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Abstract—Localization proves to be a promising application
of wireless sensor networks. Although a considerable number
of algorithms have been designed for low-overhead and high-
accuracy localization, problems remain to be tackled such as
the way to use anchor-deploying. In this paper, we present
a mechanism for range-free localization called Enhanced Map
Segmentation (EMS) to deploy and segment the map where
precise indoor localization is required. Despite the limits of
environmental noise, sensing irregularity, received signal strength
(RSS) variation and other unavoidable factors, EMS can be
reliable by improving the quality of map segmentation. This
paper will present and analyze the enhancing method by a
series of simulations. In addition, to deal with ambiguous context
positions that confounds the localization, this paper ameliorates
the segmentation with context conception mentioned in [1] by
statistical methods. In fact, a well-organized deployment and
a context-based decision mechanism can make such a layer of
abstraction more reliable and compatible.

I. INTRODUCTION

Wireless sensor networks (WSNs) [2], [3] were proposed in
the last century. Although no longer an emerging technology,
they have been universally motivated by area surveillance
applications [4], [5]. In contemporary society, there is not only
the battlefield surveillance [6] but also the civil localization
application implemented by WSNs where low-cost [3] sensor
nodes are deployed randomly or deliberately. However, the
absence of full-fledged localization strategy renders existing
localization schemes far from optimal, which results in poor
accuracy and enormous overheads [3].

In addition, the demand for higher accuracy, lower costs
and shorter delays is on the rise as location-based mobile
applications have emerged as the dominant paradigm. To keep
up with the trend, some eminent ideas have been put forward to
solve tracking with WSNs [7]–[9]. Traditionally, WSNs-based
localization algorithms can be divided into two categories:
range-free methods and range-based methods [10]. The latter is
defined by protocols that use point-to-point distance estimates
(range) or angle estimates for calculating location [11], [12],
and the former makes no use of such information. Created
with less range information, a range-free method, however, is
more suitable for large-scale network localization applications,
for the range-based one requires specific statistics and more
expensive hardware or careful system calibration [10], [13],
[14]. In addition, the range-free strategy has been extensively

studied in many algorithms such as the RSD [15], DV-Hop
[16], APIT [17], and REP [18]. However, most of these
algorithms ignore a less commonly recognized, but equally
important factor, the spatial deployment of anchor nodes or
base-stations in sensor networks, which is of great value to
the robustness of localization schemes and other range-free
methods.

The phenomenon unquestionably exists and has obvious
significance for the vigorous efficiency of the sensor local-
ization as well as for the accuracy of location estimations,
statically and dynamically. Our work is also motivated by a
serendipitous discovery that a simple assumption of random
anchor node deployment can never provide an optimal solution
in achieving desired accuracy in location estimations. For
instance, it is hard in RSD for all of the node sequences to
reach the maximum of possible permutation in the area with
four or more Wireless Base Stations (called anchor(s) in the
following description). This paper introduces the Enhanced
Map Segmentation (EMS) in which the concept of segmen-
tation is represented by division or partition in the following
part and investigates an appropriate spatial deployment based
on the following three assumptions: (i) The number of node
sequences nearly equals to the number of subareas, and more
subareas means more accuracy; (ii) The homogeneity [19],
[20] of subdivisions, which can be analyzed by the area
standard deviation, can decrease the location estimation errors;
(iii) The relationship between application contexts and the
subareas varies, thus context-based area segmentation and
localization should be a practical consideration. The simulation
and experiment results show that based on our area division
strategy and context-based segmentation algorithm, the local-
ization accuracy is significantly improved.

Based on our empirical study, the different deployments
of anchor nodes make a significant impact on performance
of range-free localization methods. Although numerous issues
need solutions to achieve the optimal localization scheme,
three fundamental challenges must first be addressed: the
effective approach in area division, the dynamic characteristics
of anchor node deployment, and the complexity of application
contexts in network environments. It has long been known
that existing range-free methods do not work in practice as
they do in theory because they fail to extract an optimal



anchor node deployment scheme. However, through extensive
simulations, we demonstrate that EMS is designed in line with
our theoretical analysis and results in a better localization
accuracy than other approaches with a random deployment
assumption. Furthermore, we have tested significant batches
of scenarios to validate our cogent EMS design. We also
consider the existence of contexts in our analysis of optimal
node deployment scheme. Thus our framework sheds light on
the factors that dramatically increase the accuracy of location
estimations.

The rest of the paper is organized as follows: Section II
gives an overview about the design; Section III details the sys-
tem design and discusses some practical promotions; Section
IV evaluates the design with extensive simulations and makes
several comparisons with other typical algorithms; Section V
gives field experiments in real environments; Section VI briefly
discusses related work; and Section VII concludes the paper.

II. SYSTEM OVERVIEW

This section gives an overview of the EMS localization
system. As shown in Fig. 1, the system consists of two critical
components, i) map division, and ii) context-centric anchor
deployment strategy in localization.

Without loss of generality, we start the discussion within
a two-dimensional paradigm although our algorithm can be
applied into a three-dimensional paradigm. In Fig. 1(a), four
anchors have been deployed randomly. Once anchors are
deployed, a topological graph is generated and the geometry
relationship, such as their relative distances will be computed.
Apparently, if different algorithms are used to define the
relative distance, computed results, thus accuracy of location
estimations, will be different. For example, the RSD is one
of eminent state-in-art localization solutions that can approxi-
mately reduce 35% localization errors as compared with Sub-
Hop resolutions [15]. In light of the EMS, let k be the number
of anchors in a map, we define a high-dimensional location
signature function as follows:

S(A) = (n1, n2, ..., nk) (1)

where A is the subarea to which a target belongs, ni, 1 ≤
i ≤ k, is the anchor number. The anchor sequence follows the
relationship that RSS(ni) > RSS(nj) for all i < j. Similar
to RSD, we can use the signature to mark all the positions in
an area.

With perpendicular bisectors, an area can be divided into
several subareas. As stated by Theorem 1, each subarea owns
a unique high-dimensional location signature. Once a target
gets into the area , as shown in Fig. 1(b), a signature will be
generated and the relative distances to all the anchors, which
are computed based on an algorithm that will be discussed
later, can be achieved as well. As an example, the Fig. 1(b)
shows that the signatures of a target T , anchor node A and
anchor node B are rendered, and then used to get the relative
distance between T and A and that between T and B. The flip
theory used in RSD shows that the physical distance is in direct
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Fig. 1. Localization System Overview

proportion to the relative distances [15]. At this point, the
target can be localized in one of the subareas and its location
can then be estimated.

Theorem 1. The signature function S defined in Equation 1
is bijective.

Proof: Given a division of a map, let A be the set of all
subareas, and S be the set of the signatures computed from S.
Clearly, both A and S are finite sets. The rest of this proof is
done by contradiction.



Suppose S is not bijective, there will be only two possible
suppositions : (i) ∃A1, A2 ∈ A : A1 6= A2 ∧ S(A1) = S(A2),
and (ii) ∃A ∈ A ∧ ∃S1(A), S2(A) ∈ S : S1(A) 6= S2(A).

(a) Supposition (i) (b) Supposition (ii)

Fig. 2. S is Bijective

(i) As illustrated in Fig. 2(a), let Ai and Aj be two subareas
divided by one or more bisectors, then there exists at least one
bisector (Vk, Vt) so that Ai and Aj are located on different
sides of (Vk, Vt). If a target T has a signature S(Ai) in Ai

initially, it will be impossible for T to hold an unchanged
signature when it crosses the bisector (Vk, Vt) into the Aj

because the relative position of Vk and Vt in the signature
must flip.

(ii) As illustrated in Fig. 2(b), suppose a subarea Ai ∈ A
owns at least two different signatures S1(Ai) and S2(Ai),
S1(Ai) 6= S2(Ai), then there exists at least one flipped node
pair, say, Vk and Vt. The bisector (Vk, Vt) must cross the Ai,
which implies that Ai contains two subareas, contradicting the
fact that Ai is one subarea.

In conclusion, the above two suppositions are both false,
and thus S is bijective.

Based on Theorem 1, all the positions in the same subarea
have the same signature. When a target enters an area, a
signature is generated and the relative distances to all the
anchors, which can be computed with an algorithm to be
discussed later in this paper, can be obtained as well. Then
the distances between the target of interest and the anchors
can be computed with the definition in [15], and the physical
distance is in direct proportion to the relative distances [15].
At this point, the target’s location can be obtained.

In the above process, the deployment of those anchors is
a determining factor. For instance, Fig. 1(c) provides one
map with 8 subareas and another one with 18 subareas. The
increase in the number of subareas, thus, can help to improve
localization accuracy.

Meanwhile, the localization problem within contexts needs
consideration in practice. We depict in Fig. 1(d) a few de-
sirable or undesirable contexts. These contexts will degrade
the performance of most existing localization schemes: either
range-based or range-free, as neither of them assumes a perfect
spatial environment. On the contrary, critical information is
embedded in the contexts for localization problems, and we
should make use of the relationship between contexts and

subareas to reduce overheads and to improve localization
accuracy.

The rest of this paper will focus on the issues revealed in
Fig. 1(c) and 1(d) to improve the accuracy of localization.

III. SYSTEM DESIGN

In this section we present our system design from several
aspects. We start with the ideal map division, and then
introduce the map division with weight. Another two important
topics – homogenization and context – are also discussed.

A. The Ideal Map Division

As mentioned earlier, a key task in management of local-
ization is building technical solutions of anchor deployment to
meet accuracy requirements. We capture this notion by means
of area segmentation based on the positions of anchors. After
all anchors deployed, the segmentation of region under surveil-
lance can be determined by the fixed topological structure and
the corresponding signatures.

Given the RSSs from available anchors, the physical infor-
mation can be abstracted to the RSS signature in a region if the
distribution of RSSs is known. The RSS distribution models
have been well studied [21]–[23]. Because our EMS design
by nature does not rely on the accuracy of RSSs, a simple
relationship model that the RSS from an anchor is inverse
proportion to the distance will suffice in our discussion.

To illustrate our concept, we start from a basic scenario in
which there is no longer any communication barrier between
any adjacent anchor pairs. Thus, a region, represented by a
map, can be divided by the perpendicular bisectors between
anchor pairs, and the geometry property of such a division will
form our study foundation. Taking a map with two anchors,
n1 and n2, as an example, the bisector of n1 and n2 will
divide the area into two subareas so that every point on one
side of the bisector will see that its distance to anchor n1 will
be smaller than that to anchor n2, which implies that the RSS
from anchor n1 will be stronger than that of n2 on any specific
location in each sub-region. In this step, a relative signature
[24] for any given point can be decided immediately by its
relative location toward the bisector.
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Fig. 3. Ideal Map

In this scenario, we evaluate the validity of ideal divi-
sions. Without context constraints, the division of a map
is determined by the number of anchors and their relative
positions. Due to space limit, we will only present the re-
sults with 4 anchors setup, though experiments with a larger



number of anchors prove our proposition as well. It is worth
mentioning that the example we showed in Fig. 3 is only
two example of anchor deployments in which the maximum
division, according to our maximum division proposition, can
be achieved in the map. In other words, that shows how the
maximum segmentation in our basic design is accessible. As
shown in Fig. 3(a), subareas of different colors represent the
respective signatures, which also indicates that the boundary
is the straight line. Further simulations with different anchor
deployment have been conducted , but the number of divisions
in ideal map is 18 or less such as Fig. 3(b), which assures that
our conclusion about the ultimate ideal division is self-evident.

B. The Map Division with Weights

Fig. 4. Apollonius Circle Fig. 5. A Map with Contexts
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Fig. 6. A Field Result for Three Multiple Anchors

As mentioned in section III-A , we introduce the map
division problem based on an ideal RSS distribution as-
sumption in which all anchors are independent and identical.
However, when it comes to an practical application, the vicious
peak signals from different anchors as shown in Fig.III-B
indicates the defection of ideal case. The ideal map division
ignores the fact that different anchors can either have peak
signal strengths or their RSS distribution can be different due
to spatial interference, which in turn will cause inaccurate
location estimations. For further discussion, we define the
following concepts:

Definition 1. The weight of an anchor node n, denoted W (n),
is W (n) ≡ 1/RSSpeak(n), where RSSpeak(n) is the peak
RSS from n.

Definition 2. The Distance with Weight between a target T
and an anchor n, denoted DW (T, n), is the product of the
geometric distance between T and n and W (n).

We use RSSpeak(n) to denote the peak RSS of an anchor
n; and when we are not interested in which anchor n is of
interested, we simply use RSSpeak to refer to the peak RSS
of an arbitrary anchor. In the next discussion, we use the RSS
model defined in [25] as follows:

RSS =
RSSpeak(

ru
r0

)m · k (2)

where, k and m are constant factors, and r0 is a reference
distance in our model.

The optimal location estimation, therefore, depends on
the accuracy of the peak value in our folder. As-
suming the RSSpeak follows a normal distribution, i.e.,
RSSpeak ∼ N(µ0, σ

2
0), there have been prior beliefs about

the E(RSSpeak) = µ0, and σ(RSSpeak) = σ0, µ0 and σ0

represent the best guess for RSSpeak and the uncertainty
on the guess, which come from our prior experiments or
specification of service provider. Thus, we need to modify
the inputs to Equation 2 based on the in-situ estimation of

ˆRSSpeak and σ̂(RSSpeak) [26]. The standard estimator of
the expectations in this context is the sample mean

µ̂ =
1

k

k∑
t=1

XT ∼ N(µ1,
σ2
1

k
) (3)

where k is the number of the available sampling series. The
sample mean is a highly inefficient estimator as the sampling
estimation varies wildly when different sampling series are fed
into the estimation process [26]. One way to cope with this
issue is to use a more efficient balance estimator:

µ(b) ≡ (1− b)µ̂+ bπ0 (4)

where π0 is our best guess, π0 ∼ N(µ0, σ
2
0) and 0 ≤ b ≤ 1

is the balance factor. The purpose is then to minimize balance
σb under any given µ(b). We can formalize our model as

Minimize σ2
b = b′V b

Subject to E(µ0) = b′U = µ̄
n∑

i=1

bi = 1

(5)

where V is covariance matrix between µ̂ and π0, and U is the
vector [µ0, µ1]. The first solution to this formula is

V b = λU,→ b = λV −1U

Thus, the optimal balance factors given by the answer are used
to derive the u(b), which in turn, is put into Equation 2.

Assuming that an anchor’s RSSpeak is symmetric at all
directions, RSSpeak defines a circle. After anchors with
different RSSpeak are deployed, the division boundaries will
become arcs rather than straight lines. And the new boundary
curve is a Apollonius circle [27], as illustrated in Fig. 4. And



based on the modification, the map division with weight is
created as described in Algorithm 1. Note that the total number
of divisions made by weight-based approach can be larger
than that by straight lines used in an ideal map division. The
following Lemma 1 gives the maximum number of subareas
that can be made under the weight-based division algorithm.

Lemma 1. Given a map and m circles, the maximum number,
denoted f(m), of subareas into which could be divided by the
m circles is given by

f(m) = m2 −m+ 2 (6)
Proof: The Equation 6 can be proved by induction.

Obviously, One circle only divide the plain into two part. If
there are m circles, at most 2m points of intersection can
be generated once one more circle join the plain, which will
divide the circles into 2m arcs. Each arc can divide one old
subarea into 2 part, so that there can be at most 2m additional
parts. So the we can get the induction as following:

f(1) = 2
f(k + 1)− f(k) = 2k, k = 1, 2, ...m− 1

} ⇒

f(m) = 2 +

m−1∑
k=1

2k = m2 −m+ 2 (7)

This finishes the proof.

Corollary 1. Given a division of a map, there are at most
f(m) = m2 −m+ 2 different signatures.

Proof: This corollary immediately follows Theorem 1
and Lemma 1.

As Equation 6 suggests, the maximum number of divisions
is 62 − 6 + 2 = 32, which conflicts with our former analysis
with straight lines. As such, it is reasonable to analyze the
facets of the dynamics of map division manner on which the
circles will have impacts. On the one hand, the sequence per-
mutation in signatures can easily illustrate that the maximum
partition can not be beyond Ns! ang f(

(
Ns

2

)
) in the weight-

based division, where Ns is the total number of available
anchors deployed. On other hand, it is similar to the ideal map
division in that the boundaries are not unlimited but limited
by anchors (Specificly, such limitation will reduce

(
Ns

3

)
· 2

subareas after analyzing the graph theory).
According to our theory and simulation, the maximum

number of divisions is apparently improved in a map with
weight, compared with the ideal map. In a map with four
anchors, for instance, the weight-based map can locate 24
subareas, higher than 18 subareas that ideal division can
generate. This actually offer more flexibility in localization
planning.

Note that, the maximum number of divisions (and thus the
maximum number of signatures) is achieved only under certain
anchor deployments. In Fig. 7, we fix the positions for three
anchors n1, n2, n3 and move Anchor n4 in the scenario with
a specific weight. After thousands of trial runs in Algorithm 1,
we found out that not every kind of anchor deployments can
get a maximum division, 24 parts in this case, as shown in
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Fig. 7. Map Division with Weight

Algorithm 1 Map Division with Weight
Require: set the RSSpeak of the anchor i, point ← (0, 0)

distance between point and anchor i, rssi ← the received
RSS from anchor i

Ensure: u(b), generate all the possible signatures of subar-
eas

1: while the point still scanning the map do
2: for i← 1 to 4 do
3: rssi ← output from Equ 2;
4: end for
5: seuqence← sort the RSSs;
6: signature(x, y)← the anchor sequence in sequence;
7: point moves to the next;
8: end while
9: generate the fixed map with different signatures;

Fig. 7(a) and Fig. 7(b). When anchor 1, 2 and 3 are placed at
positions such as (40, 120), (80, 120), and (160, 120), the
maximum number of total divisions is only 16; but when
placed at positions (80, 16), (48, 24), (36, 48), it can reach to
24.

C. The Effect of Homogenization

Although the number of map divisions in practice can
reach the theoretical maximums, for example, 18 divisions
in Fig. 3(a) or 24 divisions in Fig. 7(b), some subareas are
so small (large) that no context (or multiple contexts) will
be located in those subareas. Such division heterogeneity
can lead to location estimation errors which can, however,
be reduced through careful consideration. Next we evaluate
the impact of division heterogeneity and attempt to capture
the homogenization of map divisions. The homogeneity of
divisions refers to the degree to which the sizes of all divisions
are similar. And what we need to consider is how to quantify
the division homogeneity. Although there are many effective
algorithms we can choose to measure the homogenization,
we should remember, however, that the goal here is not to
achieve the division homogenization but to validate whether
it can help to reduce location estimation errors [28]. To
simplify the problem, we choose the standard deviation of
division areas as a metric in our model. Then we adopt similar
traversing techniques as we did in previous section to conduct
experiments.
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Fig. 8. Optimal Division of a Map

In this experiment, we have tested extensively all kinds of
deployment schemes for 4 anchors. One typical result is shown
in Fig. 8, which indicates that the optimal deployments of
ideal or weighed divisions are so different from the one in
the random scheme. However, even as the division standard
deviation approaches to the minimum from our samples, not
all of those subareas based on our optimal division scheme
seem to share similar shapes. In a sense, this represents that
deployment by ignoring the contexts may overstate statistical
optimizer used in our experiments. In the next experiment, we
will concentrate on the context-based scenario.

D. The Impact of Contexts in Map Division

In real-world localization applications, we need to track
targets in application environments with which the practical
contexts, for example, a study room on a campus building
or a restaurant in a shopping mall, are associated. Generally
speaking, when containing these contexts, the environment
usually shows up as many targets gathering within these
contexts. Thus, instead of ignoring those contexts as many
existing algorithms do, we take the context factor into account
when applying our EMS to address the localization problem
(termed EMS-C in the rest of this paper). Clearly the contexts
are linked to social activities or spatial constraints. To estimate
the user behavior in these contexts, the probability model is
used, which can be summarized and improved with practical
localization data gathering. Therefore, two different models
corresponding to those factors are brought into our design:
(i) applying the probabilities sampled from a series of random
simulation or derived from practical experiments to the subarea
in order to decrease the errors on the division boundary; and
(ii) deploying the anchors based on the context positions so
that the context can own an unique signature so that the
location estimation errors that vary from place to place can
be reduced. To illustrate these two ideas, a map with contexts
is shown as Fig. 5. The probability (pc) used in the subarea
represents the probability of a target’s presence in cafe when
randomly moving into the subarea i (Ai).

Although EMS-C can use the signature to judge which
subarea a specific position belongs to, it is hard to estimate the
deviation from the real position without further information
processing. In order to indicate the signature of a specific
subarea from the position perspective, we define the signature
position (x,y) of the subarea:

(x, y) =

∑
(x, y)c · pc

pointSumc
+

∑
(x, y)nc · (1− pc)
pointSumnc

(8)

where (x, y)c ∈context, (x, y)nc /∈context. In other words,
every position with the same context signature is estimated to
locate at (x, y) in Equation 8.

While applying EMS-C in practice, two issues needs con-
sideration, as described below:

Multi-Context Mistakes. When two or more contexts lo-
cate completely or partially in one subarea, which context the
target is in will not affect the signature so that the localizer
cannot differentiate these two parts.

Waste of Signature. If a context occupies two or more
subareas, two or more signatures will represent only one
context. This will result in inefficient use of signatures. If
a redundant signature is distributed to other contexts, the
localization needs further elaboration to specify more context
positions. Therefore, if some contexts own more than two
signatures, the same localization precision can be achieved
with fewer signatures or fewer anchors so that each context
owns a unique signature.

The above observations form our motivation to discover a
context-centric anchor deployment in the EMS-C.

In the rest of this section, we will answer the questions
brought forward at the beginning of this paper: (i) what factors
drive the complexity of context-based situation? (ii) what
outcomes can be expected from such an analysis, the suitable
deployment or the optimal deployment?
• The suitable deployment. This deployment is a match for

the context, in which every context locates in different
subarea and owns an unique signature.

• The optimal deployment. This deployment is a special
suitable deployment, which has a minimum standard
deviation of all subareas as well as the maximum number
of partitions.

As implied in the preceding discussion, the optimal deploy-
ment, from a practical perspective, will underpin the accuracy
of location estimations. Hence, the findings of all possible
suitable deployment schemes is a key element characterizing
this stage. The decision process that leads us to pursue a
aggressive scanning technique involves four basic steps: (i)
traverse deployments; (ii) compute the signatures and segment
the map (iii) select the suitable deployment; (iv) find optimal
deployment among different suitable deployments.

We demonstrate the results with the following examples.
And two particular factors, the quantity of contexts and their
respective area of influence usually conveyed by applications,
are our major concerns. In the Fig. 9, we demonstrate two
sets of experiments that have been conducted in our examples.
One set is to study the effects due to the quantity variation of
the contexts, described as rectangle areas in the Figure. The
other is to compare the influence that contexts do to two map
division schemes. From Fig. 9(a) and Fig. 9(c), we can tell
clearly that when the number of contexts increases more or
the contexts become more diverse, the complexity of achieving
the optimal deployment scheme will become much higher due
to the heterogeneity of contexts. Similar results can be found
in the weight-based division scheme as shown in Fig. 9(b) and
Fig. 9(d).
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Fig. 9. Best Context-Based Division of Map

To tackle these challenges, some heuristic approaches will
be applied in our model, like refining the traversal algorithm
or exploiting the changing regulation of parameter-standard
deviation and number of partitions as specified in the definition
of “optimal deployment”.

IV. SYSTEM EVALUATION BY COMPARISON

This section gives intuitive discussions about the merits of
the EMS in comparison with one popular algorithms (RSSI),
and the improvement effects from EMS to EMS-C. From the
perspectives of accuracy and error rate, a satisfying conclusion
about EMS is reached by several statistical graphs.

A. Evaluation Criteria

Before the simulation, we summarize the evaluation crite-
rion for localization. When saying a localization method is
better, we usually emphasize that the computed position is
more approximate to the real position. So we can use the
difference between the real position and estimated position
as the criteria to show the performance of our localization
algorithm, which we call as Error Distance (ED).

B. RSSI VS EMS

This section compares Received Signal Strength Indication
(RSSI), a universal method for localization, which makes the
most of the method of trilateration, with our proposed EMS
method. RSSI needs three RSS values from three anchors
and the initial information of anchor positions to compute the
location of a target by trilateration.

Similar to other researchers, we also use average error
distances (the unit of error distance here is represented as
base unit of the gridding system in our simulation); that
is, the distance deviation between the projected location and
the ground true position, as one of our metrics. To evaluate
the error distance, a simulation is designed to compare the
deviations between the factual positions and the computed
positions by the two methods: the RSSI and EMS. In this
section, we plant an increasing number of anchors, n, from

five to eight, to make an error comparison between them.
In our experiments, an estimated signal peak value, which
is set to be lower than each anchor’s PeakV alue, is used
for the computed distance between the point and the anchors.
Moreover, to provide a better understanding between the RSSI
and EMS, we study the location estimation performance of two
methods by investigating their respective localization errors
under different distances to our reference points, e.g., anchor
nodes with known positions. We pick up the points which
have relative distances r, ranging from 1 to 40, to a reference
anchor as testing samples.

We will illustrate our discoveries by using one typical
example of our experiments. At the beginning, there are five
anchors in the map, which can divide the whole area into
40 parts, as shown in Fig. 10(a). Then, after conducting the
simulation and picking up the points at r (from 1 to 40) to
the referenced anchor, we finally get the results shown in
Fig. 11(a). As we extend the simulations, more anchors are
introduced and the corresponding division results are achieved
and shown in Fig. 10. As complements for the Fig. 11(a), the
extensive results tend to be more effective, which can be seen
in Fig. 11(b), 11(c) and 11(d).

Based on the results, we can see that EMS demonstrates
smaller error rates than RSSI in most of the situations. In
addition, with more anchors introduced, a higher accuracy and
lower error rate in localization can be achieved, as shown in
Fig. 12. For example, in Fig. 11(c), the average error distance
is about nine, compared to the average 17 in Fig. 11(a). With
further analysis, we find that the error variation in Fig. 11(a)
results from uneven divisions, which can be improved by better
anchor deployments or context constraints.
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C. EMS VS EMS-C

We compare EMS and EMS-C in this section, adding some
10-radius circles as contexts into the subareas of the map
with five anchors. In the simulation of this part, point moves
randomly in the map except on the boundary of a context,
on which it enters the context with a fixed probability, Pc.
After conducting the simulation in the same configuration as
that in sectionIV-B, we can get the EDs of the points at all
the positions in the area. Because it’s hard to add contexts
into the very small subareas on the central part of the map,
as shown in Fig. 10(a), it doesn’t make sense if we pick up
the points in these subareas, so we choose only the points at
the distance r, ranging from 20 to 55 to the reference anchor,
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Fig. 10. EMS Divisions with n anchors and m subareas
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(a) RSSI VS EMS with 5 anchors
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Fig. 11. Deviation Evaluation Between EMS and RSSI

and finally we can generate the result shown in Fig. 13. The
figure intuitively depicts that EMS-C can observably lower the
deviation of EMS, which informs us that adding contexts into
subareas can improve the accuracy of locating.

D. Comparison with Some Advanced or Classical Algorithm

Finally, the results of of our experiments are compared with
other advanced and classical algorithms such as EZ, Unloc,
and DV-hop. We show the results in Table I.

Name EZ Unloc DV-hop EMS
Accuracy 2-7m 2-7m 5-10m 2-4m

Pitfalls GPS Lock intensive
prior study

considerable
error distance

anchor
deployment

sensitive

TABLE I
COMPARISON AMONG FOUR ALGORITHMS

Based on our experiments, the proposed EMS and EMS-
C outperform unLoc and EZ under few anchor conditions,
and require no additional prior field study. It can be highly
expected that increasing the number of anchors can further
enhance the system performance.

V. TEST-BED EXPERIMENTATION

Fig. 14. The wireless hotpot

In this section, we report field experiments with wireless
anchors. To be more specific, we conducted experiments in en-
vironments such as i) an office environment, and ii) a gym and
ii) student apartments. The interference can vary significantly
in these three places. The first two sets of experiments were
settled in ideal environments. The third sets of experiments, on
the other hand, were conducted in a rather complex condition,
with concrete walls and other surroundings. An android-based
Samsung Galaxy SIII smartphone, powered with WiFi HT40
radio, is used as a mobile platform. Our self-developed app
which can scan the RF signals and Wi-Fi signals is installed
onto the smartphone to detect the RSSs from our wireless
anchors. The app can communicate with our center platform
where the data will be processed and EFD algorithm will
be conducted. A self-designed wireless hotpots powered by
a broad-band omnidirectional monopole antenna with 16DB
gain are used as the wireless anchors, as shown in Fig. 14.
A detailed descriptions of these experiments in detail are
presented as follows.

A. Data Processing and Evaluation Criterion
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Fig. 15. Fitted Curve by Sampling Data Set

In this experiment, RSS values and position information of
the moving android device were collected after the prior RSS



values and the anchors’ positions were measured. They will
be divided into two sets: (i) One set is the calibration data,
including four anchors’ positions and several RSS values from
four anchors at a small set of locations, which were used to
adjust parameters, such as the peak values, used by the EMS
algorithm; (ii) Another set is the sampling data set, as shown
in Fig. 15, including a much larger scale of RSS values from
four anchors measured at various positions, which were used to
evaluate our system. In data processing, we use ED to evaluate
the localization performance.

B. Experiments in Friendly Environments
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Fig. 16. Experiments in Friendly Environments

First, we intended to quantify the performance of the EMS
in an office environment. In the Engineering building of
Shanghai Jiaotong University, as shown in Fig. 16(a), four
anchors are set according to the algorithms described, their
positions can be viewed in Fig. 16(b). We walked randomly
along the hallway with a mean of 1 meter/second, and
measured the localization errors at different spots. The EMS
system demonstrated an average error distance of 1.41 meter.
Besides, to further test the complexity of our system, we
also set five anchors in a stadium, as shown in Fig. 16(c).
Similarly, we randomly walked around on the field with
normal velocity of the pedestrian. The average error distances
of these experiments is 1.9 meter.
C. Results in Student Apartments

To test our mechanism in an environment with fierce in-
terference, we placed anchors in four different student apart-
ments. Two optimal deployment schemes have been selected
in our experiments. The configuration of the first anchor
deployment is shown in Fig. 17(a). Typically, concrete walls
and surroundings can cause serious performance degradation
due to RF fading and multipaths effects. However, we find
that the localization system correctly captured the signatures
for all the experimental points and the average error distance of
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Fig. 17. Experiments in Student Apartments

these experiments is 2.09meter. In the second scheme, another
optimal anchor deployment was used, as shown in Fig. 17(b).
The measured average localization error is 2.18meter.

VI. RELATED WORK

Localization in sensor networks has been an active research
topic recently [29]–[33]. Due to space constraints, we can
mention only a few directly related works here.

Two recent works about the algorithm, RSD [15] and
RND [20], are novel range-free algorithms for localization.
Both methods lay stress on the complicated formula used to
compute a relative distance which is used to get the position
by the trilateration. Although the trilateration is indeed a
remarkable universal method in tracking, the different models
based on the trilateration result in different modifying fac-
tors; for instance, the Regulated Signature Distance (RSD) is
the extension for Signature Distance (SD) with a regulated
modifying factor, considering the heterogeneous. The long-
term research and practice do not significantly ameliorate the
result, which, on the contrary, often leads into the stubborn
insistence of a complicated equation for relative distance.
On the other hand, both methods focus less on the practical
scenario and understate the influence of different deployment.
In both algorithms, the peak signal strength has never been
considered, and the circle-shaped border has never been used
to segment the field; instead they treat the peak signal as
the same and borders as straight lines. This paper differs
from them significantly by (i) replacing the trilateration with
map segmentation method, (ii) bringing in the context concept
for practical location, and (iii) testing our simulation with
different deployments and alterable anchors, rather than only
with several fixed deployment configurations.

VII. CONCLUSION

This paper presents a range-free localization method called
EMS, which promotes the precision with less costs and
emphasizes the effect of anchors and contexts, on the practical
deployment. Tracking is modeled as a signature matching
problem in our design. Besides the basic design of the EMS
method, some heuristic approaches, to be specific, the weight-
based approach and the context-based location estimation
technique, are proposed to enhance the system performance.



In addition, the design provides thorough analysis on several
practical scenarios in which relatively optimal anchor deploy-
ment schemes are derived. Based on the current features of this
mechanism, such as easy-to-deploy and area-division-based, it
can be widely implemented in scenarios like localizing in in-
door emergencies and in-door customer behaviour analyses.
The detailed analytical evaluation demonstrates that the EMS
method provides a higher-accuracy and fewer-error strategy
for localization than the universal trilateration method. Sim-
ulations show that our EMS can reduce error distance by
37.8% when we segment the map with five anchors, 63.7%
with six anchors, 72.6% with seven anchors, 78.0% with
eight anchors, and higher rate with more anchors, and that
EMS-C, compared to EMS, can reduce the error distance by
13.73% in a five anchors map. Furthermore, our experimental
results also validate the effectiveness of our EMS method
and demonstrate a better performance than other range-free
approaches. In the future, we intend to enhance the localization
system performance by investigating the interference from
different surroundings and contexts, which we believe will
further reduce the design complexity and increase localization
accuracy.
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