. However, it should be emphasized that

the e�ectiveness of occlusion culling in rendering acceleration depends not only on

the quality of a PVS, but also on the time taken to compute it. It is often worthwhile

to build a more conservative PVS in exchange for less time overhead, in an e�ort to

reduce the total frame time.

The notion of a PVS nicely sums up the goal of all visibility culling algorithms:

to produce a PVS. Two simple forms of visibility culling are view-frustum culling

and back-face culling. View-frustum culling removes objects outside the �eld of view.

Back-face culling removes primitives facing away from the viewer, which cannot pos-

sibly be seen if the scene is made up of closed objects and the viewer remains out-

side them. Each method can be accelerated by a hierarchical data structure. They

produce a very conservative PVSs, but due to their low overhead (relative to the
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amount of geometry they can typically cull away) they are among the most widely-

used rendering-acceleration techniques.

As a more sophisticated form of visibility culling, occlusion culling detects and

discards objects which, due to occlusion from other objects, are not visible from the

viewer. This is much more di�cult than view-frustum or back-face culling. Below we

review some major occlusion culling algorithms.

2.2.3.3 Cells and Portals

The terms cells and portals were �rst used by Jones [Jon71] in his algorithm for

hidden line removal. In his algorithm, the model geometry is subdivided into convex

polyhedral cells and convex polygonal portals, so that every polygon in the model

belongs to the face of one or more cells. This subdivision is represented by a cell

adjacency graph, in which any two cells that share a portal are adjacent. For rendering

with hidden-line removal, the graph is traversed in depth-�rst order. The traversal

begins by drawing the faces and portals of the cells containing the view point. After

each portal is drawn, the cell on the other side of the portal is recursively traversed.

The portal sequence, i.e. all the portals on the path from the cell containing the viewer

to the cell that is being traversed, forms a mask to which the faces of the current

cell are clipped. The mask represents the intersection of the in�nite frusta de�ned by

the viewpoint and each portal in the sequence. If the a portal does not intersect the

mask, it must be hidden from the viewer, and the cell on the other side need not be

traversed.

Airey [ARB90] proposed the notion of densely occluded environments|scenes only

a small fraction of which can be seen from most viewpoints. He further studied one

type of such environments suitable for a portal-based treatment, namely the archi-

tectural environment. The interior of a building is subdivided into rooms, which are

mutually occluded from one another except through doors and windows. The rooms

correspond to cells, and doors and windows to portals. In such environments, the

visibility problem is reduced to computing cell-to-cell visibility, by considering se-

quences of portals. Airey suggested multiple way to precompute cell-to-cell visibility,

including shooting random rays from the portals and using shadow volumes. Teller

et. al. [TS91] characterized cell-to-cell visibility as a linear programming problem

and gave a closed-form analytical solution. In both approaches, cell-to-cell visibility

is computed and stored as preprocessing; the time and storage space required by

the preprocessing tend to be excessive for large models. To eliminate the expensive
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preprocessing, Luebke et. al.[LG95] proposed a new approach to evaluating portal

sequences, resulting in fast, dynamic, but more conservative determination of cell-to-

cell visibility. Due to the dynamic nature of their method, interactive modi�cations

to the environment (e.g adding, moving, or resizing portals) are supported.

The above techniques are restricted to environments that can be divided into cells

and portals. They are not very e�ective for outdoor, open-space scenes and other

non-architectural models.

Other algorithms for densely-occluded but somewhat less-structured models have

been proposed by Yagel and Ray [YR96]. They used regular spatial subdivision to

partition the model into cells. However, the resulting algorithm are very memory-

intensive and does not scale well to large models.

2.2.3.4 Other Object-Space Approaches

Other object-space approaches to occlusion culling have been developed for environ-

ments more general than building interiors. Coorg and Teller [CT97] and Hudson

et al. [HMC+97]. proposed object-space occlusion culling algorithms for environ-

ments with many of large polygonal occluders. These algorithms dynamically choose

a subset of polygons as occluders and use them for occlusion culling. [CT97] com-

puted an arrangement corresponding to a linearized portion of an aspect graph; at

run-time, they tracked the viewpoint with respect to the arrangement to check for

occlusion. [HMC+97] made use of shadow frusta formed by the occluder polygons

and the viewpoint. Objects completely inside one of the shadow frusta are culled

away.

These algorithms are not restricted to indoor, architectural models; however, the

choice of occluders is limited to polygons, convex objects, or simple combination of

convex objects (e.g. two convex polytopes sharing an edge). They do not combine

\forests" of small, non-convex, and disjoint occluders for signi�cant cumulative oc-

clusion, and are thus e�ective only in scenes with big, well-shaped occluders, e.g. city

models. In other words, the general e�ectiveness of these algorithms is limited due

to the lack of a representation for cumulative occlusion.

2.2.3.5 Hierarchical Z-Bu�er

The hierarchical Z-bu�er algorithm was presented and improved by Greene in [GK93,

GK94]. In our terminology, cumulative occlusion is represented by an ordinary z-

bu�er, which forms the �nest level of the Z-pyramid. Other levels of the pyramid
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are built by recursive �ltering with a maximum operator on 2 � 2 blocks of pixels;

that is, at all other levels, each entry is the farthest z value in the corresponding

2 � 2 block of the next �ner level. Whenever the z-bu�er is modi�ed during scan-

conversion of the primitives, the new z values are propagated to coarser levels. The

scene is organized into an octree to facilitate hierarchical culling and front-to-back

traversal of the nodes.

The algorithm follows the same steps as the typical progressive occlusion culling

algorithm shown in Figure 2.3. For each frame, the octree nodes are processed in

front-to-back order. Each node (a cube) is �rst scan-converted and tested against the

Z-pyramid to see if any part of it is visible (i.e. if any visible pixels are created in

the scan-conversion of the cube). If the box is non-visible, so must be the geometry

inside. Otherwise, the geometry is rendered, and the Z-pyramid is updated. The

scan-conversion of the cube is done hierarchically from coarse to �ne resolutions cor-

responding to the levels of the z-pyramid. If, at a coarse level, a pixel of the cube

already has a greater z value than the pixel in the z-pyramid, then the corresponding

part of the cube is determined to be hidden. Otherwise, the algorithm goes into

the next �ner level for further tests. In so doing, the algorithm takes advantage of

image-space coherence to reduce the number of depth comparisons.

The algorithm also exploits temporal coherence by �rst rendering visible primitives

from the previous frame. The image-space occlusion representation by the Z-pyramid

makes the algorithm well suited for general models.

However, using this algorithm for interactive rendering involves many hardware

assumptions. Maintaining the Z-pyramid in real-time is expensive (in terms of the size

and bandwidth of the frame bu�er memory) and not supported by current hardware.

The only purpose of the Z-pyramid is for hierarchical depth comparison, thus it

requires careful analysis to ensure that the overhead of pyramid generation pays o�

in the reduced number of depth comparisons (otherwise a plain Z-bu�er should be

used instead). Hardware Z-queries (i.e. whether scan-converting certain primitives

yields any visible pixels) are also rarely supported in hardware and can be expensive

to perform in a pipelined architecture.

[Geo95] described an implementation of the above algorithm (but without the

z-bu�er hierarchy) on a parallel graphics computer (Pixel-Planes 5).
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2.2.3.6 Hierarchical Polygon Tiling

The hierarchical z-bu�er algorithm is prone to aliasing problems (i.e. zig-zag polygon

edges) because the point sampling used in scan conversion. In an e�ort to reduce alias-

ing, Greene [Gre96] presented a hierarchical tiling algorithm using coverage masks.

The algorithm combines mask-based hierarchical polygon scan conversion with hier-

archical occlusion culling. It employs a hierarchy of tri-valued masks, known as the

triage mask pyramid, to hierarchically represent the screen projections of primitives

as they are rendered. Each entry in a mask represents a rectangular region in the

image; the value of the entry indicates whether the region is vacant, covered or active

(partially covered). An entry in the mask pyramid is split into 4 quadrants in the

next �ner level of the pyramid. The entries are updated during the hierarchical scan

conversion of the polygons.

Without other means to resolve depth, the algorithm organizes the model as an

octree of BSP-trees, in order to achieve strict front-to-back polygon traversal and

hierarchical visibility culling at the same time. With guaranteed depth ordering, the

coverage pyramid su�ces as an occlusion representation. Similar to the hierarchical

z-bu�er approach, the algorithm traverses the nodes in the octree in front-to-back

order. The octree node is hierarchically scan-converted and compared to the coverage

pyramid. If it is in a covered region, then it is occluded, and consequently all geometry

in it is culled away. Otherwise, polygons are tiled into the mask pyramid using

hierarchical polygon scan-conversion (the �nal image is also updated); the BSP tree

in each octree node provides front-to-back ordering of the polygons.

The application of this algorithm for interactive purposes requires support for

hierarchical scan-conversion in hardware; it remains to be seen whether such scan

conversion is friendly to hardware implementations. The use of BSP-trees seriously

limits its ability to handle large, arbitrary models, e.g. those from CAD applications.

Also, it is currently limited to polygonal models only.

2.2.3.7 Other Algorithms

There is substantial literature on the visibility problem from the 
ight simulator

community. Their publications have described algorithms that often bear strong

resemblance to those developed separately (and often later) in the computer graphics

community. An overview of 
ight simulator architectures is given in [Mue95]. Most

notably, the Singer Company's Modular Digital Image Generator [Lat94] renders
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polygons in front-to-back order using a hierarchy of mask bu�ers to skip over already

covered spans, segments or rows in the image. General Electric's COMPU-SCENE

PT2000 [BE89] uses a similar algorithm but does not require the input polygons to

be rendered in front-to-back order, and the mask bu�er is not hierarchical. The Loral

GT200 [Lor94] �rst renders near objects and �lls in a (possibly hierarchical) mask

bu�er, which is used to cull away far objects. This is similar to the hierarchical

coverage masks used in the hierarchical polygon tiling algorithm. The SOGITEC

APOGEE system [(SO94] uses the Meta-z-bu�er, which is similar to hierarchical

z-bu�er.
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Chapter 3

Algorithm Outline

In this chapter, we present a high-level description of our occlusion culling algorithm,

focusing on the fundamental ideas and a framework for its implementation. Details

will be presented in in the following chapters.

3.1 Problem Decomposition

Occlusion representations largely determine the capabilities and features of an oc-

clusion culling algorithm. In our approach, cumulative occlusion is represented in

two parts. First, an occlusion map captures the cumulative projection of multiple

arbitrary occluders. The occlusion map is a gray-scale image, which is analyzed, in

multiple resolutions, through the construction of an occlusion map pyramid (Chapter

4). Occlusion maps do not contain depth information; separate depth representations

are computed either by estimating the occluders' depths using a software depth esti-

mation bu�er, or, if viable, by deriving a no-background Z-bu�er from a conventional

depth bu�er (Chapter 5).

Our two-part representation of occlusion re
ects a decomposition of visibility de-

termination (or equivalently, occlusion determination) into two sub-problems: a two-

dimensional overlap test and a depth test. The former decides whether the screen-

space projection of a potential occludee lies completely within the union of the screen

space projections of all the occluders, while the latter determines whether a potential

occludee is behind the occluders.1 Occlusion maps are used for the overlap tests, and

1On a side note, when a conventional depth-bu�er is used to resolve visibility, the overlap test
is implicitly performed as a side e�ect of depth comparisons by initializing the Z-bu�er with large
numbers.
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Figure 3.1: The decomposition of an occlusion test into a 2-D overlap test and a
depth test.

the depth representations support depth tests. These two tests correspond to two

necessary conditions that combine to be a su�cient condition for occlusion. This

decomposition is qualitatively illustrated in Figure 3.1. In order for the darker teapot

to be occluded by the light-colored one, its screen projection must lie inside that of

the latter, and it must be farther away.

This decomposition is desirable for several reasons. First, it is backed by the

observation that the amount of occlusion we get is more sensitive to approximations

in the cumulative projection than to the approximations in determining depth. This

is illustrated in 2-D in Figure 3.2. In 3.2(a), the thick line segment corresponds to

the cumulative projection of the occluders. In 3.2(b) we conservatively estimate the

cumulative projection, and the estimation is shown by a shorter line as compared

to (a). The gray regions in (b) show the loss of occlusion due to the conservative

estimation. Depth representations are shown in (c) and (d). In both cases, the

occluders' depth is conservatively estimated by a line (shown dotted). The depth

test is then to determine whether the tested object is behind the line (relative to

the viewer); if it is, then it must be behind the occluders. In (d), we use a more

conservative estimation than (c), and the loss of occlusion is indicated by the gray

area. Now, as we have greater and greater depth in the scene (imagine the scene

extends to the right of the �gures), the gray area in (d) remains unchanged and thus

becomes less and less signi�cant as compared to the total volume in the view frustum.

On the other hand, the gray area in (b) extends and grows in proportion to the depth
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Figure 3.2: Projection and depth representations

of the scene.

This implies that it is bene�cial to consider projections and depth separately:

we can a�ord to be more conservative and more approximate with depth than we

can with projections. Separating the two leads to more 
exibility and leverage in

algorithm design.

Another major advantage of our decomposition is that, since the cumulative pro-

jection can be represented by a gray-scale image (the occlusion map), 2-D image

processing techniques can be applied to analyze it. In particular, we recursively low-

pass �lter the occlusion map into an image pyramid. This has led to fast overlap tests,

the notion of levels of visibility, and such unique features as aggressive approximate

culling (i.e. the removal of \barely visible" objects).

The third bene�t of our decomposition is that it enhances the portability of our
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Figure 3.3: An implementation of our algorithms in a two passes

algorithm. All hardware graphics systems by de�nition produce images, and thus

occlusion maps. However, how depth information is managed varies greatly. Some

systems do not have a depth bu�er. Some have a depth bu�er but it is not accessible

to the user or too slow to access in real-time. Others have easily accessible depth

bu�ers. By using a separate depth representation, we are able to employ di�erent

ways of depth management as appropriate for the underlining graphics system. Dif-

ferent depth representations can be plugged in without changing other parts of our

algorithm.

3.2 Framework

Here we outline the two-pass version of our occlusion culling algorithm. It actually

implements the one-pass occlusion culling algorithm presented in section 2.1.4, in

which the occlusion representation is updated once for each frame. The number of

passes of an algorithm is conventionally regarded as the number of accesses to the

hardware graphics system, not the number of updates to the occlusion representa-

tion. We access the hardware system twice per frame: once for building occlusion

representations, and once for �nal rendering. So, by convention, ours is a two-pass

algorithm. The rendering pipeline with our algorithm incorporated is illustrated in

Figure 3.3. The shaded blocks indicate components unique to our algorithm. For

each frame, the pipeline executes in two major phases:

1. Building the occlusion representation: The occluders are selected from the

scene database and rendered to build the occlusion map hierarchy. The depth

representation is computed as well.
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(a) Occluder selection: The bounding volume hierarchy of the occluder

database is traversed to �nd objects lying (totally or partially) inside the

viewing frustum. A subset of these objects is then selected as occluders,

based on a distance-based criterion and temporal coherence (Chapter 7).

(b) Rendering occluders and building the depth representation: The

selected occluders are rendered at proper levels of detail to form an image

in the framebu�er that is the original occlusion map (Chapter 4). If the

depth estimation bu�er is chosen as the depth representation, it is updated

for each occluder; or, if the no-background z-bu�er is used, it is derived

from the conventional z-bu�er after occluder rendering (6).

(c) Building the occlusion map hierarchy: The original occlusion map is

recursively �ltered to generate an occlusion map hierarchy (an image pyra-

mid.) This process can be accelerated by texture mapping with bilinear

interpolation (Chapter 4).

2. Visibility culling and �nal rendering: Having built the occlusion repre-

sentation in the �rst pass, the algorithm now traverses the bounding volume

hierarchy of the model database to perform visibility culling. Objects not culled

away are then rendered to produce the �nal image.

(a) View-frustum culling: Standard view-frustum culling is applied to the

model database.

(b) Occlusion culling: Each object in the view frustum is considered a po-

tential occludee and subject to occlusion culling. The following two tests

are performed for each potential occludee:

i. Overlap tests: The screen projection of the potential occludee is

tested against the occlusion map hierarchy to see whether it is com-

pletely within the opaque area of the cumulative projections of the

occluders (Chapter 5).

ii. Depth tests: The potential occludee is tested against the depth rep-

resentation to determine whether it is behind the occluders; or more

precisely, if it is behind a boundary beyond which occlusion takes e�ect

(Chapter 6).

(c) Final rendering: Object passing the two tests in (b) are determined to

be occluded and culled. Other objects are rendered at their proper levels
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of detail to produce the �nal image.

The above framework is tailored for implementation on currently available com-

mercial hardware graphics platforms. It should be noted that our occlusion represen-

tation and techniques for overlap and depth tests are not restricted to this particular

two-pass framework in any way. Straightforward modi�cations to the above frame-

work can yield a progressive algorithm or algorithms with more than two passes, if

they are favored by the underlying hardware graphics system. Also, the framework

implies a software system running on \black-box" graphics hardware that performs

rendering, but the occlusion representations and culling algorithms may very well be

implemented in hardware, if occlusion culling is to be supported in hardware directly.
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Chapter 4

Hierarchical Occlusion Maps

Hierarchical occlusion maps are an important part of our occlusion representation.

They form an image pyramid on which our occlusion culling algorithms are based.

In this chapter, we de�ne what occlusion maps are and discuss how a base map, and

then the map hierarchy, are built.

4.1 Occlusion Maps

When an opaque object is projected to the screen, the region covered by its projection

is made opaque. The screen opacity means another object will not be visible if it lies

farther away from the viewer and projects onto the same region. Similarly, when a

translucent object is projected, the region of its projection is made semi-opaque. More

precisely, the screen opacity is de�ned by a real function �(x; y) : R2 ! [0; 1], where

values 0 and 1 indicates complete transparency and opacity, respectively. Further, we

de�ne the opacity, �R, of a region on the screen, R, to be the average opacity of the

region, i.e.,

�R =
1

AR

Z Z
R

�(x; y)dxdy

where AR is the area of the region. If all objects are completely opaque, then �(x; y)

has values of either 0 or 1. Let the opaque sub-regions within R be Ro, then

�(x; y) =

(
1 if (x; y) 2 Ro

0 if (x; y) 2 R �Ro

It follows immediately that �R = ARo
=AR, with ARo

being the area of Ro. Thus,



when all objects are opaque, the opacity of a region is the proportion of the sub-

region covered by the objects' projections.

An occlusion map is a gray-scale image that corresponds to a uniform subdivision

of the screen into rectangular regions. Each pixel in the occlusion map represents one

of the regions, recording its opacity. An occlusion map is simply an opacity map used

for occlusion culling.

In raster graphics, the screen is always uniformly subdivided into a 2-D array of

screen pixels (small rectangular regions) to form the screen image. The opacity of

a screen pixel can be computed using the de�nition above. In particular, the pixel

opacity is the same as pixel coverage when all objects are opaque. There is a corre-

spondence between an occlusion map and the screen image, both being subdivisions

of the screen. For convenience, we always use occlusion maps whose pixels correspond

to a m� n block of screen pixels, m and n being positive integers. It is obvious that

the opacity of a pixel in such an occlusion map is the average of the opacities of the

screen pixels to which it corresponds.

An occlusion map can be generated by rendering the objects at the same reso-

lution as the map. This is very important since it means map generation can be

performed quickly and e�ciently by utilizing existing graphics hardware. To gen-

erate an occlusion map, the objects are rendered in white color (intensity 1:0), as

pure geometry (i.e. with no shading or texturing), and with box-�ltered anti-aliasing.

Ideal anti-aliasing requires identifying all the primitives visible through each pixel

and then �ltering them to band-limit the light function sampled by the screen image.

In practice, however, complex �lters are computationally expensive for real-time ap-

plications, and we often employ a simple box �lter which spans a pixel. Box-�ltered

anti-aliasing calculates the percentage of a pixel covered by a primitive visible through

the pixel. The contribution of the primitive to the pixel is then computed as the prim-

itive color attenuated by the percentage of coverage. More clearly, suppose there are

N primitives visible through a certain pixel, each with visible area Ak (normalized

to the area of the pixel) and color Ck, 0 � k � N � 1. There are normally multiple

channels of colors, here Ck refers to any one of the them. The pixel color Cp, then,

can be computed as Cp =
PN�1

0
AkCk. Therefore, if Ck = 1 for 0 � k � N � 1, we

have Cp =
PN�1

0
Ak. That is, when primitives are rendered in white color, the color

of the pixels in the �nal image re
ect the total coverage of all the primitives. Note

that this result holds only for the box �lter, by which a primitive's contribution is

weighted only by its area, regardless of its sub-pixel location.
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Rendered Image Occlusion Map

Figure 4.1: One view of a scene and its corresponding occlusion map.

Computing the exact percentage of coverage is an expensive operation. In practice,

anti-aliasing algorithms such as supersampling [FDFH90] and the A-bu�er [Car84]

seek to approximate pixel coverage instead of computing it exactly. For example, if a

4� 4 sub-pixel mask is used, there are only 16 possible values for Ak, and at most 16

primitives can make contributions (N < 16). In fact, the rendering described above

produces an occlusion map even if there is no anti-aliasing (i.e. N = 1; A0 = 1), in

which case each map pixel has an opacity value of either 0 or 1. Obviously, for some

pixels (along the boundary between the primitives and the background) opacity is

overestimated and for some others it is underestimated; the lower the resolution, the

greater the error. Thus, if an occlusion map is to be built by rendering primitives

without anti-aliasing (or with only highly approximate anti-aliasing), it must have

enough resolution to avoid excessive errors in opacity values.

Figure 4.1 shows a rendered image and a corresponding occlusion map of the same

resolution. Intuitively, the screen projections of the small polygons that comprise the

teapots are merged into the occlusion map. That is, the occlusion map represents

the cumulative projection of small primitives from multiple objects. In order for any

object to be occluded by the three teapots, its screen projection has to lie within the

cumulative projection. An occlusion map represents a fusion of occluders in image

space.

If not rendered directly as proposed above, the occlusion map can be obtained

as a by-product of normal rendering. For example, it can be the �-channel [PD84]

of a rendered image if alpha values are properly set for the primitives. However,

this method results in maps that are at the same resolution of the screen image

(e.g. 1280 � 1024) which is usually too high to process in real time. On the other
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hand, if we render a map separately, map generation is no longer a by-product and

becomes pure overhead. Despite this, the latter approach proves much more 
exible,

and the overhead can be well controlled through careful selection of occluders and

occlusion-preserving simpli�cation (see Section 7.2).

Note that in general the depth of primitives need not be considered when rendering

an occlusion map (unless we need depth for other purposes). None of lighting, color

interpolation, or texturing are performed, either, and only one \color" channel is

needed. Furthermore, the rendering resolution is usually much coarser than that of

the scene image. Therefore, occlusion map rendering is much less expensive than

general-purpose rendering.

4.2 Hierarchical Occlusion Maps (HOM)

From one occlusion map, we can build a pyramid or hierarchy of occlusion maps by

recursively averaging blocks of occlusion map pixels. We follow the convention that

the original, i.e. highest resolution occlusion map of a hierarchy is at level 0, and

lower-resolution maps have larger level numbers. We refer to a map with a large level

number (and thus low resolution) as high-level maps.

Let the resolution of the n-th level occlusion map be Xn�Yn. By averaging p� q

blocks of pixels in the n-th map, we generate the (n+1)-th level map whose resolution

is Xn

p
� Yn

q
. That is, higher level maps have lower resolution. Clearly, the pixels in

the pyramid form a pixel tree in which each pixel, except for the leaves, has p � q

child pixels. All the pixels in the sub-tree rooted at a pixel are called the pixel's

descendants.

P and q can be arbitrary; however, in practice we favor 2 � 2 blocks to take ad-

vantage of hardware acceleration (see the following section). Figure 4.2 illustrates

hierarchy construction with 2 � 2 blocks. Figure 4.3 shows another example of an

occlusion map pyramid and the numbering of levels; the pyramid is created by re-

cursively averaging over 2� 2 blocks of pixels. The outlined square marks the corre-

spondence of one top-level pixel to pixels in the other levels. The normal rendering

to which the hierarchy corresponds is shown in the upper-right corner.

For each frame, the original (0-th level), and �nest occlusion map is obtained

by rendering the occluders into an image, as described earlier. The occlusion map

hierarchy is then built by recursive �ltering, which stops after reaching some minimal

map resolution (e.g. 4 � 4).
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64 x 64 32 x 32 16x16

Figure 4.2: An example of hierarchical occlusion maps

It is important to note that the resolution at which occluders are rendered (i.e.

the resolution of the original map) need not match that of the scene image. As

mentioned in the previous section, the latter is often large, making generation of the

image pyramid rather expensive in real-time. Using a lower image resolution may

lead to inaccuracies in occlusion culling near the silhouette of the occluders, but this

is a typical trade-o� between precision and speed. Furthermore, if fast anti-aliasing is

available for occluder rendering, the original occlusion map has more accuracy than

its apparent resolution.

In the occlusion map pyramid, pixels in a higher-level (lower-resolution) map

correspond to larger regions on the screen. So as we go from higher to lower resolution,

we get a more global, higher-level view of the available occlusion. The hierarchy

actually represents cumulative occlusion at multiple resolutions. Its application in

occlusion culling is rooted in the fact that it allows for examination/estimation of

occlusion at di�erent resolutions.

4.3 Fast Construction of the Hierarchy

When �ltering is performed on 2 � 2 blocks of pixels, hierarchy construction can

be accelerated by graphics hardware that supports bilinear interpolation of texture

maps. The averaging operator for 2 � 2 blocks is actually a special case of bilinear

interpolation. More precisely, the bilinear interpolation of four scalars or vectors

v0;v1;v2;v3 is:

(1� �)(1 � �)v0+ �(1 � �)v1+ ��v2 + (1 � �)�v3;
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Figure 4.3: A pyramid of occlusion maps

where 0 � � � 1, 0 � � � 1 are the weights. If we set � = � = 0:5 then the formula

produces the average of the four values. By carefully assigning texture coordinates

to ensure that � = � = 0:5, we can �lter a 2N � 2N occlusion map to N � N

by drawing a two dimensional square of size N � N with the 2N � 2N occlusion

map as a texture. Figure 4.4 illustrates this process for graphics architectures with

a conventional framebu�er and texture memory. The process is repeated to generate

all the occlusion maps in the pyramid.

The graphics hardware typically needs some setup time for the required operations.

When the size of the map to be �ltered is relatively small, setup time may dominate

the computation. In such cases, the use of texture mapping hardware may actually

slow down the construction of occlusion maps rather than accelerating it, which means

we can do better by using the host CPU. For this reason, we take advantage of

hardware texturing mapping only at levels where maps are large enough. Then at

a certain level in the pyramid where the map drops below a threshold size, we turn

to software. The break-even point between hardware and software computation,

represented by the threshold map size, varies with di�erent graphics systems.

[BM96] presents a technique for generating mipmaps using a hardware accumu-

lation bu�er. We did not use this method because the accumulation bu�er is less
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Framebuffer
(Originally the

rendered image of
the occluder scene)

Copy
framebuffer to

the texture
memory

Render square half of
the current size with

proper texture
coordinates

Read framebuffer
for occlusion map

Figure 4.4: Using texture-mapping hardware to accelerate the construction the oc-

clusion map hierarchy.

commonly supported in hardware graphics systems than is texture mapping.

4.4 Properties of Hierarchical Occlusion Maps

Below we highlight the properties of occlusion maps and occlusion map pyramids that

facilitate occlusion culling.

1. Occluder fusion: Occlusion maps represent the fusion of small and/or disjoint

occluders. They can be generated quickly and e�ciently using conventional

graphics hardware. As is stated in Chapter 2, an e�cient representation of

cumulative occlusion is crucial to a general-purpose occlusion culling algorithm.

Occlusion fusion has another aspect regarding occlusion from semi-transparent

surfaces: several of these can combine to become practically completely opaque,

and thus provide good occlusion. We can easily handle the fusion of semi-

transparent surfaces by using a proper blending function to accumulate opacity

when rendering the occluders to generate the original occlusion map,

2. Generality: No assumptions are made regarding the shape, size, or type of

the occluders. Any object that can be rendered can serve as an occluder, whose

occlusion can be combined with that of any other occluders.

3. Fast Construction of the Hierarchy: When �ltering is performed on 2� 2

blocks of pixels, construction of the occlusion map hierarchy is readily supported

by graphics hardware with bilinear texture mapping.

4. The averaging operator: The averaging operator used in building the oc-

clusion map pyramid is responsible for all the pyramid's desirable features in
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occlusion culling. These will be discussed in detail throughout the next chapter.

In particular, the pyramid supports:

� Hierarchical overlap test: The hierarchy allows for fast 2-D overlap

tests between the occluders' cumulative projection and a potential oc-

cludee, based on the fact that a pixel is completely opaque if and only if

all its descendant pixels are completely opaque.

� High-level opacity estimation: The opacity values in a low-resolution

occlusion map give an estimate of the opacity values in higher-resolution

maps. This is because the averaging operator preserves much information

so that one can get a \feel" of opacity distributions by looking at low-

resolution maps.
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Chapter 5

Overlap Tests Using Hierarchical

Occlusion Maps

In this chapter, we shall discuss algorithms for verifying the overlap condition of oc-

clusion, i.e. the screen projection of an object (a potential occludee) has to lie within,

i.e., be completely overlapped by, the cumulative projection of the occluders. This

veri�cation is called the overlap test, which returns true if the condition is satis�ed

and false if not. If the overlap test returns false, the tested object is considered visible

and subsequently rendered; if it returns true, the depth test (next chapter) is then

performed to see if the object is indeed occluded.

Since in our case the cumulative projection is represented by occlusion maps, the

overlap test is reduced to testing whether the occlusion-map pixels intersected or

overlapped by the projection of the potential occludee are fully opaque.

5.1 Projection Estimation

For overlap tests we �rst have to compute the screen projection of a tested object,

i.e. the potential occludee. More precisely, we have to identify the pixels in an

occlusion map that are intersected or overlapped by the projection of the potential

occludee. This is, by de�nition, a scan-conversion of the potential occludee at the

resolution of the occlusion map. However, actual scan-conversion of the object is

usually not an option since it is computationally expensive. Instead, we seek to

compute a simple overestimation of the object's projection, which fully encloses the

exact projection. The overestimation guarantees conservative overlap tests. That is,

if the overestimated projection touches only opaque occlusion map pixels, so must



the actual projection. The projection of an object's bounding box always bounds the

projection of the object, and thus quali�es as such an overestimation. The cost of

scan-converting the box faces (which project to general convex triangles), however, is

still too high, especially for software implementations.

The estimation we use is the screen-space bounding rectangle of the projection of

the bounding box. Identifying the pixels touched by the rectangle is very simple|or

in other words, a rectangle can be trivially scan-converted. Computing the bounding

rectangle involves only projecting the eight corner vertices to the screen and �nding

their extent. For an axis-aligned bounding box, this process can be accelerated by ex-

ploiting the fact that projecting the eight corners shares much common computation.

(More details are in Appendix A).

5.2 Hierarchical Overlap Tests

As described in the preceding chapter, the original, level-0 occlusion map is obtained

by rendering the occluders. The overlap test is to determine whether the bounding

rectangle of the potential occludee is enclosed by the cumulative projection of the

occluders|i.e. whether the pixels touched by the rectangle in the original, level-0

occlusion map are fully opaque (opacity 1.0). If so, the test object itself must also

be enclosed by the cumulative projection, and it thus successfully passes the overlap

test.

A simple way of performing the above test is to traverse the relevant pixels in the

level-0 occlusion map one by one, checking the opacity values. With the occlusion map

pyramid, however, we can perform faster hierarchical overlap tests. We will initially

describe a straightforward basic algorithm for hierarchical overlap tests. Then, we

will improve its performance and introduce special features by generalizing the basic

algorithm.

5.2.1 The Basic Algorithm

Let us assume for the moment that we have a complete occlusion map pyramid with

a highest-level map of resolution 1� 1:1 The hierarchical overlap test is a traversal of

a portion of the occlusion map pyramid. It begins at the coarsest (i.e. highest) level

1Recall that we stop the construction of the pyramid at some minimal resolution, which is not
necessarily 1� 1.
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where a pixel, P0, fully encloses the bounding rectangle.2 In Figure 4.3, the square

box on the level-4 map shows such a pixel, and the boxes at the other levels highlight

the descendant pixels that correspond to P0. If P0 is fully opaque (with opacity value

1:0), then we know immediately that the rectangle falls into an fully opaque area

in the cumulative projection, and the overlap test returns true. This is because the

averaging operator (with which the pyramid is built) guarantees that if a pixel in a

coarse map has opacity 1:0, then all the descendant pixels in the �ner maps, and in

particular those in the original map, must also have opacity (1:0). In many cases, the

test on P0 is the only opacity check we have to perform before returning true.

Also because of the averaging operator, all descendant pixels must have opacity

0:0 if P0 is 0:0. In this case, we conclude that the rectangle lies in a fully transparent

area and that the overlap test should return false.

If P0 is semi-opaque, i.e. its opacity being neither 1:0 nor 0:0, we descend to the

next �ner level in the pyramid and �nd which of P0's child pixels are touched by the

bounding rectangle. If all the children have opacity 1:0, then the overlap test returns

true. If at least one of them has opacity 0:0, the test returns false. Otherwise, we

recursively descend further into the �ner levels for further checking. If we reach the

original occlusion map (level-0 in the pyramid) and �nd any pixels touched by the

rectangle have opacity 0, the overlap test returns false.

Note that in the recursive overlap test through the pyramid, at some level the

bounding rectangle starts to enclose entire occlusion map pixels. For such an enclosed

pixel, all its corresponding pixels in the �ner levels in the pyramid must also be

enclosed by the bounding rectangle. If the pixel does not have full opacity (1:0), the

opacity of some of its corresponding pixels (particularly those in the level-0) must be

less than 1:0. It follows that some level-0 pixels covered by the bounding rectangle

do not have opacity 1.0, and we immediately conclude that the overlap test should

return false. In other words, only when a semi-opaque pixel is partially covered by

the bounding rectangle need we recurse to its �ner-level corresponding pixels; any

fully-covered semi-opaque pixel causes the overlap test to return false immediately.

By beginning at a level where a pixel (P0) fully encloses the bounding rectangle,

we can potentially determine the result of the overlap test by checking the opacity of

P0 only. However, such a beginning level relies much on the position of the bounding

2More precisely, what we mean is that the screen region to which the map pixel corresponds
encloses the rectangle. For brevity, however, we will often use the map pixel to refer to the screen
region to which it corresponds.
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rectangle. For example, in a pyramid comprised of maps of resolutions 2k � 2k; k =

0; 1; 2; :::; a bounding rectangle that covers the center of the screen can only be fully

covered by the single pixel in the 1 � 1 map. This means we have always to start

with the 1 � 1 map for such rectangles. But very coarse maps (like 1 � 1, 2 � 2)

seldom have fully opaque pixels, meaning we almost always have to do recursive

tests. Consequently, it is frequently a waste of time to start at very coarse levels.

Moreover, each recursion has an overhead, and the total overhead tends to increase

as we begin the test at higher levels. On the other hand, if we start at a level that

is too �ne, we potentially increase the number of opacity checks we need to perform.

In practice, we have found it a good compromise to begin at the �nest level where

the size of the pixels is greater the rectangle's smaller dimension. Intuitively, this

criterion is biased towards beginning at �ne levels to avoid recursions, at the expense

of potentially more tests.

For simplicity in our description of the hierarchy overlap test, we have used opac-

ity values 1:0 and 0:0 to indicate fully opaque or transparent pixels, respectively.

However, the unique features of the occlusion map pyramid are exploited when we

have more general and 
exible de�nitions of full opacity or transparency. In the next

section, we introduce these de�nitions and discuss their application to the overlap

tests.

5.3 Early Terminations in Overlap Tests

The occlusion map pyramid, built as a result of recursive low-pass �ltering, repre-

sents the occluders' cumulative projection at multiple scales. Thus, the hierarchical

overlap test is an examination of the cumulative projection in di�erent (coarse-to-

�ne) scales. The previous section describes general recursive overlap tests through

the map pyramid, but often the recursive evaluation steps can be omitted, and test

results returned, before the basic algorithm is fully carried out. This happens when

a decision can already be made without further descending into �ner levels of the

pyramid, in which case the test returns to the preceding level of recursion or exits en-

tirely. We discuss three types of early terminations: (a) conservative rejection, which

makes the overlap test return false immediately; (b) aggressive approximate culling,

which regards high-opacity pixels as fully opaque and prevents further recursion; and

(c) predictive rejection, in which case the overlap test returns false knowing that the

test has to fail somewhere at a �ner level in the pyramid.
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5.3.1 Conservative Rejection

Conservative rejection pessimistically terminates overlap tests and returns false. If a

pixel touched by the bounding rectangle has quite low opacity, we know that, even if

we descend to �ner-level maps, there is only small probability that we will �nd many

high opacity pixels|if there were, the pixel being examined (whose opacity is their

average) would have high opacity. So we may decide to terminate the overlap test

immediately and return false. Recall that the hierarchical overlap test we described

in the preceding section terminates when a pixel is transparent (opacity 0:0). Now

we are actually regarding the pixel with quite low opacity as being completely trans-

parent, even though its opacity is not 0:0. The \quite-low" opacity is de�ned by the

transparency threshold, Tt, below which a pixel is considered fully transparent. In

other words, full transparency has become an opacity range [0; Tt), instead of a single

value (0:0).

Intuitively, a low-opacity pixel in a coarse occlusion map can be the result of low-

pass �ltering an original (level-0) occlusion map with high-opacity pixels scattered

around in a majority of black (0- or low-opacity) pixels. Such an original map means

overlap tests will tend to fail, since it is hard for a bounding rectangle to touch only

the pixels with full opacity. So, if we �nd a coarse-level pixel with low opacity, we

may choose to assume that it is a result of such level-0 distribution and subsequently

terminate the overlap test.

5.3.2 Aggressive Approximate Culling

Consider an original (level-0) occlusion map with small holes of black pixels scattered

in a majority of white pixels. An occlusion map with this characteristics often results

from a set of small, irregular occluders, such as the leaves of a group of trees or the

complex mechanical parts in a CAD model. Due to the scattered-around distribution

of the black pixels, most bounding rectangles will likely cover some of them, which

causes the overlap test to return false. However, the viewer normally does not expect

to see much through the small holes anyway. So, if we ignore the holes and discard

objects visible only through these holes, we hopefully will not introduce too many

visual artifacts. Ignoring small holes to cull away barely-visible objects is called

aggressive approximate culling, which is achieved by cutting o� further recursions in

the overlap test based on the opacity threshold.

Approximate culling is considered aggressive because contrary to the conservative
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acceptance introduced earlier, approximate culling is not conservative, i.e. it can cull

away visible geometry and thus introduce visual artifacts. However, the artifacts can

be well controlled while a larger portion of the model can be culled away.

Recall that in hierarchical overlap tests, we recurse into the next �ner (lower) level

for further opacity checking only when an examined pixel is not fully opaque (opacity

value 1:0). We now rede�ne \full opacity" by introducing an opacity threshold, T
:

any pixel with opacity greater than T
 is considered fully opaque, so that full opacity

corresponds to a range of opacity values (T
; 1]. Therefore, the overlap test will not

recurse into the next �ner level when the pixel opacity is high enough (i.e. > T
).

A pixel P in a coarse occlusion map in the pyramid corresponds to a block of

pixels in the original, level-0 map; the opacity of P is the average opacity of all pixels

in the block. If a small percentage of these level-0 pixels are low in opacity with the

others being high, P 's opacity can still be fairly high due to averaging. Now, if P 's

opacity is high enough (> T
), the overlap test will return true from P to the previous

level in the hierarchical, without descending further into the �ner levels. In e�ect, the

low-opacity pixels in �ne-level maps, i.e. the holes in the cumulative projection, are

ignored.

When the occluders are rendered without any anti-aliasing, i.e. when the level-

0 pixels are either black (opacity 0:0) or white (opacity 1:0), the opacity threshold

determines how many 0-opacity pixels are allowed while the average opacity over a

certain area remains high enough. Put another way, T
 actually bounds the size of

the biggest negligible hole. This will become clearer when we discuss the derivation

of the opacity thresholds from the size of negligible holes in the next section.

From the signal processing point of view, the process of low-pass �ltering (aver-

aging) with which the pyramid is built suppress the high-frequency noise (the small

holes); the higher-level the map, the more the suppression. At a certain level, the

noise is reduced enough to be ignored by thresholding with T
. Intuitively, as we go

from the original map to coarser ones, the holes dissolve into the surrounding high-

opacity pixels; therefore, at a high level we can barely see them. This is illustrated

in Figure 5.1 by a hierarchy of occlusion maps that corresponds to one view of a tree

(shown at the top). The level number of the maps are marked on the bottom, and

the rectangles highlight the region with holes among the leaves.

It should be noted that in some cases approximate culling may result in easily

noticeable artifacts. For example, consider a bright object visible only through small

holes (e.g. the sun shining through holes among the leaves of a tree) and thus culled
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Figure 5.1: Approximate culling

away. As the viewer zooms closer to a hole, the hole becomes larger and no longer

ignored, at which point the bright object suddenly pops in. In order to avoid this

problem, we can compute the color contrast between the test object and the occluders,

and relate the opacity threshold to the contrast|the opacity threshold should be high

when the contrast is strong, e�ectively preventing a hole from being ignored when

the tested object is relatively bright.

Objects sticking a little outside the \cumulative silhouette" (i.e. the boundary of

the cumulative projection of the occluders) can also be removed due to approximate

culling. A coarse-level pixel lying mostly inside, and a little outside the cumulative

projection of the occluders can have an average opacity greater than T
. The result

is that black pixels along the silhouette can be ignored, which in e�ect extends the

cumulative projection of the occluders. When an object that is approximately culled-

away in the preceding frame pops in around the cumulative silhouette due to motion of

the viewer, the visual artifact is more noticeable than when a object pops in through

a hole. This popping e�ect is similar to the artifacts caused by switching level-of-

details of the objects, and can similarly alleviated by making the newly visible object

fade in instead of popping in.
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5.3.3 Computing the Thresholds

Di�erent levels of the occlusion map pyramid must have di�erent opacity thresh-

olds in order to consistently bound the size of the holes we consider as negligible.

Transparency thresholds must also vary between the levels to bound the amount of

occlusion we ignore. In this section, we discuss the computation of the thresholds for

the pyramid. We focus on the opacity thresholds; the transparency thresholds can be

computed in a very similar fashion.

5.3.3.1 Opacity Thresholds

First, let's examine how the opacity threshold and the size of negligible holes are

related. We assume the opacity of a screen pixel is either 1 or 0; this assumption is

not inherently necessary but it simpli�es our discussion. Also, assume the pyramid is

built by averaging 2 � 2 blocks of pixels. Remember that each pixel in an occlusion

map corresponds to a block of screen pixels, its opacity being their average. Suppose

that at level-k in the pyramid, a map pixel represents amk�mk block of screen pixels,

and the opacity threshold at level-k is T
k . Clearly, at mostHk = (1�T
k)mk
2 screen

pixels in the block can have opacity 0 in order for the map pixel to be considered fully

opaque. So the question is how big a hole these 0-opacity pixels can possibly make.

In other words, what distribution of these 0-opacity screen pixels can create a hole

through which the viewer can see most clearly? Given a �xed number of black pixels

that comprise a hole, we can glue them together in various ways to make the hole;

however, it is intuitively true that the viewer can see most through the hole whose

aspect ratio is close to 1. So, the worst-case hole that can correspond to a map pixel

with opacity greater than T
k is approximately a square with Hk 0-opacity screen

pixels. The biggest hole on the screen, then, is created when a 2 � 2 block of map

pixels, each with opacity T
k , have their 0-opacity screen pixels concentrated around

the common corner of the screen pixel blocks they correspond to. This distribution

is illustrated in Figure 5.2. Consequently, the biggest negligible hole implied by

threshold T
k has 4Hk 0-opacity pixels.

We use the \L � k�hole" constraint to specify the size of negligible holes. The

constraint is de�ned as follows: for a given level, k, in the occlusion map pyramid,

a set of 0-opacity pixels (i.e. a hole) on the screen can be ignored if and only if any

mk �mk \window" on the screen contain no more than L, L < mk �mk, 0-opacity

pixels from the set. It follows from the above discussion on worst-case distributions
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Figure 5.2: Biggest possible square holes given an opacity threshold

that the number of 0-opacity pixels a level-k map pixel can correspond to is at most

Hk = L=4. Thus, the opacity threshold should be

T
k = 1 �Hk=mk
2

= 1� L=4mk
2

Also, the constraint implies that no negligible holes contain more than L 0-opacity

screen pixels.

The L � k�hole constraint determines not only T
k, but the opacity thresholds

for all the levels in the pyramid. We turn now to derive the opacity threshold for the

k + 1-th level, T
k+1 , from T
k . Clearly, we have mk+1 = 2mk. It appears that since

the level-k+1 map pixels correspond to large regions on the screen, each of them can

have more than Hk 0-opacity pixels while still satisfying the L � k�hole constraint.

However, this is not true with an arbitrary distribution of 0-opacity pixels. If pixels

in the level-k + 1 map are allowed to contain Hk+1 > Hk 0-opacity screen pixels,

then there will be holes with as many 0-opacity pixels as 4Hk+1 > 4Hk = L, due

to the same kind of concentration of 0-opacity pixels as shown in Figure 5.2. So, in

a mk �mk area containing this hole, the L � k�hole constraint is clearly violated.

Therefore, to guarantee the satisfaction of the constraint, we must have Hk+1 = Hk;

and then T
k+1 is computed as:

44



T
k+1 = 1 �Hk+1=mk+1
2

= 1 �Hk=(2mk)
2

= 1� (1� T
k)=4

In practice, we usually specify the L� 0�hole constraint. So by repeatedly applying

the above formula, we can compute the opacity thresholds for all the pyramid levels.

The above derivation is based on the worst-case distribution of 0-opacity screen

pixels which does not actually occur very often. In practice, we may want to assume

more favorable distributions, at the risk of ignoring bigger holes than those allowed

by the L� k�hole constraint in rare cases. We introduce a distribution factor, D, to

model how favorable we assume the distribution to be: Hk+1 = DHk; 1 � D � 4. At

level k, where we de�ne the L�k�hole constraint, D speci�es the degree to which we

deviate from the worst case: Hk =
D

4
L. Thus, the level-k opacity threshold becomes:

T
k = 1 �Hk=mk
2

= 1�DL=4mk
2

Between the neighboring levels, k and k + 1, D indicates how many more 0-

opacity screen pixels a level-k+1 map pixel can correspond to than level-k. It follows

immediately:

T
k+1 = 1 �Hk+1=mk+1
2

= 1 �DHk=(2mk)
2

= 1�D(1 � T
k)=4

The worst case distribution, as discussed above, corresponds to D = 1, i.e. Hk+1 =

Hk. Since a level-k+1 pixel represent 4 times as much screen area as a level-k pixel,

D � 4. We have D = 4, and thus T
k+1 = T
k , when the 0-opacity pixels exhibit

an uniform random distribution on the screen, in which case a level-k + 1 pixel can

indeed correspond to 4 times as many 0-opacity pixels as a level-k pixel, while still

conforming to the L�k�hole constraint. In our implementation we usually set D = 2.

To sum up, given L and k in the L � k�hole constraint, and the distribution
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factor D, we can compute the opacity thresholds for pyramid levels higher than and

including k. With k = 0, we can compute the thresholds for all the levels in the

pyramid.

As a concrete example, suppose the screen image is 1024 � 1024 and the level-0

map is 128 � 128. A pixel in the level-0 map, then, corresponds to a 8 � 8 block of

pixels in the screen image (m0 = 8). Assume we consider a 3 � 3 block of 0-opacity

screen pixels in a 8 � 8 block to be an negligible hole (i.e. L = 32), then the opacity

threshold for the map is T
0 = 1 � (32)=(82) = 0:86. One level up the pyramid,

each map pixel corresponding to 16 � 16 screen pixels; assuming D = 2, we have

T
1 = 1 �D(1 � T
0)=4 = 0:93. And so on.

5.3.3.2 Transparency Thresholds

Computing the transparency threshold is very similar to computing the opacity

thresholds. The latter is driven by bounding the size of negligible holes (clusters

of 0-opacity pixels), while the former by bounding the size of clusters of 1-opacity

pixels. Proper opacity thresholds avoid ignoring oversized holes; proper transparency

thresholds avoid losing too much occlusion. Without going into the details again,

we give the formula for computing (with the distribution factor D) the transparency

threshold of level-k+ 1 from that of level-k,

Ttk+1 = DTtk=4

5.3.4 Predictive Rejection

In presenting the basic algorithm for hierarchical overlap tests, we have observed that

if the opacity is below 1:0 for a pixel completely covered by the bounding rectangle,

some of its descendant pixels at the 0-th level must also have less-than-1:0 opacity.

Thus, the overlap test can return false immediately since it must fail in the end. This

rule can now be generalized to incorporate the opacity thresholds.

Suppose we have a level-k map pixel, Pk, with opacity, 
pk
, that is completely

covered by the bounding rectangle. If 
pk
is less than the opacity threshold of level-m,

T
m (m < k), then we know that the opacity of some level-0 pixels Pk corresponds

to must be less than T
m. Since if not, we should have 
pk
> T
m because 
pk

is

the average of the opacities of the corresponding level-m pixels. The overlap test has

to fail somewhere at level-m, when we descend into that level. Anticipating this, we
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may terminate the overlap test immediately and return false.

Similarly, if 
pk
is less than the transparency threshold, Ttm, of a �ner level, m,

m < k, then the opacity of some level-m pixels that Pk corresponds to must be less

than Ttm; since if not, we should have 
pk
> Ttm due to averaging. The overlap test

must return false at one of these level-m pixels whose opacities are below the level-m

transparency threshold. Predicting this, the overlap test returns false right away.

5.4 Summary

The use of the opacity and transparency thresholds in the overlap test actually sig-

ni�es the notion of levels of visibility, which represents the continuum between being

visible and being occluded. With thresholding, we can choose to regard \almost oc-

cluded" objects as non-visible (aggressive approximate culling), or \probably visible"

objects as really visible (conservative rejection). Conservative rejection based on the

transparency threshold is another application of the widely-used conservative culling

strategy, while aggressive approximate culling is a new concept and a unique feature

of our algorithm.

The overall process of overlap tests is summarized in pseudocode form in �gure 5.3.

In the code, we assume that the occlusion map hierarchy is stored in array HOM[].

Each map level has the it own TransparencyThreshold and OpacityThreshold.

Pixel opacities at level k are retrieved by calling HOM[k].getOpacity(x, y), with

(x, y) being the coordinates of the pixel. Each pixel in the map is a structure

with �elds x, y, and CompletelyInRect. The former two are the coordinates, and

CompletelyInRect is a 
ag indicating whether the pixel is entirely contained in the

bounding rectangle.

The CheckPixel function checks the opacity of a pixel, descending into sub-pixels

as necessary. The OverlapTest function performs the whole overlap test by calling

CheckPixel. It returns TRUE if the bounding rectangle falls within completely opaque

areas and FALSE otherwise.
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OverlapTest(HOM, Level, BoundingRect)

{

for each pixel, P, in HOM[HOM.HighestLevel]

that overlaps BoundingRect

{

if (CheckPixel(HOM, HOM.HighestLevel,

P, BoundingRect) = FALSE)

return FALSE;

}

return TRUE

}

CheckPixel(HOM, Level, Pixel, BoundingRect)

{

Op = HOM[Level].getOpacity(Pixel.x, Pixel.y);

Omin = HOM[0].OpacityThreshold;

if (Op > HOM[Level].OpacityThreshold)

return TRUE;

else if (Level = 0)

return FALSE;

else if (Op < HOM[Level].TransparencyThreshold)

return FALSE;

else if (Op < Omin AND Pixel.CompletelyInRect = TRUE)

return FALSE;

else

{

Result = TRUE;

for each sub-pixel, Sp, that overlaps BoundingRect

{

Result = Result AND

CheckPixel(HOM, Level-1, Sp, BoundingRect);

if Result = FALSE

return FALSE;

}

}

return TRUE;

}

Figure 5.3: Pseudo-code for overlap tests
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Chapter 6

Resolving Depth

The complete enclosure of an object's screen projection by the opaque area in an

occlusion map is a necessary but not su�cient condition for the object's being oc-

cluded. The object must also pass the depth test before we �nally decide that it is

not visible. In section 3.1 we have stated that the depth test is to decide \whether

the potential occludee is behind the occluders". \Behind the occluders" is actually

not a very precise description of the criterion by which an object passes the depth

test. In this chapter, we will �rst de�ne our depth tests in a more precise way by

highlighting its di�erence from depth tests in conventional visibility algorithms. We

will then present several di�erent representations of the occluders' depth information

which form the basis of the depth tests.

6.1 Depth Tests

The important di�erence between our depth tests and those in previous visibility

algorithms (e.g. the Z-bu�er algorithm and the hierarchical Z-bu�er algorithm) is

that our depth tests do not by themselves determine an object's visibility. Given an

occluder, P ,1 and a potential occludee, Q, our depth test does not establish whether

P hides Q, but rather whether Q hides any part of P that is visible if Q were removed.

Clearly, that Q does not occlude any visible part of P is a necessary condition for P

to occlude Q. This condition, only when combined with the other necessary condition

that Q's projection lies entirely in P 's, leads to the conclusion that P occludes Q. In

1Here we simplify the discussion by talking about one occluder. It can be the combination of
multiple occluders
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Figure 6.1: De�nition of depth tests

Figure 6.1,2 depth tests in the conventional Z-bu�er algorithm would conclude that

objects A and B fail to occlude object C. In our case, however, C will pass the depth

test and is not considered visible as far as the depth test is concerned. This is because

C does not occlude any part of A and B|more precisely, C does not occluder any

visible part of A and B.

Another interpretation of our depth test is that it determines whether the tested

object is far enough away so that it is behind the occluders and able to take advantage

of the cumulative occlusion. In Figure 6.1, object C is at enough distance from the

viewer to make use of the occlusion provided by A and B, and thus passes the depth

test. Whether the cumulative occlusion of A and B is enough to completely hide C

(i.e. if C \leaks" through the cumulative occlusion of A and B), however, is another

question that must be answered separately by the overlap test. If the overlap test

determines that the hole between A and B can be ignored, then C will be culled

away; if not, C will be be regarded as visible. 3

As a �nal example, consider the following extreme case. If we do not choose any

objects as occluders, all the objects in the view-frustum will pass our depth tests

because trivially none of them can be closer to the viewer than any occluder. The

2In this chapter, the �gures are drawn in the normalized device coordinate (NDC) space instead
of the world space, because we store depth information in NDC space. The NDC space is the world
space after viewing and projection transformations.

3Although this implies that the depth test should precede the overlap test, they can actually be
performed in any order.
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overlap test, on the other hand, will correctly declare all the objects visible since all

the occlusion map pixels have zero opacity.

To facilitate further discussion, we introduce the notion of relevant occluders. An

occluder is relevant to a potential occludee if the (exact or estimated) screen projec-

tions of the two intersect. In other words, a relevant occluder is one that can possibly

contribute occlusion to the potential occludee. So, an objects is considered occluded

if and only if it is occluded by its relevant occluders. An example is shown in Figure

6.1, where object A and B are C's relevant occluders and D is not, supposing that we

compute the exact projections of the objects. If we approximate the projections (e.g.

using bounding rectangles as in the proceeding chapter and later in this chapter), D

may also be C's relevant occluder.

The function of our depth tests, as described above, implies the kind of depth

information required to support the depth tests. Basically, our depth representations

should de�ne, based on the depth of the occluders, a boundary beyond which an

object cannot possibly be closer to the eye than any of its relevant occluders. The

closer the boundary is to the viewer, the more objects will be behind it (and therefore

passing the depth test). It is evident that the optimal (nearest-possible) boundary

is made up of the visible surfaces of all the occluders. When the exact boundary is

too expensive to obtain, we seek to compute a conservative approximation that is no

nearer to the viewer at any point on the screen than is the exact boundary.

The important trade-o� in depth representations is between the time required

to build the representation and the \quality" of the boundary. In the rest of this

chapter we will investigate this trade-o� by discussing three di�erent way of repre-

senting depth: with a single plane, with the depth estimation bu�er, and with the

no-background z-bu�er. These representations are progressively more expensive to

construct but more precise (less conservative) in approximating the optimal boundary.

6.2 A Single Plane

The simplest depth representation is a plane perpendicular to the viewing direction

and through the farthest point of all the occluders (Figure 6.2). That is, the equation

of the plane in NDC space is Z = d, d being the farthest depth of all the occluders.

The depth test, then, is to determine whether an object is entirely on the far side of

the plane, which is in turn determined by whether the nearest point on the object is

on the far side of the plane. With the plane as a very conservative estimation of the
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Figure 6.2: The single plane depth representation

depth of the occluders, objects that pass the depth test have a greater depth than

all the occluders. Objects (partially) on the near side of the plane are regarded as

visible as they could possibly be in front of some occluders.

This methods actually assumes that any occluder is relevant to any tested object.

This makes it unnecessary to estimate the projection of the occluders and the test

objects since we no longer have to �nd the relevant occluders. However, a single

occluder with a large depth can put the plane at a great distance, making it impossible

for most objects to pass the depth test. In Figure 6.2, occluder K is actually not

relevant at all to object A; but due to the very conservative depth representation

with the single plane, K becomes relevant to A. A is consequently not culled away

because its nearest point is closer to the viewer than the farthest point of K.

Establishing the plane involves only �nding the farthest of the farthest points of

the individual occluders. Still, it can be computationally expensive to compute the

farthest point on an object, e.g. when the object has many vertices. In practice, we

always compute the farthest vertex of the bounding box as a conservative estimation.

This involves transforming the vertices of the box into the NDC space. A fast method

for transforming axis-aligned bounding boxes is given in Appendix A.

6.3 Depth Estimation Bu�er

The depth estimation bu�er is a generalization of the single-plane method discussed

in the proceeding section. It represents a uniform subdivision of the screen, with each

52



Bounding
rectangle
at nearest
depth

Depth
estimation
buffer

Occluders

A

Viewing
direction

Transformed view-frustum

Objects
passing the
depth test

Bounding
rectangle
at farthest
depth

B

Image
plane

Figure 6.3: The depth estimation bu�er.

pixel in the bu�er corresponding to a partition. The pixel value stores the farthest

depth of the subset of occluders that project into the partition. Put another way,

the depth estimation bu�er is a 2-D array of small planes, rather than a single plane

for the entire set of occluders. The single-plane representation can be conveniently

thought of as a single-pixel depth estimation bu�er. With screen subdivision, the

in
uence of an occluder's farthest depth is localized to only the partitions onto which

it projects. Consequently, the relevant occluders of a tested object are typically only

a small fraction of the entire occluder set.

6.3.1 Updating the Depth Estimation Bu�er

To compute the depth estimation bu�er from a given set of occluders, we have to �nd

their projections into the depth estimation bu�er, i.e. to determine which partitions

on the screen they project onto. For the same reasons as discussed in section 5.1, we

again use a screen-space bounding rectangle to overestimate the screen projection of

an occluder. The bounding rectangle is placed at the depth of the farthest vertex of

the occluder's bounding box, so that the whole object is guaranteed to be on the near

side of the rectangle. For brevity, we call such a rectangle a far bounding rectangle.

For each frame, the depth estimation bu�er is initialized to the depth value rep-

resenting the nearest-possible NDC-space distance to the image plane (typically 0:0).

Given an occluder object, we update the bu�er as follows. First, we compute its

bounding rectangle and set it to the depth of the farthest vertex of the occluder's
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bounding box. Then, for each pixel in the depth estimation bu�er overlapped or

intersected by the rectangle, we compare the pixel depth with the rectangle's depth:

if the latter is greater, the former is overwritten. The depth representation of a given

set of occluders is built by repeating the above process for all the occluders.

The depth estimation bu�er conservatively approximates the farthest depth ex-

tents within which an object can possibly be closer to the viewer than an occluder.

That is, it represents a far boundary; any object behind this boundary is guaranteed

to be behind all the surfaces of its relevant occluders. Intuitively, the construction of

the bu�er from given occluders is for each occluder to push the boundary away from

the viewer (i.e. if the occluder depth is greater, it replaces the depths in the bu�er).

The \pushing" e�ect of an occluder is conservatively exaggerated both in 2-D (where

screen projection is overestimated by the bounding rectangle) and in depth (when the

rectangle is place at the farthest depth of the bounding box). The bounding rectan-

gles put occluders into more partitions (bu�er pixels) than they actually project to,

which results in a greater number of relevant occluders for the tested objects than

they actually have.

It is important to note that we are able to use the bounding rectangle and remain

conservative exactly because we are estimating the far boundary of the occluders. A

bounding rectangle at the nearest depth of an occluder|a near bounding rectangle|

is not helpful in constructing the depth estimation bu�er since it evidently does not

guarantee that an object on its far side is behind the occluder. In section 6.4 we will

see that the near boundary of the occluders has to be generated by scan conversion

of the occluders with depth bu�ering.

Finally, as a more concrete annotation to Figure 3.2, the approximations in up-

dating the depth estimation bu�er (using the bounding rectangle and placing it at

the far corner of the bounding box) have only local e�ect in making the whole occlu-

sion culling process more conservative. That is, the only occluded objects that fail

to be culled away because of these approximations are those closer to the eye than

the boundary de�ned by the depth estimation bu�er but farther than the optimal,

nearest boundary, had we performed actual scan-conversion.

6.3.2 Depth Tests with the Depth Estimation Bu�er

The depth estimation bu�er de�nes the far boundary of the occluders. For each

object, we would like to decide if it is entirely on the far side of the boundary. This

is done by projecting the object to the bu�er and comparing its depth to the bu�er
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pixels. Objects selected as occluders do not have to be tested, as they must be on

the near side of the boundary.

Once again, a bounding rectangle is used to overestimate screen projection|this

time for the tested object, and the rectangle is set to the depth of the nearest corner

of the object's bounding box (and is thus called a near rectangle). The whole object

is entirely behind the rectangle. The depth values of the bu�er pixels touched by the

rectangle are compared against the depth of the rectangle. If the rectangle's depth

is greater than all of these bu�er pixels, then it is behind the far boundary of the

occluders. This implies that the corresponding object is also behind the far boundary

and thus passes the depth test.

6.3.3 Discussions

The depth estimation bu�er should have low resolution in order to reduce the cost

of update and query operations. Actually, the resolution does not have to be very

high, because accuracy is already limited by the extensive use of bounding rectangles.

In practice we have found that using a resolution of 64 � 64 is enough, and higher

resolutions do not provide further bene�ts.

In section 3.1 we pointed out that one bene�t of our decomposition of the visibility

problem into overlap tests and depth tests is that we can then use a more approx-

imate, lower-cost representation for depth than for 2-D projection. 4 The depth

estimation bu�er is exactly such a depth representation, which can be signi�cantly

lower in resolution than the occlusion maps (which records the occluders' cumulative

screen projection). Also, the occlusion maps must be built by actually rasterizing

the occluders, whereas the depth estimation bu�er can be constructed much more

cheaply using bounding rectangles.

A major strength of the depth estimation bu�er lies in its portability. It works

e�ciently in pure software and makes no assumption about the hardware graphics

architectures. Since di�erent hardware graphics systems manages depth in vastly

di�erent ways, the depth estimation bu�er is key to the portability of our occlusion

culling algorithm.

4Although we extensively use bounding rectangles to approximate screen projection in updates
and queries to the depth estimation bu�er, this approximation a�ects only the result of the depth
tests. It is thus really a depth approximation instead of an approximation in projection, judging
from its role in the overall process of occlusion culling.

55



Depth
estimation
buffer

Occluders

No-background
Z-Buffer BViewing

direction

Transformed view-frustum

Objects
passing the
depth test

Bounding
rectangle

Image
plane

Figure 6.4: The no-background z-bu�er.

6.4 No-background Z-Bu�er

An obvious drawback of the depth estimation bu�er is that no object that has been

chosen as an occluder can later pass the depth test; all occluder objects have to

be regarded as visible and �nally rendered. In other words, we cannot get rid of

redundant occluders using the depth estimation bu�er. Obviously, this is because

the bu�er represents a far boundary of the occluders, and any occluder involved in

building the boundary must be on its near side.

However, if the underlying graphics hardware supports z-bu�er-based visibility

determination, and the z-bu�er is easily accessible at the application level, we may

want to make use of the depth values in the z-bu�er produced by rendering the

occluders.5 The non-background depth values in the z-bu�er stores the nearest depths

of the occluder surfaces, which form a sampled representation of the optimal boundary

(i.e. the visible occluder surfaces) behind which an object cannot possibly occlude any

part of its relevant occluders. However, the z-bu�er cannot be used directly because

of the background depth values, i.e. those initialized to the maximum depth (often

1.0) and never updated during occluder rendering because no occluder projects to

them. If we directly use such a z-bu�er in our depth tests, an object will fail to pass

the depth test if its bounding rectangle touches any of the background pixels.

To transform a conventional z-bu�er into what conforms to our de�nition of depth

5Note that in order to use the z-bu�er we have to turn on z-bu�ering when we render the
occluders, which is not necessary if we only render for the occlusion maps.
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tests, we replace the depth of all the background pixels with the smallest possible

depth (usually 0.0). The modi�ed z-bu�er is called a no-background z-bu�er. The

depth tests described in section 6.3.2 remain the same except that the depth esti-

mation bu�er is replaced by the no-background z-bu�er. Using the no-background

z-bu�er means that pixels onto which no occluder projects are ignored in depth tests.

The no-background z-bu�er is compared to the depth estimation bu�er in Figure 6.4,

with the near and far boundary depicted in dashed and dotted lines, respectively.

Clearly, the major strength of the no-background z-bu�er is that it represents

(to the precision of rasterization) the optimal, nearest boundary for our depth tests,

rather than the far boundary represented by the depth estimation bu�er. Therefore,

the tested objects can make full use of the available occlusion. In Figure 6.4, occluder

B will pass the depth test with a no-background z-bu�er and thus has a chance of

being culled away.

Another advantage of the no-background z-bu�er is that it is relatively insensitive

to which objects are chosen as occluders. If a redundant occluder, i.e. one hidden

by other occluders, is selected, the bu�er will not be a�ected at all.6 In contrast, the

depth estimation bu�er su�ers from the fact that a redundant occluder can potentially

push the far boundary away, especially if it is distant from the viewer. In the extreme

case when all objects in the scene are selected as occluders, the no-background z-

bu�er still captures the near boundary made up of nearest occluder surfaces, but the

far boundary de�ned by the depth estimation bu�er will reside beyond all objects so

that no occlusion culling is possible.

The no-background z-bu�er is also not sensitive to the locality of the bounding

boxes of the occluders. Recall that in updating the depth estimation bu�er we place

the bounding rectangle of the bounding box at the box's farthest corner. When

the box has a large aspect ratio or fails to bound the object tightly, the bounding

rectangle can become too conservative an estimation. The no-background z-bu�er

does not have this problem.

As a disadvantage, the no-background z-bu�er has to have the same resolution as

the the level-0 occlusion map, because they are generated in the same rendering pro-

cess. This resolution usually has to be signi�cantly higher than the depth estimation

bu�er, since the occlusion map has to �ne enough to avoid too much error in over-

lap tests. Consequently, the depth tests are more expensive with the no-background

6More occluder primitives result in slower rendering when the z-bu�er (and the occlusion map)
is �rst built, so we still want to avoid selecting redundant occluders as much as we can.
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z-bu�er. For example, if we use a 256 � 256 no-background z-bu�er instead of a

64�64 depth estimation bu�ers, the number of depth comparisons in the depth tests

increases by 16 times. When considering this technique, we want to estimate that

this signi�cant increase in overhead does not more than cancel out the higher culling

rate we gain from using the no-background z-bu�er.
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Chapter 7

Occluder Selection

As discussed in Chapter 2, occlusion culling must begin with occluder selection. The

optimal occluder set (any object of which contributes to occlusion) is exactly the visi-

ble portion of the model. Thus, �nding this optimal set is the visibility determination

problem itself, and occluder selection is typically an approximation. More speci�cally,

occluder selection is inherently an approximation, estimating which objects are likely

to be visible without actually solving the visibility determination problem itself.

In this chapter, we present static (preprocessing) and dynamic (run-time) occlu-

sion selection methods. Static occlusion selection does not actually estimate which

objects are probable occluders for any particular view. Rather, it employs some

heuristics to identify objects that are unlikely to be good occluders, so that the dy-

namic occluder selection algorithm does not consider them as candidate occluders. It

also simpli�es objects (i.e. approximating them with fewer primitives) while preserv-

ing their occlusion. Dynamic occluder selection is performed for every frame, choosing

a subset of the objects as occluders based on the current viewing parameters, as well

as on visibility information from previous frames.

7.1 Static Occluder Selection

As preprocessing, we employ several simple criteria to identify and 
ag objects that

are unlikely to be good occluders. It should be noted, however, that any object can

be a good occluder given a favorable view setup, so there is rarely an object that is

a bad occluder for all views. Static occluder selection uses heuristics that are based

on how the model is likely to be viewed. For example, in a walkthrough of a factory

we can reasonably assume that the viewer is unlikely to zoom very close to a bolt in

the walkway.



We use the following criteria to evaluate an object's potential to be a good (or

bad) occluder:

� Size: Very small objects (bolts in the hallway of a factory model, street lamps

in a city model) are unlikely to be good occluders.

� Spatial Locality When the depth estimation bu�er is used, the occluders

should have well-localized bounding boxes, i.e. boxes that are small compared

to the size of the whole scene. Also, it helps if the boxes have small aspect

ratios. Occluders with oversized and ill-shaped bounding boxes can make the

depth estimation bu�er, and thus occlusion culling, too conservative (Chapter

6).

� Rendering Complexity: Objects with a high rendering complexity (e.g. high

polygon count) are not preferred, as rendering them to build the occlusion map

takes considerable time. However, many of these objects can be simpli�ed,

and their simpli�ed versions, which have low polygon count but preserve the

occlusion of the original objects, can be good occluders.

� Redundancy: An object attached to a larger object, e.g. a clock on the wall,

may not occlude much that the larger object does not. It is thus considered

redundant when the larger object is already selected as an occluder.

Other environment-speci�c heuristics can be used. For example, in an architec-

tural environment, the walls are by far the most important occluders. Even if we

regard only the walls as candidate occluders, we will still retain most of the occlusion

that exists in the environment.

Although obvious to human eyes, object con�gurations to which these criteria

apply are not always easy to detect automatically with an algorithm. Size, spatial

locality and rendering complexity are easy to evaluate automatically, but we have yet

to �nd a satisfactory algorithm to automatically identify redundant occluders.

7.2 Occlusion Preserving Simpli�cation (OPS)

Since the selected occluders are rendered at each frame to build the occlusion map

pyramid, the overhead of occlusion culling is directly related to the number of primi-

tives comprising the selected occluders. Given a complex object in the original model,
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we would like to derive from it a simpli�ed version (with fewer polygons) that retains

most of the occlusion the original object can provide. This is what we call occlusion

preserving simpli�cation.

Current geometry simpli�cation algorithms [Tur92, SZL92, RB93, CVM+96, Hop96]

operate under the constraint that the simpli�ed object should preserve the shape of

the original object to certain �delity. The error bound of the simpli�cation can be

measured by various distance metrics, e.g. the maximum distance between the the

simpli�ed surfaces and the original.1

Given a discrete set of error bounds, view-independent algorithms create a hierar-

chy of discrete levels-of-detail, or LOD's, that approximate the original object to the

error bounds.

More recently, view-dependent, dynamic simpli�cation algorithms [XESV97, LE97,

Hop97] have been proposed to exploit the fact that the silhouette of an object is more

important to its appearance than the parts inside the silhouette. These algorithms

operate in a similar error-driven manner as view-independent algorithms, except that

the error bounds vary across an object: a lower error bound is used for surfaces near

the silhouette and larger errors are allowed inside. By comparison, view-independent

algorithms do not have the notion of a silhouette and thus must use a single error

bound at a time. Another advantage of view-dependent simpli�cation is that objects

can be simpli�ed to continuously varying error bounds as required by the views, while

with view-independent simpli�cation we are limited to choosing the pre-computed,

discrete levels of detail.

Traditional simpli�cation algorithms, whether view-independent or not, preserve

the shape (geometric appearance) of the original object to certain error bounds. Shape

preservation is a stronger constraint than occlusion preservation, since if the shape is

preserved so must the occlusion. So, these algorithms may as well be used for OPS.

For the purpose of occlusion preservation only, however, we may be able to achieve

more simpli�cation because we do not care about the appearance of the objects at

all. As an example, Figure 7.1 shows a building on the left, which is approximated

by the two of its diagonal rectangles on the right. The approximation does not look

similar to the building at all, but when the viewer is moving on ground (i.e. the X-Z

plane), it does provide similar occlusion to the building. Since the viewer's position

1Some algorithms do not use such �delity measures directly but specify the maximumnumber of
polygons in the simpli�ed object; the polygon count, however, still implicitly indicates the maximum
error for the simpli�cation.
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Figure 7.1: View-independent Occlusion-Preserving Simpli�cation

is not limited to a point in order for 7.1(b) to approximate 7.1(a), 7.1(b) is actually

an example of view-independent occlusion-preserving simpli�cation.

Although the above example is visually obvious to human eyes, such simpli�cation

would be di�cult to compute automatically. Similar results, however, are easier to

achieve in a view-dependent fashion. Speci�cally, OPS can be conveniently viewed

as a variation of view-dependent simpli�cation in which we allow very large errors

for the object portions inside the silhouette. For even more drastic simpli�cation,

we may choose to keep the silhouette and ignore the interior surfaces and vertices

altogether. OPS will then become a triangulation of the simpli�ed silhouette. An

example of such simpli�cation is depicted in Figure 7.2. For the spherical occluder

and the particular view shown on the left, the result of OPS is a disk (or a squashed

sphere).

It is obvious that view-dependent OPS results in simpli�cations with lower poly-

gon counts than statically-generated view-independent levels-of-detail. However, the

overhead involved in computing/tracking the silhouette and performing the simpli�-

cation or triangulation is signi�cant, and can become prohibitive for a large model.

This overhead often more than cancels out the bene�t of a lowered polygon count for

the occluders. Because of this, in practice we simply use statically-generated, discrete
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Figure 7.2: View-dependent Occlusion-Preserving Simpli�cation

levels-of-detail for OPS purposes. Static LODs have very little run-time overhead.

Furthermore, the LOD's are the same as those used in the �nal rendering of the scene,

so we do not consume any extra memory due to OPS, either.

We use the static LODs generated by the simpli�cation algorithm proposed by

Erikson et. al. ([EM98]). The major reason for our choice is that this algorithm can

simplify arbitrary models and thus quali�es as part of our general-purpose approach

to occlusion culling. Better still, the algorithm has a area-preserving feature that

simpli�es small objects more drastically than objects made of bigger polygons and

even removes them altogether. With LODs generated by this simpli�cation algorithm,

the choice of level-of-detail for any object is controlled by the LOD-scale. The LOD-

scale indicates the allowable screen-space deviation of the simpli�ed surfaces from

the original, in terms of the number of pixels. The larger the LOD-scale, the greater

the allowable error, and the coarser the level of detail. We have two separate LOD-

scales for occluder rendering and �nal rendering, respectively. To reduce the cost of

occluder rendering, we use a coarser level-of-detail when rendering an object that has

been selected as an occluder into the occlusion map, than when rendering it into the

�nal image (if it is not culled away). Rendering occluders at coarse levels-of-detail

may introduce visibility artifacts, i.e. an object not occluded by the original objects

may be occluded by the simpli�ed objects, when the simpli�ed objects project to

screen areas the originals do not. This is a typical trade-o� between accuracy and

speed. In fact, we have found that with the simpli�cation algorithm we employ we

can set the occluder LOD-scale to be four times greater than the normal LOD-scale,

without noticing any serious visual artifacts.
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It is worthy of mentioning that a more restrictive form of OPS is the conserva-

tive occlusion preserving simpli�cation (COPS), which requires that the screen-space

projection of the simpli�ed object reside entirely inside that of the original, from any

view point. Intuitively, this means the simpli�ed object should be enclosed entirely

by the original object. No existing simpli�cation algorithm can be applied directly

to satisfy this constraint. We have modi�ed the simpli�cation-envelope algorithm

[CVM+96] to do COPS, by simplifying an inner o�set-surface between the original

surface and another inner o�set-surface with twice as much o�set. This algorithm,

however, su�ers from the same problem as the original simpli�cation-envelope al-

gorithm: it works only on manifold surfaces and thus cannot deal with arbitrary

polygonal models. This lack of generality make it impossible for the algorithm to be

part of our general-purpose solution to the occlusion culling problem.

7.3 Run-time Occluder Selection

At run-time, each frame begins by selecting a set of objects as occluders. As shown

in the framework in section 3.2, the candidate occluders are objects at least partially

inside the view-frustum, excluding those marked as bad occluders by our preprocess-

ing. In this section, we describe methods by which the occluders are selected from

the candidates. Once an object is selected as an occluder, we render the object at

its proper level of detail (according to the occluder LOD-scale) to merge it into our

occlusion representations.

It is important to bear in mind that in order for occlusion culling to accelerate

interactive graphics, its overhead must be well controlled. This is why we have opted

for simple, fast methods over complex, theoretically superior ones.

7.3.1 Z Plane

The single plane method for representing depth (section 6.2) is also an occluder

selection method. We can put a plane a certain distance from the viewer and choose

all objects (totally or partially) on the near side of the plane as occluders. This method

is very inexpensive, but works only for scenes where geometry is evenly distributed,

unless we vary the distance per frame. The more serious problem, though, is that

it does not bound the amount of geometry in the selected occluders, a quantity we

must bound strictly to control the occlusion-culling overhead.
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Figure 7.3: Distance-based run-time occluder selection

7.3.2 Distance-Based Selection

Our major occluder selection algorithm is based on a distance criterion and a limit

(L) on the number of occluder polygons. Given L, our task is to �nd a set of good

occluders whose total polygon count is less than L.

The objects not culled away by view-frustum culling become occluder candidates,

which are considered one by one. The distance between the viewer and the center of

an object's bounding volume is used as an estimate of the distance from the viewer

to the object. We sort these distances2 and select the nearest objects as occluders

until their combined polygon count exceeds L.

This method works well for most situations, except when a good occluder is rel-

atively far away. One such bad case is shown in Figure 7.3. The distance criterion

will select C, D, E, F , etc. as occluders, but L will probably be exceeded before A

and B are selected. In other words, the distance-based algorithm would choose the

nearest objects as occluders, many of which are redundant, ignoring good occluders

that are relatively far away. As a result, objects behind A and B are not culled away

and must be rendered.

Also, the distance-based method assumes that the distance from the viewer to

the center of a bounding box is representative of the distance from the viewer to the

polygons in the box. This, in turn, assumes that the bounding box is small compared

2Note that full sorting is not necessary. A priority queue su�ces since we need only to be able
to extract the distances one by one from near to far. We use the word \sort" for simplicity of
description.
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to the size of the whole scene. When this is not the case, the algorithm may fail to

choose near, big polygons as occluders because they could belong to a bounding box

whose center is relatively far away.

7.4 Temporal Coherence

Distance-based occlusion selection can be improved by employing temporal coherence

(also called frame-to-frame coherence) in visibility. Temporal coherence means that

non-visible objects from the previous frame tend to remain non-visible for the current

frame. It follows that objects culled away (by view-frustum or occlusion culling) for

the preceding frame are unlikely to be good occluders for the current frame. So, we

may trivially exclude the objects culled away in the previous frame from the set of

candidate occluders. The use of temporal coherence reduces the size of the candidate

set, which can be particularly bene�cial when the number of objects is so large that

distance-sorting takes considerable time. Also, by ruling out unlikely candidates we

increase the probability of selecting other candidates as occluders, given the constraint

on the maximum number of occluder polygons.

The direct application of the above idea means that we select occluders only from

the objects that are determined to be visible in the proceeding frame. In situations

where visibility changes considerably between frames, however, this approach may

seriously reduce the amount of occlusion culling by ignoring important occluders.

Two such cases are shown in Figure 7.4. Figure 7.4(a) illustrates a rotation of the

view-frustum that causes a large number of objects to enter the frustum. Objects A,

B, C, and D, which are outside the view-frustum in frame N , enter the view-frustum

in frameN+1 due to the rotation. Since these are not visible in frameN and thus not

considered occluder candidates in frame N + 1, it is impossible for A to be chosen as

an occluder for frame N+1. The result is that object B, C and D must be considered

visible due to the loss of A's occlusion. Although it is true that A, which is visible

in frame N + 1, can be selected as an occluder for frame N + 2 and subsequently

cull away the three other objects, there is an undesirable sudden slow-down for frame

N +1 due to the objects that newly enter the view-frustum. The same problem may

also appear if the viewer moves backward. In general, such problems arise because

small motion of the view-frustum may result in signi�cant change in the result of

view-frustum culling|in other words, the problem is that frame-to-frame coherence

is low for view-frustum culling.
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To circumvent the above problem, we always treat objects that have just entered

in the view-frustum as occluders. To identify these objects, we have to perform

view-frustum culling per frame. Objects that are excluded from the set of candidate

occluders are those in the view-frustum for both frame N and frame N + 1, and

occluded in frame N . That is, we do not use the temporal coherence for view-frustum

culling, but still take advantage of the frame-to-frame coherence in occlusion. More

precisely, let the set of objects inside the view-frustum be F , and the set of non-

occluded objects be V (V � F ), then the set of candidate occluders C for frame N+1

is:

CN+1 = [FN+1 � (FN+1 \ FN)] [ (FN+1 \ FN \ VN )

= FN+1 � (FN+1 \ FN) [ (FN+1 \ VN ) (7:1)

where the subscripts indicate frame number. As an example, in Figure 7.4(a), objects

A|D will be occluder candidates for frame N + 1; E and F will not|because they

are occluded in frame N . The overhead of view-frustum culling is relatively low, so

doing it per frame is not a problem, especially when the system is pipelined.

The most favorable situation for the application of the formula 7.1 is when the

viewer stays in the same place, looking around. In this case, there is perfect temporal

coherence in occlusion, i.e. an occluded object in the preceding frame will de�nitely

remain occluded.

Formula 7.1 makes use of temporal coherence in occlusion (i.e. objects occluded

in frame N will still be occluded in frame N + 1), and will thus fail when occlusion

changes considerably between two consecutive frames. Such a case is illustrated in

Figure 7.4(b). The translation of the view-frustum between frame N and N + 1

exposes object A, B, C, and D. But since they are occluded in frame N , none of

them will be occluder candidates in frame N + 1. To \correct" our formula for this

case, we would have to give up using temporal coherence for occlusion. This means

we would not use any temporal coherence at all (since we have formerly given up

temporal coherence for view-frustum culling). Usually we do not want to discard

temporal coherence altogether because of special cases, so the formula 7.1 is what we

employ in practice.
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Figure 7.4: Temporal coherence hazards in view-frustum culling and occlusion culling

7.5 Visibility Pre-processing

Dynamic occluder selection can be assisted by visibility preprocessing, which �nds

visible objects for discrete points in space. The model space can be uniformly sub-

divided into a 3-D grid. Visibility is sampled at each grid point by surrounding the

point with a cube and projecting the objects in the scene onto the cube surfaces,

using depth-bu�ering to resolve visibility. This is similar to the hemi-cube algorithm

([CG85]), except that we use a full cube. Using an item bu�er algorithm similar to

the hemi-cube algorithm used in radiosity, we can �nd all the objects visible from any

grid point. These objects can be further sorted by their importance as occluders, e.g.

their area of projection (indicated by number of pixels they project to on the cube
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faces).

For run-time occlusion selection, the eye position is snapped onto the nearest grid

point. The list of objects visible from this point (obtained in preprocessing) becomes

the set of candidate occluders. Objects from the list are considered in sequential

order; if an object is inside the view-frustum, it is used as an occluder. This process

is repeated until the maximum occluder polygon count is ful�lled. In so doing, the

overhead of occluder selection is only that of performing view-frustum culling on

objects visible from the grid point. If the eye is too far away from the closest grid

point, the standard distance-based algorithm is used instead.

The grid has to be reasonably dense so that visibility does not change too much

between the eye and the grid point onto which it snaps.3 To reduce the cost of

preprocessing, we can identify areas in the model where the viewer cannot reach,

and skip samples in those position. This is particularly applicable to models where

user motion is naturally limited. For example, in walking through a power plant the

viewer will most often traverse pathways and stairs.

In practice, visibility preprocessing is typically applied when a sparse grid is suf-

�cient to signi�cantly improve occluder selection. If dense grids have to be used,

visibility preprocessing becomes costly in both time and storage space. approach. In

the extreme case, each point in space is sampled for visibility and the run-time visi-

bility determination problem (except for view-frustum culling) is totally eliminated.

The problem then is database management, i.e. how to e�ciently store and query

the huge database of visibility samples. It remains unclear how far this database

approach can go.

7.6 Discussion

One-pass occlusion culling (which is used in our two-pass framework) requires more

accurate occlusion selection than progressive culling or culling with more passes. This

is because occluders have to selected from all of the objects in the view-frustum (when

temporal coherence is not used). In progressive culling, due to the prompt updates

to the occlusion representations, many objects are culled away and not considered

as occluders (i.e., objects go through occlusion tests before they are selected as an

occluder). So is the case with multi-pass culling with many passes, but to a lesser

3Note that "eye snapping" happens only for occluder-selection purposes, the eye remains in its
position for both occluder rendering and the �nal rendering.
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degree. In one-pass algorithms, however, occluder selection cannot use the results of

occlusion culling to reduce the number of occluder candidates. On the other hand, as

we discussed in Chapter 2, the bene�t in occluder selection that progressive or multi-

pass algorithms possess) can be canceled out by the overhead caused by multiple

updates to the occlusion representations.

Temporal coherence is an interesting remedy to the occluder-selection problem for

one-pass occlusion culling. It uses the results of occlusion culling in frame N � 1 to

assist occluder selection in frameN , assuming that that results are still applicable. In

occluder selection, progressive and multi-pass algorithms can take advantage of par-

tial results of occlusion culling for the same frame (\immediate feedback"), whereas

an one-pass algorithm, when assuming frame-to-frame coherence, utilizes result of

occlusion culling from the previous frame (\frame-to-frame feedback").

Occluder selection is also a�ected by whether updates to the occlusion representa-

tions are a by-product of normal rendering or pure overhead. When the updates are

pure overhead, the number of occluder polygons must be more strictly controlled. In

Chapter 4, we pointed out that occlusion maps are generated by rendering occluders

at a much lower resolution than the screen image. The separate rendering makes the

updates pure overhead. However, as we also pointed out, obtaining occlusion maps

as by-products of normal rendering imposes the constraint that the map resolution

be the same as that of the screen image. In practice, the overhead involved in pro-

cessing such a large image proved to be much more than the cost of rendering the

maps separately.
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Chapter 8

Implementation and Results

The algorithms described in the preceding chapters have been implemented as part of

an interactive viewer for the walkthrough and inspection of 3-D models. The system

runs either in a single-thread mode or in a parallel mode, depending on the number

of processors available. We have tested the system on several models of di�erent sizes

and characteristics. In this chapter we discuss the hardware and software issues in

our implementation, and present the performance data we have obtained on our test

models. In general, we are able to cull away a signi�cant portion of the occluded

geometry and substantially increase frame rates.

8.1 Pipelining

The sequence of operations required to generate a frame are often called a graphics

pipeline. Given multiple processors, the pipeline can be partitioned into sections, or

processing stages, so that di�erent stages can be executed concurrently for di�erent

frames. The partitioning and concurrent execution of the stages are called pipelining.

A pipeline can be partitioned in many ways, but usually a stage performs a special

type of work (e.g. view-frustum culling) on its dedicated processor. Pipelining is an

important technique for the acceleration of graphics applications.

Pipelining has been extensively used both at the software application level (e.g.

by the Iris Performer [RH94]) and inside the graphics hardware (e.g. [AJ88]). For

our two-pass occlusion culling framework (section 3.2), we are interested in software

pipelining schemes for the parallelization of the application pipeline, and regard the

hardware pipeline as a blackbox to which we send graphics primitives. Also, we

assume that there is only one hardware pipe, which is the case for most commercial

graphics platforms.
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Figure 8.1: Parallelization using three-stage pipelining

Rohlf and Helman [RH94] described an App-Cull-Draw pipeline that includes

three parallel stages. The App stage performs application-speci�c processing (numer-

ical simulations, modi�cations to the scene, etc.), theCull stage involves view-frustum

culling, and the Draw stage issues graphics commands to the graphics hardware to

�nally render the polygons. There can also be an ISect stage if collision detection

is activated. Our pipeline di�ers in several aspects. The two-pass version of our

algorithm (see section 3.2) accesses the hardware pipeline twice per frame, once for

rendering occluders and building the occlusion map pyramid, and the second time

for the �nal rendering (i.e. drawing the visible geometry). Since there is only one

hardware pipeline that needs to be accessed in sequential order, we still have one

Draw stage. However, the Draw stage must now be split into two sequential sub-

stages, OccDraw and FinalDraw to time-share between the two types of rendering.

We have also added a new stage, OccSel, for occluder selection. The Cull stage now

includes both view-frustum culling and occlusion culling. Figure 8.1 illustrates the

stages in our pipeline and how they execute together at run-time. Subscripts indicate

the frame number a stage is processing. The thick, vertical line segments indicate the

synchronization point between the stages; that is, the stage on the left must �nish

before the one on the right begins execution. For example, OccSel must �nish frame

N in order for OccDraw to begin rendering occluders for the same frame. Similarly,

visibility culling for frame N (CullN) must be �nished before the �nal rendering for

frame N (FinalDrawN) can begin.

The pipeline is controlled by the Draw stage, which releases and waits for the

other two stages using UNIX semaphores. The pseudo-code in Figure 8.2 outlines the

process scheduling, performed by the Draw stage, for frame N. Operations skipped

when the pipeline \cold-starts" (i.e. starting from frame 0) are indicated by NOP

(no operation).

The bene�t of pipelining is that the overhead of visibility culling is almost entirely

hidden by performing culling concurrently with the �nal rendering. With pipelining,

the only non-overlapped overhead for occlusion culling is the rendering of the oc-
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For frame N:

(1) Wait for OccSel N+1 (NOP for N=0)

(2) Release OccSel N+2

(3) Do OccDraw N+1 (NOP for N=0)

(4) Wait for Cull N (NOP for N=0,1)

(5) Release Cull N+1 (NOP for N=0)

(6) Do FinalDraw N (NOP for N=0,1)

Figure 8.2: Process scheduling in the Draw stage

cluders and and the construction of the map hierarchy, which have to be performed

in serial order with the �nal rendering. As we will see later in this chapter, this

overhead is typically small compared to the frame time for displaying a large model.

When the time consumed by occlusion culling is lower than the time taken by direct

rendering of the polygons culled away, we achieve a speed-up. So, by reducing the

occlusion-culling overhead, pipelining makes it much easier to achieve increased frame

rates.

Inside the 3-stage pipeline, the overlap tests and depth tests can each be paral-

lelized as well. Since these tests can be performed homogeneously and independently

for each object, they can be easily distributed onto multiple CPUs, if available. How-

ever, this is necessary only when the Cull stage takes more time than theDraw stage,

so that Cull becomes the bottleneck in the pipeline. Otherwise, the culling time will

be hidden by the drawing time anyway, and speeding up the culling stage will not

result in any increase in frame rates.

8.2 Test Environments

In this section we discuss several issues in our implementation, e.g. the construction

of the bounding volume hierarchy, the choice of active layers in the occlusion map

pyramid, etc. These discussions apply to all of our test cases. System parameters

that vary with di�erent models (e.g. the number of occluder polygons) are given later

in the Results section.
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8.2.1 Scene graphs and the spatial hierarchy

Our system is based on a screen graph structure that represents a bounding volume

hierarchy. More often than not, input models are not already organized as bounding

volume hierarchies, and we must subdivide the model to build such hierarchies and

scene graphs. The input models may be a collection of ungrouped, individual polygons

(\polygon soup"). The models may have already been divided into objects, but the

division may be not spatial, but functional (e.g. the \pipe" object in a submarine

model may contain all the pipes that exist all over the model). Such objects have to

be broken up to form spatially localized objects.

In the subdivision of an input model, we treat the model as a point cloud comprised

of the centers of the input polygons. The box containing the point cloud is recursively

subdivided intoM�N�P sub-boxes until the terminating criteria are ful�lled. This

results in a hierarchical spatial subdivision of the points. M , N , and P can be

automatically computed according to the aspect ratios of the scene (to produce cube-

shaped sub-boxes), or they can be speci�ed by the user. The terminating criteria

include the maximum number of points in the leaf node, and the maximum depth of

the leaf node in the hierarchy. After the subdivision of points, we compute for each

box a bounding volume that bounds the polygons whose centers are in the box. Thus,

the subdivision of the points yields a bounding volume hierarchy. An assumption in

building bounding volume hierarchies in this way is that the polygons are relatively

small compared to the size of the scene, so their centers represent their positions

reasonably well.1

8.2.2 Resolution for occluder rendering.

For a �nal display size of 1280 � 1024, we render the occluders at a resolution of

256�256. In other words, the original, highest-resolution occlusion map is 256�256.

This resolution proved to be su�cient in practice. The coarsest map in the pyramid

is usually 4� 4.

1We could subdivide large polygons, but this is usually avoided in order to avoid increasing the
already-overwhelming number of polygons in a large model.
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8.2.3 Construction of the occlusion map pyramid.

We have found that on SGI In�niteReality graphics systems (more detailed speci�ca-

tions will be given later), the hardware/software break-even point for the construction

of the occlusion map pyramid (section 4.4) is at the level of the 128� 128 map. That

is, if we �lter the 256 � 256 map to 128 � 128 using hardware texture mapping, and

do the rest of the �ltering in software, we can generate the map pyramid in the short-

est time. The construction, from 256 � 256 to the 4 � 4 minimal resolution, takes

approximately 4 milliseconds.

8.2.4 Active levels in the map pyramid.

We do not use all of the levels in the pyramid for overlap tests, because the bene�t

of further recursion diminishes as the overlap test descends into �ner maps. That is,

if the overlap test still cannot decide on complete overlap at a high-resolution map,

descending further into �ner maps is unlikely to help. So, we stop the overlap test at

the level of the 64�64 occlusion map, treating it as if it were level-0|the overlap test

returns false if the bounding rectangle still covers or intersects low-opacity pixels at

the 64 � 64 level. The choice of this particular level is based on our experience with

various test cases, which shows that very few overlap tests succeed at levels of higher

resolution than 64 � 64. The �ve levels (from 4� 4 to 64 � 64) are called the active

levels in the pyramid, and the 64 � 64 map is the level-0 active map. By using fewer

levels, we reduce the overhead of overlap tests. Further, much less memory is needed

to store only the active layers than to store the whole pyramid, which improves cache

performance (our test machines have 32K L1 cache). The active layers take only 5456

bytes of memory, whereas the 256 � 256 map itself takes 64K.

8.3 Performance Measures

Our goal in testing our system is to demonstrate the e�ectiveness of our occlusion

culling algorithm in real-world graphics systems. Like our model viewer in which oc-

clusion culling is embedded, these systems make use of primitive-reduction techniques

such as view-frustum culling and level-of-detail simpli�cation. Occlusion culling fur-

ther reduces the number of primitives in addition to these techniques. The bene�t of

occlusion culling should be measured with all the other techniques present.

The use of levels-of-detail of the objects implies that the geometric complexity of
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the scene changes as the viewer moves. To measure the true bene�t of the visibility

culling, the number of polygons culled away should be computed based on the current

levels-of-detail of the objects, not the polygon counts of the original objects (i.e. the

highest level-of-detail). In other words, the true impact of visibility culling should be

measured after the level-of-detail techniques have been applied.

More speci�cally, the number of polygons culled-away by view-frustum culling and

occlusion culling are calculated based on the polygon counts of the culled-away objects

in their current levels of detail (selected based on the LOD-scale). For example,

suppose an object, A, has 25,000 polygons in its highest level-of-detail. Suppose also

that at a frame, the LOD-scale indicates that it su�ces to use a coarse version of

A, which contains only 2,000 polygons. Then, if A is culled away, the reduction of

primitives due to culling is only 2,000 polygons, instead of 25,000.

Also, the amount of geometry culled away by occlusion culling is calculated after

view-frustum culling. If an object outside the view-frustum is occluded by other

objects, its absence from the �nal rendering is not due to occlusion culling. As is

shown in section 3.2, occlusion culling is performed only for objects inside the view-

frustum.

8.3.1 Graphs

For each of the models used in our experiments, statistics are taken on a pre-recorded

path (i.e. the viewer's position and viewing direction for each frame), both with and

without occlusion culling. We display our statistics on two graphs: the frame-rate

graph and the culling graph.

The frame-rate graph: Frame rates are the ultimate measure for the e�ectiveness

of our occlusion culling algorithm. The frame-rate graph, such as Figure 8.5, shows

increased frame rates due to occlusion culling, compared to frame rates obtaining by

using the other techniques (level-of-detail and view-frustum culling) without occlusion

culling.

The culling graph: The culling graph, such as Figure 8.6, shows the number of

remaining polygons as the primitive reduction techniques are successively applied.

For each frame, level-of-detail simpli�cation performs the �rst round of primitive

reduction. The total number of polygons in the scene is the sum of the polygon

counts of all the objects at their proper levels-of-detail.2 Then, view-frustum culling

2In system implementation, it appears as if LOD is preceded by the other techniques, since
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is applied, followed by occlusion culling on the objects inside the frustum. The �rst

three curves in a culling graph correspond to the number of remaining polygons after

these successive steps of primitive reduction.

A fourth curve in the culling graph shows the number of visible polygons if we

perform exact, not conservative, occlusion culling. This provides a reference point

for judging how closely conservative occlusion culling approaches exact culling. This

number is obtained by encoding object identi�ers as colors and rendering the objects

into the frame bu�er with z-bu�ering. After rendering, a visible object has its iden-

ti�er in at least one pixel. Note that all the polygons in an object are counted as

visible when any of them is visible. Alternatively, we could use polygon identi�ers,

instead of object identi�ers, so that we compute the number of visible polygons after

exact, per-polygon occlusion culling. However, since we perform per-object culling, it

is only fair that we compare to per-object exact culling.

8.4 Experimental Results

We now show experimental results on three models. The �rst model is a city, serving

as an example of a small-scale environment. The second is a medium-sized CAD

model of a portion of a submarine. The third is a large-scale model of a power plant.

Performance data are obtained on two Silicon Graphics workstations. The �rst two

models are displayed on an Onyx II with In�niteReality graphics and four 195MHz

R10000 processors. The second machine, on which tests on the power plant model

were conducted, is an Onyx I also with the In�niteReality graphics subsystem. It has

four 250MHz R4400 processors.

8.4.1 The City Model

The city model is shown in Figure 8.3. It has 312,524 polygons and comprises 12

copies of a model of London, which was originally constructed by Vasilis Bourdakos

at the Centre for Advanced Studies in Architecture of Bath University. City models

are favorable for occlusion culling in that they usually have high depth complexity for

the proper LOD is often determined immediately before an object is rendered. However, LOD is
conceptually applied before any other culling techniques, because the objects the other techniques
process must be at their current level of detail. As we pointed out in Section 8.3, the number of
polygons culled away should be computed based on the polygon counts of the culled-away objects
after LOD is applied.
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viewers walking in the streets. For this model we have applied the most basic form

of our occlusion culling algorithm, using a single CPU and employing the depth esti-

mation bu�er for depth tests. The distance-based algorithm is employed for occluder

selection, without taking advantage of temporal coherence; the maximum occluder

polygon count is 5,000. Objects in the model do not have variable levels-of-detail,

since the buildings are often simple boxes that are already minimally tessellated. The

model is loaded by our system as a set of individual polygons and subdivided to build

a bounding volume hierarchy. The bounding boxes of the objects (i.e. leaf nodes in

our scene graph) are well-localized, because the polygons are small compared to the

size of the whole city. This facilitates both occluder selection and depth estimation.

The visible geometry is rendered with lighting on (one light). We use display lists to

accelerate rendering but do not use triangle strips.3 Figure 8.4 is a frame on the path

along which performance data is recorded; the occlusion map pyramid is shown on

the right. The opacity threshold is set to 1.0, meaning that aggressive approximate

culling is not used.

In summary, the system parameters for displaying the city model are:

� Single CPU

� Depth estimation bu�er

� Distance-based occluder selection without temporal coherence

� 5,000 occluder polygons

� Opacity threshold 1.0

� Lighting; display lists; no triangle strips

The frame-rate graph and the culling graph for this model are shown in Figure

8.5 and 8.6, respectively. Whereas the number of polygons in the view-frustum varies

greatly, the number of visible polygons remains relatively constant. As the frame-

rate graph shows, we gain up to six times speed-up due to occlusion culling. Our

algorithms perform well in their simplest forms for environments with high depth

complexity and well-localized bounding boxes. When the viewer is close to the border

of the city looking outside, there is not much geometry in the view-frustum (i.e. not

3Our current triangle-strip generator produces incorrect normals, so the resulting strips cannot
be used when lighting is on.
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much geometry to be culled by occlusion) at all, as indicated by the low points on the

"After VFC" line in the culling graph. In this case, occlusion culling produces a slower

frame-rate than direct rendering due to its constant overhead (e.g. constructing the

map pyramid).

8.4.2 The Submarine Auxiliary Machine Room (AMR)

The notional CAD model of the auxiliary machine room in a submarine was shown

in Figure 1.1, color-coded to illustrate occlusion culling. The model was provide by

Electric Boat. Figure 8.7 is a ordinary view of the model, and Figure 8.8 shows a

frame on our test path, with the active levels in the occlusion map pyramid displayed

on the right. The original model contains 632,252 triangles. Triangles that belong

to the same part (e.g. a rib, the engine case, etc) are grouped into an object. Four

levels of detail are generated for each original object using Erikson's simpli�cation

system [EM98]. Each simpli�ed level has half of the polygon count of its neighboring

more-detailed level. The original objects and their simpli�ed versions are split as

necessary in building the bounding volume hierarchy. For �nal rendering, we use a

screen-space error bound (the LOD-scale) of one-pixel deviation, whereas for occluder

rendering we set it to 5 pixels. The bounding boxes in this model are not as well

localized as in the city model, due to the existence of big polygons comparable in

size to the whole model. Thus, a no-background Z-bu�er is used for depth tests. For

occluder selection, we use the distance-based method with temporal coherence.4 The

maximum number of occluder polygons is set to 25,000. The three-stage pipeline is

used to display this model, using three out of the four available CPUs.

Aggressive approximate culling is applied to the AMR model. A pixel in the level-

0 active map (64 � 64) corresponds to a 20 � 16 block of pixels in the �nal image

(1280� 1024). De�ning the L� 0�hole constraint, we choose L = 12� 8 = 96. Also,

we set the distribution factor D = 2. The opacity threshold for the level-0 active map

is thus T
0 = 1 � LD=(4 � 20 � 16) = 0:85. The thresholds for the coarser levels are

0.925 (for the 32� 32 map), 0.96 (16� 16), 0.98 (8� 8), and �nally 0.99 for the 4� 4

map.

The system parameters used in displaying the AMR model are summarized as

follows:

4Actually, we do not bene�t much from using temporal coherence here. Temporal coherence
reduces the overhead of occluder selection. But when occluder selection is done in a separate pipeline
stage, its overhead tends to be hidden by the rendering time anyway.
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� 3 CPU (the three-stage pipeline)

� No-background Z-bu�er

� Distance-based occluder selection

� 25,000 occluder polygons

� Opacity thresholds from 0.85 (for the 64� 64 map) to 0.99 (for the 4� 4 map).

� LOD-scale = 1 pixel

� Lighting; display lists; no triangle strips

The frame-rate graph and the culling graph are shown in Figure 8.9 and 8.10,

respectively. In general, we get approximately two-fold speed-up in frame rates.

Figure 8.11 illustrates the bene�t of aggressive approximate culling as a result of

lowering opacity thresholds. In the �gure, only the opacity threshold (OT) for the

�nest active level (64� 64) is marked in the legend. We have seen objects popping in

and out through holes among the foreground objects, but they were only noticeable

when we look for the artifacts on purpose.

8.4.3 The Power Plant Model

The power plant model was provided by ABB Engineering. It comprises 13 million

triangles, half of which are from the various piping structures. Figure 8.12 shows the

model from the outside; Figure 8.13 shows a frame (together with the corresponding

occlusion maps) from our walkthrough of the interior along the path we used to

gather the performance data. The model is originally subdivided into large parts

according to their function. Each part has �ve levels of detail, with the number

of polygons decreased by a half in each next-coarser level. The parts (and all the

levels of detail) are further subdivided when �rst loaded into our system, resulting in

objects each with no more than 8,000 polygons. The model takes approximately 1.5

gigabytes when loaded into the memory with all the levels of details. For this reason,

tests had to be performed on our second machine, which is slower but has 2GB of

memory. Considering the slower graphics performance of the machine, the triangles

are rendered without real-time lighting (but with pre-computed lighting), in triangle

strips. Also, there is not enough memory for creating display lists, so they are not

used.
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Due to the huge number of polygons involved, the frame rates are sensitive to

the quality of occluder selection. Missing a good occluder could mean having to

render hundreds of thousands more polygons, resulting in a major negative impact

on the frame rates. Although distance-based occlusion selection (assisted by temporal

coherence) still works well at most view points, the occasional omission of important

occluders causes severe 
uctuation in frame rates. For this reason, we employed

visibility preprocessing to facilitate run-time occluder selection. A coarse, 20x20x1

grid was put above the ninth 
oor of the power plant (where our test path is) and

visibility is sampled at the grid points. Figure 8.14 shows the walkways, the grid (in

white) and the path (in red). On the right, the box in the coarse rendering of the

power plant shows the relative position of the 
oor we are on. The preprocessing took

approximately 15 minutes.

The LOD-scale (screen error bound) is set to 1 pixel for �nal rendering and 5

pixels for occluder rendering. The maximum occluder polygon count is set to 20,000.

The system runs in parallel mode on three CPUs and uses the no-background Z-bu�er

for depth tests.

In summary, the major system parameters are listed as follows:

� 3 CPUs (the three-stage pipeline)

� No-background Z-bu�er

� Coarse visibility preprocessing

� 18,000 occluder polygons

� Opacity thresholds from 0.6 (for the 64� 64 map) to 0.99 (for the 4� 4 map).

� LOD-scale = 1 pixel

� No lighting, no display lists; use triangle strips

Figures 8.15 and 8.16 show the frame rates and the amount of culling along the

path shown in Figure 8.14. View-frustum culling discards most of the polygons in the

model, which is common anywhere inside the power plant. We gain two to six times

speed-up in frame rates due to occlusion culling. The sudden decrease in frame rate

(and equivalently, the increase in the number of polygons rendered) in the middle of

the path is due to the sudden exposure of complex piping structures, which require a

higher occluder polygon count.
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Figure 8.3: The city model

            

Figure 8.4: A frame from the walkthrough of the city
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Figure 8.5: Frame rate for the city model
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Figure 8.6: Culling in the city model
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Figure 8.7: The auxiliary machine room in a submarine
            

Figure 8.8: A frame on the test path for the AMR model
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Figure 8.9: Frame rates for the AMR model

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

1 201 401

Frame #

N
u

m
b

er
 o

f 
re

m
ai

n
in

g
 t

ri
an

g
le

s

Original model

After LOD

After LOD+VFC

After LOD+VFC+OC

Ideal

Figure 8.10: Culling in the AMR model

85



60,000

80,000

100,000

120,000

140,000

160,000

180,000

1 201 401

Frame #

N
u

m
b

er
 o

f 
tr

ia
n

g
le

s 
cu

lle
d

 b
y 

O
C

OT=1.0

OT=0.8

Figure 8.11: Aggressive approximate culling on the AMR model

            

Figure 8.12: The power plant model
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Figure 8.13: A frame on the test path for the power plant model

Figure 8.14: The walkway of the 9th 
oor in the power plant model
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Figure 8.15: Frame rates for the power plant model
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Chapter 9

Conclusion and Future Work

In this dissertation we have presented a new approach to occlusion culling. The goal

of our work is to provide e�ective occlusion culling algorithms that can accelerate

the interactive display of real-world large scale models. We have observed that such

algorithms must simultaneously satisfy three criteria: it must be general with respect

to the types of scenes handled; it must increase the frame rates; and it must be easy

to implement. We have presented algorithms that have been proven to meet these

goals.

Our approach is based on the observation that the representation of cumulative

occlusion largely decides the capabilities of an occlusion-culling algorithm. We begin

by decomposing the occlusion-culling problem into two sub-problems|that in order

for an object (the potential occludee) to be occluded by the occluders, its screen-space

projection must be inside the cumulative projection of the occluders, and it must not

occlude any part of the occluders. These two necessary conditions for occlusion

are veri�ed by the overlap tests and the depth tests, respectively. The cumulative

projection and the depth of the occluders are represented separately to support these

tests.

The problem decomposition allows us to be more approximate in estimating depth

than screen projection, since the amount of occlusion we can obtain is more sensitive

to the latter. It also makes our algorithms more portable across di�erent graphics

platforms with varying hardware strategies in resolving depth. The most notable

bene�t of the decomposition, however, is that the screen projection can be represented

by a 2-D image (i.e. an occlusion map) and 2-D image analysis techniques can be

utilized to analyze occlusion.

We have employed hierarchical occlusion maps|an image pyramid derived from

the cumulative screen projection of the occluders|for the analysis of occlusion. With



the pyramid, occlusion is represented at multiple resolutions, and overlap tests are

performed hierarchically through the pyramid. Due to this multi-resolution represen-

tation, we have developed such concepts as levels of visibility, and presented unique

features such as aggressive approximate culling (i.e. culling away barely-visible ob-

jects).

For depth representation, we have presented the depth estimation bu�er and the

no-background Z-bu�er. The former conservatively estimates the far boundary of the

occluders, while the latter is derived from a conventional Z-bu�er and captures the

near boundary.

We have described the framework for a two-pass implementation of our algorithm,

which is tailored to take advantage of currently-available graphics workstations (e.g.

the Silicon Graphics workstations). The framework has been parallelized using soft-

ware pipelining. The details in the choices of system parameters have also been

discussed. Our performance tests on three di�erent models, which are small, medium

and huge in size, respectively, have shown encouraging results.

Our future work will focus on the implementation of our core algorithm on di�erent

hardware architectures. Depending on the underlying platform, an implementation

may look rather di�erent from the two-pass framework presented here. Nonetheless,

the gist of our approach, i.e. our occlusion representations and our algorithms for the

overlap tests and depth tests, will still play a fundamental role. For example, the new

Intel Pentium processors supports MMX instructions that facilitate software transfor-

mations and scan-conversion of polygons, making it possible to render occluders and

build occlusion maps on the main CPU. Many operations in our culling algorithm are

easy to accelerate in hardware and, once supported by hardware, will greatly increase

the e�ciency of occlusion culling. More intimate integration of occlusion culling into

graphics hardware will make it feasible to perform multi-pass or even progressive

culling, which can be much less conservative than the two-pass variation.

The prospect of the wide-spread use of occlusion culling in graphics applications is

indeed very exciting. We expect occlusion culling to be widely supported by graphics

systems in the near future.
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Appendix A

Incremental Transformation of

Axis-Aligned Bounding Boxes

We de�ne an axis-aligned bounding box (AABB) by a base point, (x0; y0; z0), and the

increments (dx; dy; dz), so that the eight corners of the bounding box are:

(x0; y0; z0)

(x0; y0 + dy; z0)

(x0; y0 + dy; z0 + dz)

(x0; y0; z0 + dz)

(x0; y0; z0)

(x0 + dx; y0; z0)

(x0 + dx; y0 + dy; z0)

(x0 + dx; y0 + dy; z0 + dz)

(x0 + dx; y0; z0 + dz)

The transformations of the corners by a 4 � 4 matrix share many common sub-

expressions, which can be computed once and stored for later use.

Let the elements of the transformation matrix,M , be mij, 0 � i; j < 3:

M =

0
BBBB@

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

1
CCCCA

Then



M

2
66664
x0 + dx

y0 + dy

z0 + dz

1

3
77775 =M

2
66664
x0

y0

z0

1

3
77775+M

2
66664
dx

0

0

0

3
77775+M

2
66664

0

dy

0

0

3
77775 +M

2
66664

0

0

dz

0

3
77775

By computing the full transformation of the base point, and one increment vector

in each dimension (M(dx; 0; 0; 0)T , etc.), the transformation of the remaining 7 corners

is no more than adding proper increment vectors, and dividing by the w component.

The increment vectors are:

M(dx; 0; 0; 0)T = (m00dx;m10dx;m20dx;m30dx)
T

M(0; dy; 0; 0)T = (m01dy;m11dy;m21dy;m31dy)
T

M(0; 0; dz; 0)T = (m02dy;m12dy;m22dy;m32dy)
T

In computer graphics, the last column of M is often not full, a fact that further

reduces (slightly) the amount of computation in the \full" transformation of the base

point.
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