

#### COMP768 Final Project Cloth Simulation & Video-based Cloth Parameter Estimation

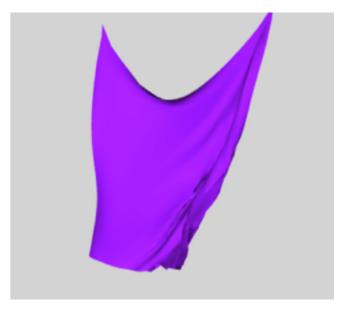
Zhen Wei



# Motivation

- Cloth Simulation
  - Movie
  - Games
  - VR scene
  - Virtual Try-on




- Cloth Parameter Estimation
  - Good parameters can produce very realist appearance
  - Choosing parameters are time-consuming



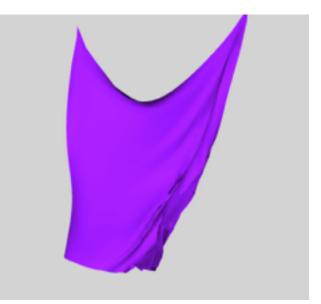
- Cloth Simulation
  - Position Based Method Implementation
  - Stretching, Bending, Self-collision, Damping
- Video-based Cloth Parameter Estimation
  - Machine-Learning-Based Cloth Material Retrieval in Real-Life Videos
    - Design a small network to learn motion feature and use a simple classifier using synthetic data
    - Collect real-life video data
      - Preprocessing and use optical flow algorithm to get flow feature
  - Extension: Garment Movement with Human Motion



• Get synthetic dataset THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL






#### • Cloth Simulation

- Position Based Method Implementation
- Stretching, Bending, Self-collision, Damping
- Video-based Cloth Parameter Estimation
  - Machine-Learning-Based Cloth Material Retrieval in Real-Life Videos
    - Design a small network to learn motion feature and use a simple classifier using synthetic data
    - Collect real-life video data
      - Preprocessing and use optical flow algorithm to get flow feature
  - Extension: Garment Movement with Human Motion



Get synthetic dataset
 THE UNIVERSITY
 of NORTH CAROLINA
 at CHAPEL HILL





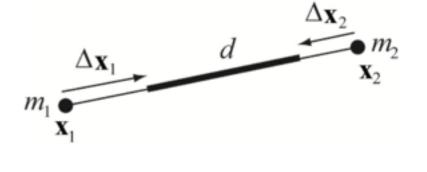
- Force Based Methods
  - Internal and external forces are accumulated, Newton's second law
  - Employ a time integration method, update velocities and finally positions
- Impulse Based Methods
  - Directly manipulate velocities, one layer of integration can be skipped
- Position Based Methods
  - Omit the velocity layer as well and immediately works on the positions
  - Define general constraints via a constraint function
  - Directly solve for the equilibrium configuration and project positions



- Recall Position Based Method
  - A vertex i ∈ [1,...,N]
  - mass m\_i,
  - a position x\_i
  - a velocity v\_i.
  - Constraint C\_j

Based on this data and a time step  $\Delta t$ , the dynamic object is simulated as follows:

- (1) forall vertices i
- (2) initialize  $\mathbf{x}_i = \mathbf{x}_i^0, \mathbf{v}_i = \mathbf{v}_i^0, w_i = 1/m_i$
- (3) endfor
- (4) **loop**
- (5) **forall** vertices i **do**  $\mathbf{v}_i \leftarrow \mathbf{v}_i + \Delta t w_i \mathbf{f}_{ext}(\mathbf{x}_i)$
- (6) dampVelocities( $\mathbf{v}_1, \ldots, \mathbf{v}_N$ )
- (7) **forall** vertices i **do**  $\mathbf{p}_i \leftarrow \mathbf{x}_i + \Delta t \mathbf{v}_i$
- (8) **forall** vertices *i* **do** generateCollisionConstraints( $\mathbf{x}_i \rightarrow \mathbf{p}_i$ )


6

- (9) loop solverIterations times
- (10) projectConstraints( $C_1, \ldots, C_{M+M_{coll}}, \mathbf{p}_1, \ldots, \mathbf{p}_N$ )
- (11) endloop
- (12) forall vertices i
- (13)  $\mathbf{v}_i \leftarrow (\mathbf{p}_i \mathbf{x}_i)/\Delta t$
- (14)  $\mathbf{x}_i \leftarrow \mathbf{p}_i$
- (15) endfor
- (16) velocityUpdate( $\mathbf{v}_1, \ldots, \mathbf{v}_N$ )

(17) endloop



- Recall Position Based Method
  - Stretching Constraints
  - Bending Constraints
  - Self Collision Handling



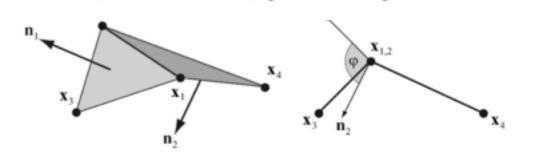
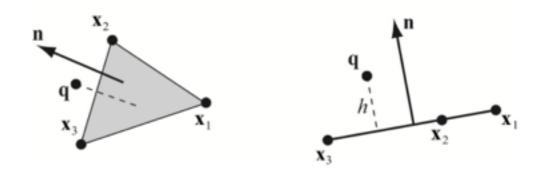
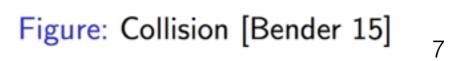





Figure: Bending [Bender 15]

Figure: Streching [Bender 15]







#### Position Based Method

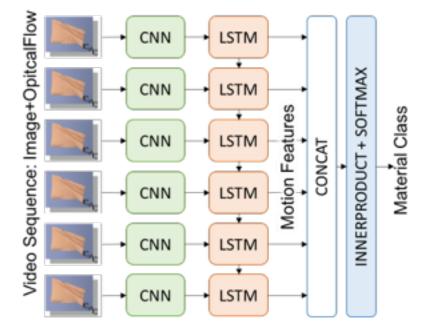
- Stretching Constraints
- Bending Constraints
- Self Collision Detection
- Damping
- Other: GUI
  - Drag a point of the cloth



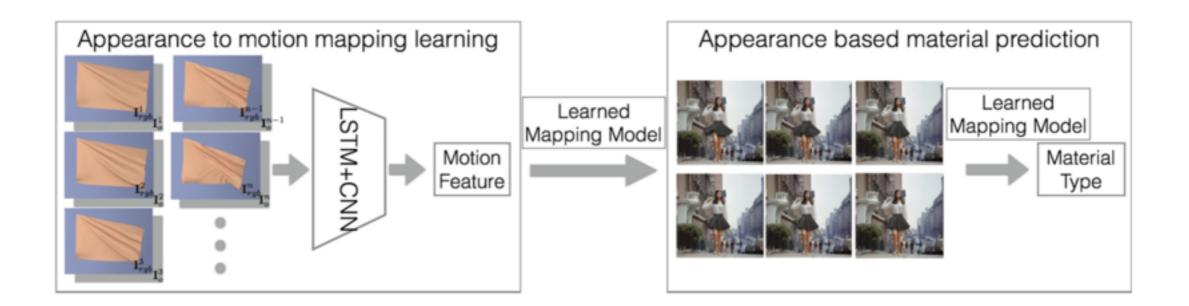


THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Video Demo Link: <u>http://cs.unc.edu/~zhenni/</u> <u>courses/UNC/COMP768/project/cloth-sim.mov</u>


- Cloth Simulation
  - Position Based Method Implementation
  - Stretching, Bending, Self-collision, Damping

#### • Video-based Cloth Parameter Estimation


- Machine-Learning-Based Cloth Material Retrieval in Real-Life Videos
  - Design a small network to learn motion feature and use a simple classifier using synthetic data
  - Collect real-life video data
    - Preprocessing and use optical flow algorithm to get flow feature
- Extension: Garment Movement with Human Motion

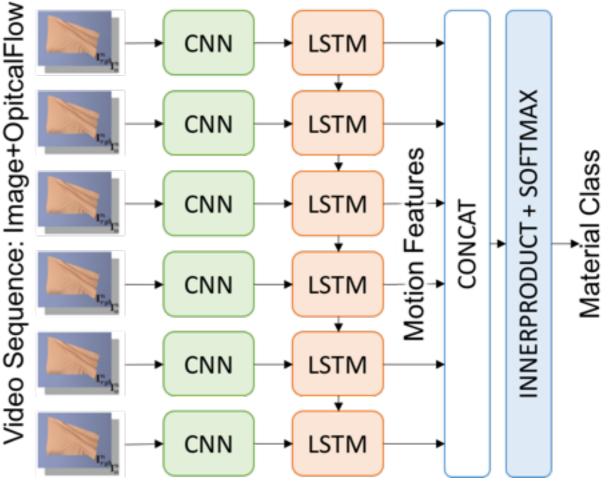


Get synthetic dataset
 THE UNIVERSITY
 of NORTH CAROLINA
 at CHAPEL HILL



 Machine-Learning-Based Cloth Material Retrieval in Real-Life Videos:






THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Picture from Shan Yang <sup>10</sup>

- Machine-Learning-Based Cloth Material Retrieval in Real-Life Videos:
  - Design a small network to get motion feature and use simple the classifier to get material class
  - Toy dataset: synthetic data
    - Train: ~10k sequences
    - Test: ~1k sequences
  - Result:
    - Accuracy:
    - ~2% higher than random
  - Analysis and modification:
    - use trained model to finetune
    - more data & longer sequence
    - More meaningful classifier





- Cloth Simulation
  - Position Based Method Implementation
  - Stretching, Bending, Self-collision, Damping

#### • Video-based Cloth Parameter Estimation

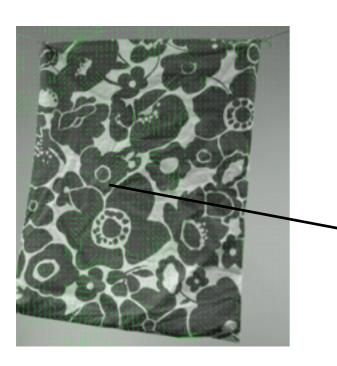
- Machine-Learning-Based Cloth Material Retrieval in Real-Life Videos
  - Design a small network to learn motion feature and use a simple classifier using synthetic data
  - Collect real-life video data
    - Preprocessing and use optical flow algorithm to get flow feature
- Extension: Garment Movement with Human Motion



Get synthetic dataset
 THE UNIVERSITY
 of NORTH CAROLINA
 at CHAPEL HILL

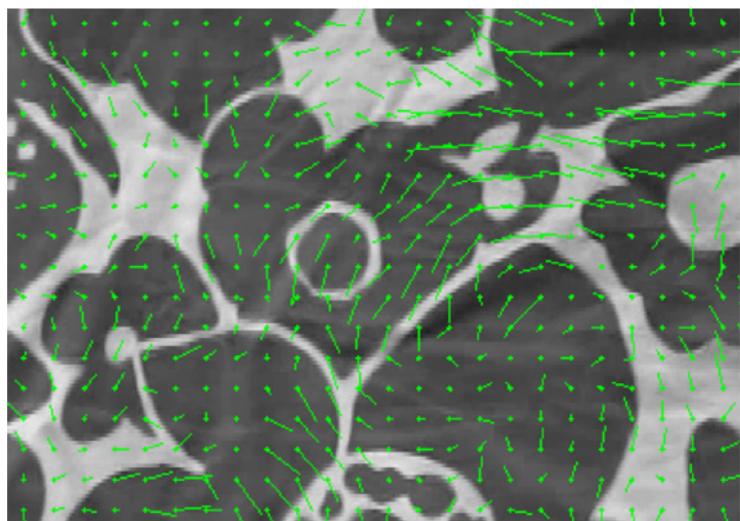





- Machine-Learning-Based Cloth Material Retrieval in Real-Life Videos:
  - Collect real-life cloth moving videos.






THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- Machine-Learning-Based Cloth Material Retrieval in Real-Life Videos:
  - optical flow algorithm for generating features of real-life videos





THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



- Cloth Simulation
  - Position Based Method Implementation
  - Stretching, Bending, Self-collision, Damping

#### • Video-based Cloth Parameter Estimation

- Machine-Learning-Based Cloth Material Retrieval in Real-Life Videos
  - Design a small network to learn motion feature and use a simple classifier using synthetic data
  - Collect real-life video data
    - Preprocessing and use optical flow algorithm to get flow feature
- Extension: Garment Movement with Human Motion



• Get synthetic dataset THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



#### • Extension:

#### Garment movement

- not only considering material
- Cloth movement vs.
  Garment movement
- Human motion





- Extension: Garment movement:
  - Data Collection
  - Generate synthetic dataset for garment movement
    - ArcSim
    - Blender
    - Make human





### Milestone Comparison & Future Work

- Machine-Learning-Based Cloth Material Retrieval in Real-Life Videos:
  - Oct.: Collect real-life cloth moving videos.
  - Oct.: Write an optical flow algorithm for generating features of real-life videos
  - Oct.: Run testing on the real-life videos
- Extension: Garment movement:
  - Nov.: Generate synthetic dataset for garment movement
  - Nov.-Dec.: Do clustering on the motion subspace for the garment movement
  - Dec.: Testing and Comparison





- Design and train a small network
- Cloth Simulation
  - Position Based Method Implementation

# Thank you.

