
Static Evaluation of Noninterference using

Approximate Model Counting

Ziqiao Zhou

University of North Carolina

Chapel Hill, NC, USA

ziqiao@cs.unc.edu

Zhiyun Qian

University of California

Riverside, CA, USA

zhiyunq@cs.ucr.edu

Michael K. Reiter

University of North Carolina

Chapel Hill, NC, USA

reiter@cs.unc.edu

Yinqian Zhang

The Ohio State University

Columbia, OH, USA

yinqian@cse.ohio-state.edu

Abstract—Noninterference is a definition of security for secret
values provided to a procedure, which informally is met when
attacker-observable outputs are insensitive to the value of the
secret inputs or, in other words, the secret inputs do not “inter-
fere” with those outputs. This paper describes a static analysis
method to measure interference in software. In this approach,
interference is detected using the extent to which different secret
inputs are consistent with different attacker-controlled inputs
and attacker-observable outputs, which can be measured using
a technique called model counting. Leveraging this insight, we
develop a flexible interference assessment technique for which the
assessment accuracy quantifiably grows with the computational
effort invested in the analysis. This paper demonstrates the
effectiveness of this technique through application to several
case studies, including leakage of: search-engine queries through
auto-complete response sizes; secrets subjected to compression
together with attacker-controlled inputs; and TCP sequence
numbers from shared counters.

Index Terms—Information-flow measurement; Noninterfer-
ence; approximated model counting;multi-execution analysis;
nondeterministic program

I. INTRODUCTION

Information leakage about secrets in software is a core

concern for computer security, and has been for decades

(e.g., [1]). Leakage can in principle be detected by tracking

information flow from secret objects to attacker-observable

ones, and considerable progress has been made on static-

analysis tools for detecting leakage vulnerabilities in software

(see Sec. II for a discussion of related work). Still, however,

assessing the significance of detected leaks continues to be

a difficulty that plagues static-analysis tools, particularly for

ones that track implicit information flows (e.g., [2]).

In this paper we propose a static-analysis method to assess

leakage vulnerabilities, even those that leverage implicit flows.

The intuition of our design draws from noninterference [3],

which informally is achieved when the attacker-controlled

inputs and attacker-observable outputs are unchanged by the

value of a secret input that should not “interfere” with what the

attacker can observe. In practice, noninterference is extremely

unlikely to hold for most real-world programs, since a degree

of leakage is often necessary. As such, a more quantitative

measurement of (non)interference should be more useful in

assessing leakage. In principle, if all possible pairs of attacker-

controlled inputs and attacker-observable outputs could be

enumerated for any given value of the secret input, then

differences in the pairs possible for different secrets would

reveal interference between the secret value and the pairs that

remain possible, and hence an estimate for potential leakage.

Unfortunately, enumerating these pairs for all possible secret

values is often impractical for complex procedures, and so

previous explorations based on similar principles have been

limited (again, see Sec. II).

Within this framework, we explore the assessment of leak-

age vulnerabilities by randomly sampling a space of secret

values and then limiting our search for pairs of attacker-

controlled inputs and attacker-observable outputs to only those

that are consistent with some secret in that space. By lever-

aging techniques from approximate model counting [4], we

show how to scalably estimate the number of such pairs to

a desired accuracy and confidence and—perhaps more to the

point—the number of such pairs that are consistent with one

or both of two disjoint spaces of secret values. Finding two

spaces of secret values for which these counts suggest pairs

consistent with one but not both then reveals interference.

Moreover, we will demonstrate the need to examine samples of

secrets of varying sizes, and show that small samples provide

a more reliable indication of the number of secret values about

which information leaks, whereas larger samples provide more

insight into the amount of leakage of secret values. In doing so,

we develop a powerful framework for interference detection

and assessment with the following strengths:

• The error in our assessment of a reported interference can

be reduced, arbitrarily close to zero in the limit, through

greater computational investment. Specifically, by increasing

the accuracy and confidence with which the number of

pairs of attacker-controlled inputs and attacker-observable

outputs consistent with sampled secrets are estimated, and

by increasing the number and variety of samples tested, the

interference assessment quantifiably improves.

• Our framework supports the derivation of values from its

estimates that separately provide insight into the number

of secret values about which information leaks, and the

amount of leakage about those secrets. Within the context of

particular applications, one type of leakage might be more

important than the other.

• Even for nondeterministic applications, our framework pro-

vides a robust assessment of noninterference, by accounting

for the nondeterministic factors (e.g., procedure inputs other

than the secrets or attacker-controlled values).

We detail our approach and its implementation in a tool. Our

tool takes as input a procedure; a specification of which of its

inputs are attacker-controlled, which are secrets, and which

outputs are attacker-observable; and parameters to drive the

secret-sampling strategy to reach a desired confidence in its

leakage assessment.

We demonstrate our tool through its application in numerous

scenarios. We first apply it to selected, artificially small ex-

amples (microbenchmarks) to demonstrate its features. Then,

we apply it to assess leakage in several real-world examples.

• We apply our tool to detect leakage of web search query

strings submitted to the Sphinx web server on the basis

of auto-complete response sizes returned to the client (i.e.,

even if the query and response contents themselves are en-

crypted) [5]. We also leverage our tool to evaluate the impact

of various mitigation strategies on this leak, e.g., showing

that based on the contents of the searchable database, some

seemingly stronger defenses offer little additional protection

over seemingly weaker ones.

• We use our tool to demonstrate the vulnerability leveraged

in CRIME attacks [6], specifically that adaptive compression

algorithms provide opportunities for an attacker to test

guesses about secrets that he cannot observe, if he can

instead observe the length of compressed strings containing

both the secret and his guess. This case study demonstrates

the ability of our technique to effectively account for

attacker-controlled inputs, in contrast to many prior tech-

niques (see Sec. II). Specifically, we apply our tool to both

Gzip and the fixed-dictionary compression library Smaz

to illustrate that they both leak information about secrets to

the adversary, but that Gzip leaks more information as the

number of adversary-controlled executions grows.

• We apply our tool to illustrate the tendency of Linux to leak

TCP-session sequence numbers to an off-path attacker [7],

[8]. This is perhaps the most complex of the examples

we consider, and again illustrates the power of accounting

for attacker-controlled variables. Moreover, we evaluate two

plausible defenses against this attack, one a hypothetical

patch to Linux that we propose, and another being simply

to disable use of information that is central to the leak.

This paper is structured as follows. We discuss related work

in Sec. II and then present our methodology for interference

measurement in Sec. III. The implementation of our tool is

described in Sec. IV. We use microbenchmarks in Sec. V to

demonstrate features of our approach, and then apply our tool

to real-world codebases in Sec. VI. Some limitations of our

approach are discussed in Sec. VII. We conclude in Sec. VIII.

II. RELATED WORK

Our work can be viewed as a form of static information-

flow analysis, an area with a long history of prior work (e.g.,

see [9], [10], [11], [12], [13] and the references therein). A

central challenge (e.g., [2]) in this space is how to assess

detected leaks, as some might be insufficiently consequential

to warrant attention. One strategy that is often adopted is

to simply ignore implicit flows (e.g., [14]). In contrast, our

analysis encompasses both implicit and explicit flows.

A second approach to assess leaks, often termed quantitative

information flow (QIF, e.g., [15], [16], [17], [18], [19], [20],

[21], [22]), is to compute the amount of information leaked

about the secret (e.g., in terms of some type of entropy),

conditioned on the output values observable by the attacker.

In the context of static analysis, QIF has already been used

to estimate leakage for cache side-channel attacks based on

an abstract cache model (e.g., [23], [24]) and leakage from

network traffic of web applications (e.g., [25], [5], [26],

[27]), for example. To our knowledge, our work improves

on prior work in QIF along one or more of the following

dimensions. First, computing the measures in these works

often involves computing outputs induced by possible secret

values, which sometimes leverages application-specific restric-

tions to be tractable (e.g., [25]). Our framework, in contrast,

does not require such application-specific restrictions. Second,

exploiting leakage vulnerabilities often requires attackers not

only to observe outputs but also to inject inputs, and many

applications incorporate other inputs, as well. These QIF

calculations are not possible without knowing the distributions

from which these values are drawn (e.g., [28]), and so some

works (e.g., [29], [30]) heuristically assign specific values to

these unknown inputs, potentially hiding the leakage from

other assignments. Our analysis computes conditionals in

a different “direction,” i.e., counting possible combinations

of attacker-controlled inputs and attacker-observable outputs

conditioned on sets of secret values and while leaving other

inputs constrained. In doing so, our technique accommodates

attacker-controlled inputs but does not presume knowledge of

the attacker’s strategy or the distributions of these or other

inputs. Third, some QIF frameworks work only for determin-

istic procedures (e.g., [31], [32]), whereas ours accommodates

nondeterministic ones, as well.

The tractability of our design derives in part from results in

model counting (or #SAT) [33]. Previous QIF-related works

leveraging model counting either support only convex con-

straints (e.g., [34], [31]) and so therefore do not capture

all constraints of realistic applications, or use exact counters

(e.g., [27]) and so cannot scale to complex applications. In

contrast, we leverage principled sampling-based methods for

approximate model counting, which we show can be used to

expose leaks in real codebases. Our work also demonstrates a

new approach for using model counting to estimate informa-

tion leakage based on noninterference property, again deriving

from our strategy of counting pairs of attacker-controlled

inputs and attacker-observable outputs conditioned on secret

value sets of different sizes, in contrast to these prior works.

More distantly related to our work are several works that

leverage model checking to prove the existence of interference

(e.g., [35], [36], [37], [38], [39]). The works of this type of

which we are aware evaluate an abstract model of a program

or system, rather than working from off-the-shelf programs

used in practice, as we do. Moreover, while some of them

(e.g., [40]) managed to demonstrate leakage by detecting and

counting the information flows breaking the property, it does

not provide a sound measure of leakage that can be used

to assess the leakage pattern and mitigation strategies, as we

demonstrate in this work.

III. INTERFERENCE ASSESSMENT

Our technique seeks to measure information leakage from a

procedure proc. The set VarsO is the set of attacker-observable

formal output parameters of proc; after completion, proc

outputs a value O(ovar) for each formal output parameter

ovar ∈ VarsO . Outputs from proc that the attacker cannot

observe are not modeled. The formal input parameters to proc

are divided into three disjoint sets, namely VarsC , VarsI , and

VarsS , having the following properties.

• Each formal parameter cvar ∈ VarsC takes on a value

C(cvar) controlled by the attacker.

• Each formal parameter ivar ∈ VarsI takes on a value

I(ivar) that is not controlled by the attacker.

• Each formal parameter svar ∈ VarsS takes on a value

S(svar) that is not controlled by the attacker and moreover,

represents a secret for which we are specifically concerned

with detecting leakage via the outputs O.

So, for our purposes, we consider proc to be of the form

O ← proc(C, I, S)

with O, C, I, and S assigning values to the formal parameters

of proc as described above.

Execution of proc ensures a logical postcondition Π
proc

that

constrains how the variables represented in O, C, I, and S

relate to one another. We denote this predicate instantiated

with particular input and output values by Π
proc

(C,O, I, S),
which is either true or false.

To simplify discussion, we assume in this paper that there

is only one secret formal parameter ‘secret’ (i.e., VarsS =
{‘secret’}), though our framework naturally extends to more.

We assume that the value of ‘secret’ is chosen from a set

S, which the attacker knows. To measure the leakage about

‘secret’ from O, under the adversary’s chosen C, we consider

the set Ys of pairs 〈C,O〉 that are consistent with S(‘secret’):

Xs =
{

〈C,O, I〉
∣

∣ Π
proc

(C,O, I, S) ∧ S(‘secret’) = s
}

Ys = {〈C,O〉 | ∃I : 〈C,O, I〉 ∈ Xs }

In these definitions, the sets VarsC , VarsI , and VarsO (and

VarsS) are assumed to be fixed. For example, if 〈C,O〉 ∈
Ys and 〈C′,O′〉 ∈ Ys, then while C and C′ (respectively, O

and O′) can differ in the values they assign to variables (e.g.,

C(cvar) 6= C
′(cvar) for some cvar), they cannot differ on

the variables to which they assign values.

The reason for considering Ys is that it is an indicator of how

s influences the possible view of the adversary, in terms of the

variables it controls (C) and the variables it observes (O). For

example, if O is independent of ‘secret’ and so leaks nothing

about the value of ‘secret’, regardless of how the adversary

chooses C, then Ys = Ys′ for any s, s′ ∈ S. To generalize from

this example, let YS =
⋃

s∈S Ys and then consider the Jaccard

distance of YS and YS′ for any two disjoint sets S, S′ ⊆ S:

J(S, S′) =

∣

∣(YS \ YS′) ∪ (YS′ \ YS)
∣

∣

∣

∣YS ∪ YS′

∣

∣

= 1−

∣

∣YS ∩ YS′

∣

∣

∣

∣YS ∪ YS′

∣

∣

(1)

(By convention, J(S, S′) = 0 if YS = YS′ = ∅.) On the

one hand, J(S, S′) = 0 implies that YS = YS′ or, in other

words, that an attacker cannot distinguish whether the secret

S(‘secret’) is in S or S′. On the other hand, J(S, S′) > 0
implies there is some 〈C,O〉 ∈ (YS \YS′)∪ (YS′ \YS), and so

the attacker can potentially distinguish between ‘secret’ having

a value in S and the case in which it has a value in S′.

Unfortunately, it is generally infeasible to compute J(S, S′)
for every disjoint pair S, S′ ⊆ S, or even when S, S′ are

restricted to being singleton sets. We can, however, estimate

Jn = avg
S, S′

:|S| =
∣

∣S′
∣

∣ = n
∧ S ∩ S′

= ∅

J(S, S′) (2)

to a high level of confidence by sampling disjoint sets S, S′ of

size n (or of expected size n, as we will discuss in Sec. IV-A)

at random and computing J(S, S′) for each.

A. The need to vary n

Consider an idealized situation in which a procedure leaks

the equivalence class into which S(‘secret’) falls, among a

set of c “small” equivalence classes C1, . . .Cc of equal size

w. If C =
⋃c

i=1
Ci, then the remaining elements C0 = S \

C form another, “large” equivalence class (w < |C0|). Let

Csm
S ⊆ {C1, . . . ,Cc} denote the small equivalence classes of

which S contains elements and C
lg
S ⊆ {C0} indicate whether

S contains representatives of C0 (in which case C lg
S = {C0})

or not (in which case C lg
S = {}). For simplicity, we assume

below that |YCi
| is the same for each i ∈ {0, 1, . . . , c}.

For the rest of this discussion, we treat the selection of

s ∈ S and s ∈ S′ as the selection, with replacement, of Ci.
1

Then, E
(∣

∣Csm
S

∣

∣

)

= c
(

1−
(

1− w
|S|

)n)

,2 and so

E

(∣

∣

∣
Csm

S ∪Csm
S′

∣

∣

∣

)

= E

(∣

∣

∣
Csm

S∪S′

∣

∣

∣

)

= c

(

1−

(

1−
w

|S|

)2n
)

E

(

∣

∣Csm
S

∣

∣ +
∣

∣

∣Csm
S′

∣

∣

∣

)

= 2c

(

1−

(

1−
w

|S|

)n)

Similarly,

E

(∣

∣

∣
C lg

S ∪ C lg
S′

∣

∣

∣

)

= 1−

(

cw

|S|

)2n

E

(∣

∣

∣C
lg
S

∣

∣

∣+
∣

∣

∣C
lg
S′

∣

∣

∣

)

= 2

(

1−

(

cw

|S|

)n)

1In reality, each Ci can be selected only w times in the drawing of S
and S′, since S and S′ do not intersect. This dependence should not affect
our estimates much, however, provided that w is not too small or n is small
enough.

2Let Xi = 1 if class Ci ∈ Csm
S

and Xi = 0 otherwise. Then,

P (Xi = 0) = (1− w/ |S|)n and so P (Xi = 1) = 1− (1− w/ |S|)n. So,

E

(
∣

∣

∣
Csm

S

∣

∣

∣

)

=
∑

c

i=1
E (Xi) =

∑

c

i=1
P (Xi = 1) = c

(

1−
(

1− w

|S|

)n)

.

and so

E
(∣

∣CS ∪ CS′

∣

∣

)

= c

(

1−

(

1−
w

|S|

)2n
)

+ 1−

(

cw

|S|

)2n

(3)

E
(

|CS |+
∣

∣CS′

∣

∣

)

= 2

(

c

(

1−

(

1−
w

|S|

)n)

+ 1−

(

cw

|S|

)n)

(4)

Since Jn = 1 −

∣

∣

∣CS∩CS′

∣

∣

∣

∣

∣

∣
CS∪CS′

∣

∣

∣

= 2 −
|CS |+

∣

∣

∣CS′

∣

∣

∣

∣

∣

∣
CS∪CS′

∣

∣

∣

, we estimate

E (Jn) ≈ 2 −
E

(

|CS |+
∣

∣

∣
CS′

∣

∣

∣

)

E

(
∣

∣

∣
CS∪C

S′

∣

∣

∣

) , using (4) and (3) for the

numerator and denominator, respectively.

• First suppose n is small or, specifically, that 2nw
|S| ≪ 1. Then,

we can apply the binomial approximation
(

1− w
|S|

)n

≈ 1−

nw
|S| to (4) and

(

1− w
|S|

)2n

≈ 1− 2nw
|S| to (3) to conclude

E (Jn) ≈ 2−

2ncw
|S| + 2− 2

(

cw
|S|

)n

2ncw
|S| + 1−

(

cw
|S|

)2n (5)

Thus, when n is small, E (Jn) is sensitive to the number of

secrets cw = |C| about which there is substantial leakage,

but is insensitive to c and w individually, i.e., to the amount

of leakage about those secrets. As such, small n yields a

measure Jn that best indicates the number of secrets about

which information leaks.

• Now suppose n is large, such that
(

cw
|S|

)n

≈ 0. Then,

E (Jn) ≈ 2−
2
(

c
(

1−
(

1− w
|S|

)n)

+ 1
)

c

(

1−
(

1− w
|S|

)2n
)

+ 1

(6)

That is, Jn is sensitive to c and w individually when n is

large. In this sense, we say that Jn for large n is a better

indicator for the amount of leakage about secrets.

Again, the above model is idealized; leakage from real

procedures can be far more complex. Still, this discussion

provides insight into the utility of Jn and how it should be

used. When n is small, (5) grows as cw = |C| grows, and for

any threshold t ∈ [0, 1] indicating “substantial” leakage, the

smallest n for which Jn ≥ t shrinks. This smallest n is thus

a reflection of |C|, i.e., of the number of secrets about which

information leaks. When n is large and for a fixed cw, (6)

grows as w shrinks,3 and for any threshold t ∈ [0, 1] indicating

“substantial” leakage, the largest n for which Jn ≥ t grows.

This largest n is thus a reflection of w, i.e., of the amount of

leakage about those secrets. It is therefore natural to examine

both min{n|Jn ≥ t} and max{n|Jn ≥ t}. To define measures

3For example,
(

1− w

|S|

)n

< 1

2
is sufficient to ensure this.

0

8

16

24

32

0 8 16 24 32

L
ea
ka
ge

m
ea
su
re
s

log2 |C|

log2 (|S| /η
min)

log2 (|S| /η
max)

mutual entropy
min-entropy

(a) Varying |C| with fixed w = 24

and |S| = 232

0

8

16

24

32

0 8 16 24 32

L
ea
ka
ge

m
ea
su
re
s

log2
|S|
w

log2 (|S| /η
min)

log2 (|S| /η
max)

mutual entropy
min-entropy

(b) Varying w with fixed |C| =
228 and |S| = 232

Fig. 1: Relating ηmin and ηmax to min-entropy and mutual en-

tropy, for the idealized model of leakage explored in Sec. III-A

using these values that fall within [0, 1] and for which larger

values indicate more leakage (as with Jn), we define

ηmin
t =

{

0
1/min{n | Jn ≥ t}

if t > Jmax

otherwise

ηmax
t =

{

0
1

|S|/2 max{n | Jn ≥ t}
if t > Jmax

otherwise

Here, Jmax = maxn′ Jn′ , and so the t > Jmax cases accom-

modate t values larger than Jn ever reaches. Finally, rather

than select a t to define “substantial” leakage, we simply take

the average values of ηmin
t and ηmax

t over t ∈ [0, 1] as our final

measures:

ηmin =

∫ 1

0

ηmin
t dt ηmax =

∫ 1

0

ηmax
t dt (7)

The numbers we report in this paper are discrete approxima-

tions to these values via numerical integration with a fixed

subinterval width of 0.01.

Roughly speaking, a larger value for ηmin suggests that

information leaks from the procedure for more secret values,

and a larger value for ηmax suggests that more information

leaks from the procedure about secret values.4 To relate these

measures to another used previously in the QIF literature,

namely min-entropy (e.g., [41], [42]), in Fig. 1 we show ηmin

and ηmax in comparison to the min-entropy of S(‘secret’), for

our idealized setting above. Fig. 1(a) shows that ηmin reflects

the growth of |C| just as min-entropy can, and similarly,

Fig. 1(b) shows that ηmax reflects changes in w like min-

entropy can. However, min-entropy does not distinguish be-

tween these types of leakage. Mutual entropy (e.g., [19], [29],

[22]) also reflects increasing leakage as |C| grows in Fig. 1(a)

and as w shrinks in Fig. 1(b), though its sensitivity to these

effects is limited, particularly that of increasing |C|, until |C|
becomes quite large (Fig. 1(a)).

4While these rules of thumb are accurate when Jn has no valley, they are
less reliable when it does. In such cases, a more reliable understanding can
be obtained by examining the graph of Jn directly, or at least by computing a
separate ηmin and ηmax for each valley-free segment of Jn. Here, by “valley”
we mean values n, n′ where n < n′, Jn > Jn+1, Jn′ < Jn′+1, and
Jn′′ = Jn′′+1 for each n′′ ∈ [n+ 1, n′ − 1]. We have not encountered Jn
curves with valleys in practice, and so do not discuss them further here.

B. Procedures with other inputs

The measures Jn, ηmin, and ηmax are appropriate when proc

is deterministic and leverages no inputs in I. When either of

these restrictions are lifted, our approach described so far can

be unreliable. We illustrate this in Sec. III-B1 and then provide

an alternative measure in Sec. III-B2 that is more robust.

1) Limitations of Jn: First consider a randomized password

checker that receives a secret password S(‘secret’) and a

candidate password C(‘test’) and, for some constant M >
0, outputs a random value in [0,M − 1] if the candidate

password is equal to the secret password and random value

in [M,M + 16] otherwise. Intuitively, the leakage of this

procedure should be the same as a deterministic password

checker and independent of the value of M . However, as

shown in Fig. 2, the use of randomness here results in an

unintuitive result, since Jn (Fig. 2(b)) is sensitive to the value

of M . As such, while our detector does accurately detect

leakage in this case, it provides less help in comparing the

leakage of two randomized implementations.

Another problem may arise when other inputs are allowed

in I. Consider the example

proc (C, I, S)

O(‘result’)← ((S(‘secret’) > C(‘test’)) ? 1 : 0)
⊕ ((I(‘other’) ≤ 0) ? 1 : 0)

return O

Here, the expression “cond ? 1 : 0” evaluates to 1 if cond

is true and 0 otherwise, and “⊕” represents XOR. This

procedure indicates that S(‘secret’) > C(‘test’) by returning 0
if I(‘other’) ≤ 0 or by returning 1 if I(‘other’) > 0. Because

our technique allows for any value of I(‘other’) consistent with

Π
proc

when estimating |YS |, it will compute Jn = 0 for any

n, suggesting no leakage. However, the only condition under

which proc in fact leaks no information is if I(‘other’) is non-

positive or positive with equal probability from the adversary’s

perspective.

2) An alternative measure: To overcome the limitations

of Jn as illustrated above, in this section we propose a

leakage measure that is more robust for procedures that

employ randomness or inputs in I. For convenience, here

we treat all values generated at random within the procedure

instead as inputs represented in I; e.g., the first invocation of

rand() within the procedure is replaced with a reference to,

say, I(‘rand[1]’), the second with I(‘rand[2]’), and so forth.

Intuitively, our measure employs an alternative definition for

YS that also includes these additional inputs. Specifically,

consider the set

X̂S,S′ =
{

〈C,O, I〉
∣

∣ 〈C,O, I〉 ∈ XS ∧ 〈C,O〉 ∈ YS ∩ YS′

}

of 〈C,O, I〉 triples such that not only is 〈C,O〉 ∈ YS ∩ YS′

(c.f., the definition of J(S, S′) in (1)), but also the triple

is consistent with some s ∈ S (i.e., 〈C,O, I〉 ∈ XS where

XS =
⋃

s∈S Xs). By counting such 〈C,O, I〉 triples, the

various random values (represented in I) become exposed in

X̂S,S′ and the number of these values for a given 〈C,O〉 pair

act as the “weight” of that pair. We adjust the denominator

similarly, resulting in the measure

Ĵ(S, S′) = 1−

∣

∣

∣X̂S,S′

∣

∣

∣

∣

∣XS ∪XS′

∣

∣

Ĵn = avg
S, S′

:|S| =
∣

∣S′
∣

∣ = n
∧ S ∩ S′

= ∅

Ĵ(S, S′) (8)

Note that if VarsI = ∅, then Ĵn = Jn since in this case,

〈C,O〉 ∈ YS if and only if 〈C,O, ∅〉 ∈ XS .

The benefit of Ĵn is that it is far less susceptible to the

variability that was demonstrated in Sec. III-B1. For example,

Fig. 2(c) shows that this measure is stable, independent of

M . As we will see in subsequent sections, however, it is also

considerably costlier to estimate.

When we use Ĵn in place of Jn, we will annotate measures

derived from it using similar notation. For example, η̂min

denotes ηmin computed using Ĵn in place of Jn, and similarly

for η̂max.

IV. IMPLEMENTATION

In this section, we discuss our implementation for com-

puting the measures discussed in the previous section. Fig. 3

shows the overall workflow for doing so. At the core of our

implementation is a hash-based model counting technique that

is discussed in Sec. IV-A–IV-C. In Sec. IV-D, we present an

adaptation for generating logical postconditions for multiple

rounds of procedure executions. In Appendix A, we discuss

the use of symbolic execution (e.g., [43], [44]) for generating

postconditions, with a focus on a particular optimization that

proved useful for our case studies in Sec. VI.

A. Hash-based model counting for Jn

To calculate Jn, we need to estimate
∣

∣YS ∩ YS′

∣

∣ and
∣

∣YS ∪ YS′

∣

∣ for randomly selected, disjoint sets S and S′ of

size n. Since
∣

∣YS ∩ YS′

∣

∣ = |YS |+
∣

∣YS′

∣

∣−
∣

∣YS ∪ YS′

∣

∣ , and (9)
∣

∣YS ∪ YS′

∣

∣ =
∣

∣YS∪S′

∣

∣ , (10)

to estimate Jn it suffices to estimate
∣

∣YS′′

∣

∣ for specified sets

S′′ (i.e., S′′ = S, S′′ = S′, or S′′ = S ∪ S′). In this section,

we provide two optimizations for producing such estimates.

1) Estimating |YS |: Our first optimization is an adapta-

tion of the approximate model counting technique due to

Chakraborty et al. [4], which leverages a family of 3-wise

independent hash functions to estimate the number #F of sat-

isfying assignments of a conjunctive-normal-form proposition

F of v variables and that runs in fully polynomial time with

respect to a SAT oracle. At a high level, this algorithm itera-

tively selects a random hash function Hb : {0, 1}v → {0, 1}b

from the family (where b changes per iteration) and a random

p ∈ {0, 1}b, and computes the satisfying assignments for F
for which the hash of the assignment (a string in {0, 1}v) is p.

(Intuitively, this number should be about a #F/2b.) Through

proc (C, I, S)
if (S(‘secret’) = C(‘test’))

O(‘result’)← rand() mod M
else

O(‘result’)←M + (rand() mod 16)
return O

(a) Procedure

0

0.2

0.4

0.6

0.8

0 4 8 12 16 20 24 28 32

J
n

log2 n

M =1
M =4
M =8

M =16
M =64
M =210

(b) Jn for various n and M

0

0.2

0.4

0 4 8 12 16 20 24 28 32

Ĵ
n

log2 n

M =1
M =4
M =8

M =16
M =64
M =210

(c) Ĵn for various n and M

Fig. 2: An example showing limitations of J on procedures with randomness and improvements offered by Ĵ (see Sec. III-B)

Compute Jn,
ηmin and ηmax

(Sec. III-A)

Πproc

Symbolic Execution
(Appendix A)

C

proc

O

Counting for n = 1

Hash-based Counting
(Sec. IV-A1)

= 2
= |S|

2

Sample S and S ′

(Sec. IV-A2)
Multi-execution

Composition
(Sec. IV-D)

I S

Iterate
(Sec. IV-C)

Fig. 3: Workflow of evaluating leakage, from left to right: label the different types of inputs and outputs; generate postconditions

Π
proc

using symbolic execution; optionally, compose multi-execution constraints; perform model counting for different sizes

of n; and generate our leakage measures

judicious management of this iterative process, the algorithm

arrives at an estimate #̃F for #F that satisfies

P

(

(1 + ǫ)−1 ·#F ≤ #̃F ≤ (1 + ǫ) ·#F
)

≥ δ

where error ǫ, 0 < ǫ ≤ 1, and confidence δ, 0 < δ ≤ 1,

are parameters and the probability is taken with respect to the

random choices of the algorithm.

We estimate |YS | similarly, i.e., by iteratively selecting Hb

and p ∈ {0, 1}b at random, but apply the hash function only

to the C and O values of a satisfying assignment for Π
proc

.

More specifically, we compute the set

ZS,p =
{

〈C,O〉
∣

∣ 〈C,O〉 ∈ YS ∧Hb(〈C,O〉) = p
}

That is, ZS,p ⊆ YS contains the elements of YS whose hash

is p. Intuitively, this yields an estimate

|YS | ≈ 2b ·
∣

∣ZS,p

∣

∣ (11)

To reach an estimate of confidence δ, we generate a number

of 〈b, p, p̂〉 triples such that
∣

∣ZS,p

∣

∣ ≤ α and
∣

∣ZS,p̂

∣

∣ > α (12)

where p ∈ {0, 1}b, p̂ ∈ {0, 1}b−1, and α is derived from

ǫ [4]. Each such triple individually provides an estimate that

is within error ǫ with confidence at least 0.78 [4, Lemma 1],

and the median of the estimates for all such triples is within

error ǫ with confidence that can be increased arbitrarily with

more 〈b, p, p̂〉 such triples. As a special case, if
∣

∣ZS,p

∣

∣ ≤ α at

b = 0, then
∣

∣ZS,p

∣

∣ is an exact count of |YS | since ZS,p = YS .

2) Sampling S, S′ of Expected Size n: A second expense of

calculating YS and YS′ explicitly is in enumerating S and S′

themselves, especially if n is large. We can leverage hashing

similarly to the method above to avoid enumerating S and

S′ directly for n = |S| /2b for some b ≥ 0. Specifically, to

estimate Jn for n = |S| /2b, we select Hb and p ∈ {0, 1}b−1

at random and, for each such selection, define

X0
p =

{

〈C,O, I〉
∣

∣ ∃S : Π
proc

(C,O, I, S) ∧Hb(S) = p||0
}

X1
p =

{

〈C,O, I〉
∣

∣ ∃S : Π
proc

(C,O, I, S) ∧Hb(S) = p||1
}

Xp =
{

〈C,O, I〉
∣

∣ ∃S : Π
proc

(C,O, I, S) ∧Hb−1(S) = p
}

where Hb−1 denotes the function Hb but dropping the right-

most bit from the output. Then, we use the sets

Y 0
p =

{

〈C,O〉
∣

∣ ∃I : 〈C,O, I〉 ∈ X0
p

}

Y 1
p =

{

〈C,O〉
∣

∣ ∃I : 〈C,O, I〉 ∈ X1
p

}

Yp =
{

〈C,O〉
∣

∣ ∃I : 〈C,O, I〉 ∈ Xp

}

in place of YS , YS′ , and YS∪S′ , respectively, to perform

the calculations (9)–(10). And, of course, the optimization in

Sec. IV-A1 can be used in conjunction with this approach,

e.g., computing

Z0
p,p̂ =

{

〈C,O〉
∣

∣

∣ 〈C,O〉 ∈ Y 0
p ∧ Ĥ b̂(〈C,O〉) = p̂

}

(13)

for a different, random hash function Ĥ b̂ and random prefix

p̂ ∈ {0, 1}b̂. We then use the algorithm summarized in

Sec. IV-A1 to estimate
∣

∣Y 0
p

∣

∣.

Two more points about this algorithm warrant emphasis:

• Because our algorithm explicitly enumerates the contents of

each Z0
p,p̂ and Z1

p,p̂, when leakage is detected (i.e., Jn > 0
for some n) these sets can be used to identify 〈C,O〉 pairs

that are in Y 0
p \ Y

1
p or Y 1

p \ Y
0
p . These examples can guide

developers in understanding the reason for the leakage and

in mitigating the problem.

• Because the number of secrets with a random length-b hash

prefix p is only of expected size n = |S| /2b, for the rest of

the paper we use a definition of Jn as in (2) but weakened

so that |S| and |S′| equal n in expectation.

B. Hash-based model counting for Ĵn

The calculations of the previous section require some mod-

ifications when we are instead computing Ĵn for n = |S| /2b.
Similar to the previous section, we can use Xp for p ∈
{0, 1}b−1 in place of XS ∪ XS′ = XS∪S′ . However, to

estimate

∣

∣

∣X̂S,S′

∣

∣

∣ for a random S and S′, we need a different

approach. Specifically, we calculate

∣

∣

∣X̂S,S′

∣

∣

∣ by estimating the

size of

X̂p =

〈C,O, I〉

∣

∣

∣

∣

∣

∣

∣

∣

∃S, S′, I′ : Π
proc

(C,O, I, S) ∧
Π

proc
(C,O, I′, S′) ∧

Hb(S) = p||0 ∧
Hb(S′) = p||1

since 〈C,O, I〉 ∈ X̂p iff 〈C,O, I〉 ∈ X0
p and 〈C,O〉 ∈ Y 0

p ∩Y
1
p .

This method does come at considerably greater computational

cost, however, due to the duplication of the constraints Π
proc

in the specification of this set. We will demonstrate this in our

case studies in Sec. VI.

C. Parameter settings for computing Jn and Ĵn

In the hash-based model counting described above, we

use the 3-wise independent hash functions suggested by

Chakraborty et al. [4], and due to the large number of

XOR clauses in the resulting hash constraints, we use

CryptoMiniSAT 5.0 [45] to enumerate the elements of

each Zp,p̂. To reduce the complexity of the hash constraints,

we concretize their constant bits to minimize the independent

support [46] before generating XOR clauses. Multiple esti-

mates of the form in (11), for various values of b (in (11),

or respectively b̂ in (13)), as prescribed by Chakraborty et al.,

are used to estimate |Yp|. We parameterized this algorithm

with error ǫ = 0.45 and confidence either δ = 0.99 in Sec. V

or δ = 0.92 in Sec. VI,5 for which 50 or 5 〈b, p, p̂〉 triples

satisfying (12) sufficed, respectively.

We estimate Jn as the sample mean of J(S, S′) for sampled

pairs S, S′ of expected size n (i.e., defined by a p ∈ {0, 1}b−1

for n = |S| /2b). For each n we computed Jn using a number

of sampled pairs S, S′ equal to the larger of 100 and the

minimum needed so that the standard error was within 5% of

the sample mean. In addition, since Jn is only an estimate

and so is subject to error and since that error is influential

in the calculation of ηmax or ηmin especially when n is small,

we round any Jn ≤ 0.025 down to zero when calculating the

measures. Ĵn is computed similarly.

D. Logical Postconditions for Multiple Procedure Executions

In some scenarios it is insightful to observe the behavior of

Jn for a procedure proc when it is executed multiple times.

That is, consider a scenario in which proc is executed r times,

5The error bound of Chakroborty et al. is conservative; e.g., the results
for 95 benchmarks showed less than 5% error in practice even when using
ǫ = 0.75 [4].

possibly with relationships among the outputs of one execution

and the inputs of another, or simply among the inputs to

different executions. Suppose these executions are denoted

O1 ← proc(C1, I1, S1)

O2 ← proc(C2, I2, S2)

· · ·

Or ← proc(Cr, Ir, Sr)

and that the postcondition of the j-th invocation in isolation is

denoted Πj
proc

(i.e., Πj
proc

is simply Π
proc

over the variables

represented in Cj , Ij , Sj , and Oj). Then the relationships

among inputs and outputs can be described using additional,

manually constructed constraints Γ1...r
proc

. For example, if the

secret input to each execution of proc is the same, then

Γ1...r
proc

would include the statement that ‘secret’ has the same

value in each execution (i.e., S1(‘secret’) = S2(‘secret’) =
. . . = Sr(‘secret’)). Repeating our analysis for the “procedure”

represented by the postcondition

r
∧

j=1

Πj
proc

 ∧ Γ1...r
proc

can reveal leakage that increases as the procedure is executed

multiple times. We will see an example in Sec. VI.

V. MICROBENCHMARK EVALUATION

In this section we evaluate our methodology on artificially

small examples to illustrate its features.

A. Leaking more about secret values vs. leaking about more

secret values

In Sec. III-A, we showed through an idealized example how

a small n is more useful for evaluating the number of secrets

about which information leaks, whereas a large n is more

useful for evaluating the amount of information leaked about

these secrets. Now we will use two simple procedures with

a controllable constant M to quantitatively demonstrate the

necessity of varying n and the correct usage of ηmin and ηmax.

The first procedure, shown in Fig. 4(a), returns the secret

value if it is divisible by a constant M and returns zero

otherwise, where both S(‘secret’) and M are 32-bit integers.

This procedure leaks the same amount of information (the

whole secret) about a larger number of secret values if M is

decreased. The behavior of Jn shown in Fig. 4(b) is consistent

with this observation. Specifically, different values of M
induce curves for Jn that differ primarily in the minimum

value of n where Jn is large. This behavior is also seen in the

value of ηmin in Fig. 4(c), where ηmin ranges from ηmin ≈ 0 at

M = 231 to ηmin = 1 at M = 1.

Contrast this case with the procedure shown in Fig. 5(a),

which returns the residue class of the secret value modulo

a constant value M . As such, as M is increased, more

information about each secret is leaked. This is demonstrated

in Fig. 5(b), where the curves for different values of M
differ in primarily in the maximum value n at which Jn is

proc (C, I, S)
if (S(‘secret’) mod M = 0)

O(‘result’)← S(‘secret’)
else

O(‘result’)← 0
return O

(a) Procedure

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20 24 28 32

J
n

log2 n

M =1
M =4

M =64
M =210

M =216

M =231

(b) Jn for different n and M

M log2 η
min log2 η

max

1 0 0
4 −0.74 0
64 −4.8 0
210 −8.8 0
216 −15 0
231 −30 −0.67

(c) ηmin and ηmax for different M

Fig. 4: A procedure that leaks the same amount of information about more secrets as M is decreased (see Sec. V-A)

proc (C, I, S)
O(‘result’)← S(‘secret’) mod M
return O

(a) Procedure

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20 24 28 32

J
n

log2 n

M =1
M =4

M =64
M =210

M =216

M =231

(b) Jn for different n and M

M log2 η
min log2 η

max

1 nan nan

4 −0.6 −30.1
64 −0.0 −25.5
210 −0.0 −21.8
216 −0.0 −15.6
231 0.0 −0.8
“nan” denotes “not a number,” i.e., ηmin

= 0

or ηmax
= 0

(c) ηmin and ηmax for different M

Fig. 5: A procedure that leaks more information about the same secret values as M is increased (see Sec. V-A)

large. Similarly, ηmax ranges from ηmax = 0 at M = 1 to

ηmax ≈ 2−0.8 ≈ 0.57 at M = 231.

An example that blends these the previous two examples

is show in in Fig. 6(a); here the procedure returns 1 if

S(‘secret’) mod M = C(‘test’) and 0 otherwise, where M is a

32-bit constant. As such, this procedure leaks a lot about a few

secret values when M is large, and a little about many secret

values when M is small. As shown in the r = 1 columns of

Fig. 6(c), ηmin and ηmax monotonically decreases and increase,

respectively, as M grows.

B. Leaking more over multiple rounds

A second way to view the example in Fig. 6 is to con-

sider r procedure executions using the same S(‘secret’) (i.e.,

S1(‘secret’) = S2(‘secret’) = . . . = Sr(‘secret’)). Our intu-

ition suggests that after r = M−1 executions of the procedure,

a smart attacker will have learned everything about S(‘secret’)
that it can from proc; e.g., by setting Cj(‘test’) = j, the

attacker either will have observed some Oj(‘result’) = 1,

in which case it knows S(‘secret’) mod M = j, or else it

knows S(‘secret’) mod M = 0. Consistent with that intuition,

in Fig. 6(c), both ηmin and ηmax remain steady for M = 2 as r
increases, since no new information is available to the attacker

after r = 1. Similarly, for M = 4, ηmin and ηmax both increase

precipitously (by ≥ 74%) from r = 1 to r = 2 and then

begin to flatten out (albeit imperfectly—both are estimated

values, after all), which is consistent with this intuition that

the attacker should learn no new information past r = 3.

For M > 4, each additional procedure execution provides

additional information to the attacker about all secrets and

much more about some (namely those for which it learns the

residue class mod M). Correspondingly, both ηmin and ηmax

increase monotonically along each of these rows.

C. Leaking the secret conditioned on randomness

We now illustrate the ability of our technique to measure

leakage from a different randomized procedure from that

discussed in Fig. 2. The procedure, shown in Fig. 7(a), returns

the secret if a random value is divisible by a constant M
and returns that random value otherwise. Clearly, a larger M
implies that fewer secret values leak, but those that leak do

so completely. This behavior is illustrated by the Ĵn measure

shown in Fig. 7(b); the leakage is consistently higher for lower

values of M . Similarly, while η̂max remains high for all values

of M (never dropping below 1

4
), η̂min ranges from η̂min = 1

when all secrets are leaked (M = 1) to η̂min ≈ 0 when few

secrets are leaked (M = 231).

VI. CASE STUDIES

In this section, we illustrate our methodology by applying

it to real-world codebases susceptible to the inference of

search queries via packet-size observations, inference of secret

values due to compression results, and inference of TCP

sequence numbers. We claim no novelty in identifying these

attacks; all are known and explored in other papers, though

not in the particular codebases (or codebase versions) that we

examine here and typically only through application-specific

analysis. Our contribution lies in showing the applications of

proc (C, I, S)
if (S(‘secret’) mod M

= C(‘test’))
O(‘result’)← 1

else
O(‘result’)← 0

return O

(a) Procedure

0

0.2

0.4

0 4 8 12 16 20 24 28 32

J
n

log2 n

M =2
M =4

M =8
M =64

M =210

M =229
M =231

(b) Jn for different n

M
log2 η

min log2 η
max

r = 1 r = 2 r = 4 r = 6 r = 1 r = 2 r = 4 r = 6

2 −1.2 −1.1 −1.2 −1.1−31.4−31.3−31.2−31.3
4 −1.7 −0.9 −0.6 −0.4−31.0−30.2−29.4−29.0
8 −2.8 −1.7 −0.9 −0.6−30.6−29.3−28.8−28.3
64 −7.1 −5.4 −3.9 −2.9−27.1−25.9−25.2−25.1
210 −11.1 −9.5 −8.2 −7.5−22.8−22.0−21.5−21.1
229 −29.9−28.9−27.1−26.5 −3.4 −2.7 −2.1 −1.9
231 −31.0−30.2−28.8−28.2 −1.2 −0.7 −0.4 −0.2

(c) ηmin and ηmax for different M

Fig. 6: Leakage of procedure that checks a guess of secret’s residue class modulo M (see Sec. V-A–V-B)

proc (C,I,S)
if (I(‘rand’) mod M = 0)

O(‘result’)← S(‘secret’)
else

O(‘result’)← I(‘rand’)
return O

(a) Procedure

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20 24 28 32

Ĵ
n

log2 n

M =1
M =2

M =4
M =64

M =210

M =231

(b) Ĵn for different n and M

M log2 η̂
min log2 η̂

max

1 0.0 0.0
2 −0.9 −0.5
4 −1.8 −0.8
64 −6.5 −1.1
210 −10.7 −1.2
231 −31.8 −1.9

(c) η̂min and η̂max for different M

Fig. 7: An example illustrating leakage dependent on randomness (see Sec. V-C)

our methodology to measuring interference in an application-

agnostic way and the impact of alternatives for mitigating that

interference.

A. Traffic analysis on web applications

Packet sizes are a known side channel for reverse engi-

neering search queries and other web content returned from

a server, and defenses against this side channel have been

studied using various methods of QIF (e.g., [47], [25], [5]).

Specifically, a network attacker can often distinguish between

two queries to a web search engine because the response traffic

length is dependent on the query. Even packet padding may

not hide all secret information [48].

In this section, we use our methodology to analyze the

auto-complete feature of search engines to demonstrate our

ability to detect the leakage of the user’s query from the

network packet sizes. Furthermore, we repeat our analysis after

applying mitigations suggested in previous work [48]. This

allows us to compare the effectiveness of these mitigations to

the original implementation.

We evaluated a C++ web server called Sphinx (http:

//sphinxsearch.com/), which provides PHP APIs for a client

to send a query string to the server. The auto-complete feature

then returns a list of keywords that best match the query

string. To generate the postcondition that characterizes the

auto-complete feature, we marked the query string as the

secret (i.e., S (‘secret’) is the query string) and the final

application response length as the observable (i.e., VarsO =
{‘response length’}), by injecting only two lines into the

server’s code. In this application, there was no attacker-

controlled input and no other input (i.e., VarsC = VarsI = ∅).

Since the auto-complete results depend on the contents of

the server database, we simply instantiated the database with

an example containing six keywords and 35 query trigrams

(see Fig. 8(a)). When provided an input query string of at

least three characters, Sphinx returns (content containing)

the two keywords with the highest “score” based on matching

trigrams in the query string to each keyword’s associated

trigrams. We also limited queries to three characters drawn

from {‘a’, . . . , ‘z’} ({97, . . . , 122} in ASCII), yielding 263 ≈
214 possible queries. Note that instantiating the server with

a specific database and limiting the query characters and

length as described cannot induce our analysis to provide false

positives, though it can contribute false negatives.

We experimented with two types of mitigation strategies.

Random padding is motivated by protocols like SSH that

obfuscate traffic lengths by adding a random amount of

padding up to some maximum limit to the application response

payload. We experimented with padding lengths of up to 2

bytes (‘rand.2’), 16 bytes (‘rand.16’), 64 bytes (‘rand.64’),

and 128 bytes (‘rand.128’). Padding to a fixed length is a

second strategy, which increases the length of the application

response payload to the nearest multiple of a fixed length.

We experimented with padding to a multiple of 64 bytes

(‘fixed.64’) or a multiple of 256 bytes (‘fixed.256’). We

“implemented” both of these padding strategies by modifying

the postcondition ΠSphinx to reflect them (vs. modifying the

Sphinx code directly). Fig. 8(b) shows Ĵn for the

Keyword Trigrams

class c cl cla las ass ss s
code c co cod ode de e
div d di div iv v
the t th the he e
and a an and nd d
title t ti tit itl tle le e

(a) small database for Sphinx

0

0.2

0.4

0.6

0 4 8 12

Ĵ
n

⌈log2 n⌉

rand.2
fix.64

rand.16
fix.256

rand.64
nopadding

rand.128

(b) Ĵn for different n

Mitigation log2 η̂
min log2 η̂

max

nopadding −8.3 −1.5
rand.2 −8.4 −1.9
rand.16 −8.5 −2.3
rand.64 −8.5 −2.3
rand.128 −9.0 −2.5
fix.64 −8.5 −3.8
fix.256 nan nan

“nan” denotes “not a number,” i.e.,

ηmin
= 0 or ηmax

= 0

(c) η̂min and η̂max for different mitigations

Fig. 8: Analysis of auto-complete feature of Sphinx and mitigation strategies (see Sec. VI-A)

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5

Ĵ
n

⌈log2 n⌉

Gzip-r=1
Smaz-r=1

Gzip-r=2
Smaz-r=2

Gzip-r=3
Smaz-r=3

(a) Jn for different n and r

Procedure
log2 η̂

min log2 η̂
max

r = 1 r = 2 r = 3 r = 1 r = 2 r = 3

Gzip −2.04 −1.22 −0.85 −1.00 −0.58 −0.43
Smaz −1.58 −1.55 −1.54 −3.73 −4.02 −3.95

(b) η̂max and η̂max for different r

C(‘input’) O(‘length’) S (‘secret’) I(‘suffix’)

Gzip ‘c’ 66 ‘c’ ‘oo’
Smaz ‘r’ 36 ‘f’ ‘or’

(c) Examples from YS \ YS′ for samples S, S′ (r = 1)

Fig. 9: Leakage from Gzip and Smaz (see Sec. VI-B)

random padding strategies and Jn (which is equivalent to Ĵn
since VarsI = ∅) for the original, ‘fixed.64’, and ‘fixed.256’

strategies. Here, ‘nopadding’ is the result for original auto-

complete in Sphinx. In addition, Fig. 8(c) shows the measure

η̂min and η̂max for each strategy. Only ‘fixed.256’ reaches zero

leakage, indicated by ‘nan’ (‘not a number’), since any result

from Sphinx populated with the database in Fig. 8(a) fit

within 256 bytes and so resulted in a padded payload of

that length. Comparing different padding mechanisms, our

measures η̂min and η̂max show results consistent with the

intuitive order of the different mitigation strategies in terms of

their effectiveness in preventing leakage. Our results suggest

that ‘nopadding’ leaks the most, followed by ‘rand.2.’ The

configuration ‘rand.16’ was only very slightly worse than

‘rand.64’, and ‘fix.64’, which provided similar protection for

this setup, and ‘rand.128’ provided better protection than all

others except ‘fixed.256.’ These results demonstrate the power

of our methodology for enabling comparisons of the benefits of

different amounts of padding for this database. For example,

our analysis shows that for this database, ‘rand.64’ provides

little security benefit compared to ‘rand.16’, despite adding

3× more padding in expectation.

B. CRIME attacks

Our methodology is powerful in accounting for attacker-

controlled inputs, and in this section we demonstrate the

benefits of this capability by applying it to detect CRIME

attacks [6], [49]. A CRIME vulnerability arises when a web

client applies “unsafe” compression prior to transmitting a

request over TLS. HTTP requests can carry information (e.g.,

the URL parameters) that an attacker can induce; e.g., if the

client visits an attacker-controlled website, then the attacker

can induce requests from the client to another, target website

with URL parameters that the attacker sets. By observing the

lengths of compressed requests to the target website, the at-

tacker can deduce whether the attacker-controlled input shares

a substring with a secret contained in the request (e.g., the

client’s cookie for the target website) that the attacker is unable

to observe directly. To be concrete, if the attacker-induced re-

quest to the target website is http://target.com?username=name

then the request will compress better if name is a prefix of the

client’s cookie for target.com.

CRIME attacks utilize the property of an adaptive compres-

sion algorithm that the encoding dictionary is dependent on

both the secret and attacker-controlled variables. As suggested

by Alawatugoda et al. [49], a possible mitigation is to separate

the compression for the secret and the other parts of the plain-

text or to use a fixed-dictionary compression algorithm such

as Smaz [50]. The latter mitigation, though an improvement,

removes the influence of the attacker-controlled input only on

the compression dictionary. Consider a two-byte plaintext ab
whose first character is secret. If a is ‘a’, then this two-byte

word will be compressed if b is ‘t’ and will be left unchanged

if b is ‘y’, assuming ‘at’ is in the dictionary but ‘ay’ is not.

Thus, the leakage should not be zero even if a fixed-dictionary

algorithm is used.
To analyze this scenario in our framework, we modeled the

input for Gzip and Smaz to be of the form

‘http://target.com/? secret=’ + S(‘secret’) + I(‘suffix’)
+ ‘,username=secret=’ + C(‘input’)

where ‘+’ denotes concatenation. Here, S(‘secret’) and

C(‘input’) were each one byte, I(‘suffix’) was two bytes,

and the attacker-observable variable was the length of the

compressed string. Each byte was allowed to range over ‘a’,

. . ., ‘z’ and ‘0’,. . .,‘9’. The S(‘secret’) byte after the first

‘secret=’ plays an analogous role to the client cookie in a

CRIME attack, i.e., as the secret to be guessed by the attacker,

and the ‘secret=’ immediately following ‘username=’

serves as a prefix to match the first instance of ‘secret=.’

We applied our tool to analyze the leakage susceptibility of

Gzip-1.2.4 and Smaz in this configuration, executed up to

three times (r ∈ {1, 2, 3}) with the same secret. Our results

are shown in Fig. 9. Our results show that for one execution

(r = 1), Smaz is no better than Gzip. That is, ηmax and ηmax

in Fig. 9(b) suggests that Smaz leaks less information about

some secrets but some information about more secret values

versus Gzip; as mentioned above, Smaz can leak information

about a secret value if it composes a word in its dictionary, as

well. However, the strength of Smaz is revealed as r grows,

since its leakage remains unchanged. In contrast, the leakage

of Gzip grows with r, essentially matching that of Smaz

at r = 2 and surpassing it at r = 3 (in terms of ηmin).

This occurs because in each execution of Gzip, the attacker

has the latitude to select a different value for C(‘input’) and

then observe that selection’s impact on the length of the

compressed string (which in general will change). In contrast,

the leakage of Smaz is independent of the adversary’s choice

for C(‘input’), and so additional executions do not leak any

additional information.

As discussed at the end of Sec. IV-A, a side effect of our

methodology is identifying some example 〈C,O〉 pairs that

lie in YS \ YS′ or YS′ \ YS for samples S, S′ of secrets,

which can help in diagnosing a leak. For example in Fig. 9(c),

for Gzip in the r = 1 case, our tool identified the 〈C,O〉
pair with C(‘input’) = ‘c’ and O(‘length’) = 66 as being in

YS \YS′ for a sampled S, S′ where S ∋ ‘c’ = S(‘secret’) and

I(‘suffix’) = ‘oo’.6 As such, the developer now knows that this

〈C,O〉 pair is consistent with no secret in S′. Similarly, for

Smaz our tool identified the pair 〈C,O〉 with C(‘input’) = ‘r’

and O(‘length’) = 36 as being in YS \ YS′ for a sampled S,

S′ where S ∋ ‘f’ = S(‘secret’) and I(‘suffix’) = ‘or’.

C. Linux TCP sequence number leakage

Known side channels in some TCP implementations leak

TCP sequence and acknowledgment numbers [7], [8]. In some

cases, these side channels can be used by off-path attackers to

terminate or inject malicious payload into connections [51],

6The output length of 66 exceeds the length of the input string because
Gzip adds a header to the output. Smaz attaches no such header.

1 void tcp_send_dupack(struct sock *sk,

2 const struct sk_buff *skb) {

3 struct tcp_sock *tp = tcp_sk(sk);

4 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq

5 && before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {

6 + if (before(TCP_SKB_CB(skb)->ack_seq,

7 + tp->snd_una - tp->max_window)

8 + || after(TCP_SKB_CB(skb)->ack_seq,

9 + tp->snd_nxt)) {

10 + tcp_send_ack(sk);

11 + return;

12 + }

13 NET_INC_STATS_BH(sock_net(sk),

14 LINUX_MIB_DELAYEDACKLOST);

15 ...

16 }

17 tcp_send_ack(sk);

18 }

Fig. 10: A code snippet vulnerable to leaking the TCP se-

quence number in linux 3.18; lines marked ‘+’ indicate a hy-

pothetical patch with which we experimented (see Sec. VI-C)

[8]. The origin of these attacks is shared network counters

(e.g., linux_mib and tcp_mib) that are used to record

connection statistics across different connections in the same

network namespace.

These counters have been implicated in numerous side

channels since version 2.0 of the Linux kernel [52].

For example, the code snippet (without the patch in

Lines 6–12) in Fig. 10 leaks the secret tp->rcv_nxt

in Linux-3.18 TCP. Here, the attacker controls the

skb input and so the value TCP_SKB_CB(skb)->seq

that is compared to tp->rcv_nxt on Line 5. Based

on this comparison, the NET_INC_STATS_BH procedure

increments an attacker-observable counter indicated by

LINUX_MIB_DELAYEDACKLOST (Lines 13–14). If the at-

tacker can repeatedly cause the procedure in Fig. 10 to be

invoked with inputs skb of its choice, it can use binary search

to infer tp->rcv_nxt within 32 executions [8].

The most straightforward mitigation for this leakage is

to disable the public counters. This will stop the leakage,

but will disable some mechanisms such as audit logging.

Another potential mitigation is to increase the difficulty of

increasing the public counter, by adding additional checking

related to more secret variables. For example, before increas-

ing the LINUX_MIB_DELAYEDACKLOST counter, the pro-

cedure could also check for correct acknowledgment numbers

(TCP_SKB_CB(skb)->ack_seq and tp->snd_nxt), as

shown in the patch in Lines 6–12. As far as we know, our

study is the first to compare these potential mitigations for

TCP sequence and acknowledgment number leakage.

To analyze the information leakage in this example, we

compiled a user-mode Linux kernel [53] as a library. Our target

procedure for analysis was tcp_rcv_established, which

is of the form

void tcp_rcv_established(struct sock *sk,

struct sk_buff *skb, const struct tcphdr *th,

unsigned int len) {

struct tcp_sock* tp = (struct tcp_sock*) sk;

...

}

The inputs for tcp_rcv_established have many con-

straints among them when passed in, for instance

TCP_SKB_CB(skb)->seq < TCP_SKB_CB(skb)->end_seq

tp->rcv_wnd ≤ MAX_TCP_WINDOW

tp->snd_wnd ≤ MAX_TCP_WINDOW

To generate constraints for the inputs to

tcp_rcv_established, we applied symbolic execution

to the procedures fill_packet and tcp_init_sock.

Symbolic buffers to represent these inputs and their associated

constraints were then assembled within a testing program

that called tcp_rcv_established. We also stubbed out

several procedure calls7 within tcp_rcv_established,

causing each to simply return a symbolic buffer so as to

avoid symbolically executing it, since doing so introduced

problems for KLEE (e.g., dereferencing symbolic pointers).

After generating the postcondition for the procedure

tcp_rcv_established, we defined the attacker-

controlled inputs to be

VarsC = {TCP_SKB_CB(skb)->seq,

TCP_SKB_CB(skb)->end_seq,

TCP_SKB_CB(skb)->ack_seq,

tcp_flag_word(th)}

(each four bytes) and the attacker-observable variables to

be VarsO = {linux_mib, tcp_mib}. All fields of

constrained input structures (e.g., tp->snd_una and

tp->max_window) not covered by VarsC and VarsO
were added to VarsI , with the secret variables8 being

tp->rcv_nxt and tp->snd_nxt (each four bytes).

We conducted single-execution (r = 1, denoted ‘v3.18-

1run’), two-execution (r = 2, denoted ‘v3.18-2run’) and

three-execution (r = 3, denoted ‘v3.18-3run’) leakage

analysis. In the multi-execution analysis, we assumed

*sk to be the same in multiple executions (I1(‘*sk’)
= I2(‘*sk’) = . . . = Ir(‘*sk’)) since its fields used in

tcp_rcv_established would be unchanged or, if

changed, would be changed predictably.

The results from this analysis are shown in Fig. 11. The

inset graph in Fig. 11(a) is a magnification of the portion of the

curve in the interval [0, 6] on the horizontal axis. Specifically,

the highest leakage resulted from ‘v3.18-3run’, followed by

‘v3.18-2run’ and ‘v3.18-1run’, as indicated by the Ĵn curves in

Fig. 11(a) and the η̂min and η̂max measures in Fig. 11(b). This

shows the potential for the attacker to extract more information

about the secrets tp->rcv_nxt and tp->snd_nxt using

multiple executions. This is consistent with the observation

that a smart attacker could utilize this side channel to infer

one bit per execution [8].

To alleviate this leak, we applied a hypothetical

patch shown in Fig. 10 that checks another secret value

7Specifically, we stubbed out get_seconds,
current_thread_info, tcp_options_write, tcp_sendmsg,
prandom_bytes, current_thread_info, tcp_parse_options,
and tcp_checksum_complete_user.

8Though we have described our framework so far using one secret variable,
it extends trivially to more.

0

0.2

0.4

0.6

0.8

0 8 16 24 32 40 48 56 64

0

0.2

0.4

0.6

0 1 2 3 4 5 6 7 8

Ĵ
n

log2 n

v3.18-1run
v3.18-patched

v3.18-2run
v3.18-rmCounter

v3.18-3run

(a) Ĵn per n and version of tcp_rcv_established

Version log2 η̂
min log2 η̂

max

v3.18-1run −1.6 −63.0
v3.18-patched −2.1 −64.1
v3.18-rmCounter −4.0 −65.6
v3.18-2run −1.0 −62.1
v3.18-3run −0.7 −61.6

(b) η̂min and η̂max for versions of tcp_rcv_established

Fig. 11: TCP sequence-number leakage (see Sec. VI-C)

tp->snd_nxt before incrementing the counter for

LINUX_MIB_DELAYEDACKLOST. Our analysis results (for

r = 1 execution, denoted ‘v3.18-patched’) in Fig. 11 shows

that the patch alleviated the leakage somewhat. We also

tried just deleting Line 5-14 from the original (unpatched)

code in Fig. 10. As shown in Fig. 11, this version (denoted

‘v3.18-rmCounter’) evidently has lower leakage than ‘v3.18-

patched’. In considering these mitigations, we stress that our

patch addressed only the leakage arising from Line 5, and not

all sources that leak information about tp->rcv_nxt or

tp->snd_nxt (which are numerous, see Chen et al. [12]).

Our results suggest, however, that our methodology could

guide developers in mitigating leaks in their code.

D. Performance

Performance of our tool involves two major components,

namely the time to compute the postcondition Π
proc

via

symbolic execution, and the time to calculate Jn or Ĵn for

different n starting from Π
proc

. Postcondition generation is

not a topic in which we innovate, and so we defer discussion

of its costs in our case studies to Appendix A. Here we focus

on the costs of calculating Jn or Ĵn for different n starting

from Π
proc

.

Starting from Π
proc

, the computation of Jn or Ĵn can be

parallelized almost arbitrarily. Not only can Jn or Ĵn for each

n be computed independently, but even for a single value of

n, the estimation of J(S, S′) or Ĵ(S, S′) can be computed for

each pair of sampled sets S, S′ and each estimation iteration

independently. In Fig. 12, we report the average estimation

time per sample pair, which indicates that all case studies could

finish one estimation in (11) for one sample pair within about

one minute. As such, the speed of calculating final pair ηmin

Sec. Procedure J(S, S′) Ĵ(S, S′) Jn Ĵn

VI-A Auto-complete (nopadding) 34ms 56ms 5m 7m
VI-A Auto-complete (fix.64) 48ms 65ms 6m 8m
VI-A Auto-complete (fix.256) 43ms 57ms 6m 7m
VI-A Auto-complete (rand.64) 1.2s 15m
VI-B Gzip 26s 4h
VI-B Smaz 40s 10h
VI-C v3.18-1run 73s 20h
VI-C v3.18-patched 67s 20h
VI-C v3.18-rmCounter 50s 19h

Fig. 12: Average time per estimate (J(S, S′) or Ĵ(S, S′)) and

most expensive overall time (Jn or Ĵn) for case studies

and ηmax is limited primarily by the number of processors

available for the computation.

In our experiments, performed on a DELL PowerEdge

R815 server with 2.3GHz AMD Opteron 6376 processors and

128GB memory, we computed Jn or Ĵn per value of n on its

own core. As reported in the last two columns of Fig. 12, the

time to do so for the most expensive value of n ranged from

roughly 15m for the auto-complete procedure of Sec. VI-A to

about 20h for the Linux TCP implementations of Sec. VI-C.

For several of our case studies (see Fig. 12), we experimented

with calculating Ĵn even when Jn was sufficient, and found

its estimation to cost ≤ 2× that of estimating Jn, due to the

duplication of Π
proc

in X̂p.

To place the above numbers in some context, the ≈ 20h (for

the worst n, without parallelization) dedicated to computing

a value of Jn in the Linux TCP case study of Sec. VI-C

involved a procedure proc of which 165 bytes of its inputs

were somehow used in the procedure. A naive alternative to

our design in which all possible inputs are enumerated and run

through the procedure to compute its outputs (and interference

measured from these input-output pairs, perhaps as we do)

would therefore involve enumerating 21320 possible inputs,

which is obviously impractical.

In this light, our technique that performs interference anal-

ysis for real codebases in the timeframe of minutes-to-hours

(and far faster with parallelization) is a dramatic improvement.

Moreover, these results are likely to only improve with ad-

vances in symbolic execution and model counting. Even our

experimentation with various optimizations for postcondition

generation and model counting was not exhaustive. That said,

the results above suggest that the costs of our approach are

likely to remain sufficiently high for real codebases to preclude

its use for interactive analysis by human programmers. Rather,

we expect that our analysis could be run as a diagnostic

technique overnight, for example.

VII. DISCUSSION AND LIMITATIONS

Our methodology builds from two tasks that are recognized,

difficult challenges in computer science. The first is the

construction of a logical postcondition Π
proc

for a procedure

proc, for which we leverage symbolic execution. As such, our

technique inherits the limitations of existing symbolic execu-

tion tools and those incumbent on generating postconditions,

more generally. For example, symbolic execution is difficult to

scale to some procedures, and challenges involving symbolic

pointers and unbounded loops can require workarounds, as

they did in our TCP case study (Sec. VI-C). The second

challenge problem underpinning our methodology is model

counting, which is #P-complete. We are optimistic that future

improvements in these areas will be amenable to adoption

within our methodology.

Our approach is powerful in that it can be applied to

scenarios in which the distributions of inputs—whether they

be attacker controlled or other—are unknown, and this is often

the case in practice. In some cases, the input distributions

are unknowable, especially for VarsC . In others, they may be

knowable but require considerable empirical data to estimate

(e.g., the distributions of user-input search terms, in a context

like that of Sec. VI-A). That said, because it is insensitive

to these distributions, it does not offer an immediate way

to accommodate these distributions if they are known. Still,

our methodology allows these inputs to be accounted for in a

principled way, in contrast to others that either disallow them

or assign them heuristically.

VIII. CONCLUSION

In this paper we have suggested a new method for detecting

interference and assessing attempts to mitigate it. Informally,

noninterference is achieved when the output produced by a

procedure in response to an adversary’s input is unaffected by

secret values that the adversary is not authorized to observe.

Following this intuition, we have developed a method to

estimate the number of pairs of attacker-controlled inputs and

attacker-observable outputs that are possible, conditioned on

the secret being limited to a particular sample. The discovery

of such pairs that are possible for one sample but not another

reveals interference.

We clarified the effectiveness of our strategy both on

artificial examples (Sec. V) and on real-world codebases

(Sec. VI). Specifically, we evaluated leakage in the Sphinx

auto-complete feature of its search interface due to its re-

sponse sizes, and the effectiveness of a variety of mitigations

(Sec. VI-A); the CRIME vulnerabilities of adaptive compres-

sion in Gzip and fixed-dictionary compression in Smaz

(Sec. VI-B); and leakage of TCP sequence numbers in Linux

and the effectiveness of two mitigations of our own design

(Sec. VI-C). Within these contexts we also explored leakage

over a single procedure execution and over many, and showed

that our framework allowed for a useful comparison of how

procedures leaked data as the number of executions grows.

Central to our methodology’s ability to scale to real code-

bases is our expression of leakage assessment within a frame-

work that permits the use of approximate model counting (and

specifically hash-based model counting). While the resulting

tool is not yet quick enough to support interactive use, it is

positioned to benefit from advances in symbolic execution and

approximate model counting, both active areas of research.

REFERENCES

[1] B. W. Lampson, “A note on the confinement problem,” Communications

of the ACM, vol. 16, no. 10, pp. 613–615, 1973.

[2] D. King, B. Hicks, M. Hicks, and T. Jaeger, “Implicit flows: Can’t live
with ’em, can’t live without ’em,” in 4th International Conference on

Information Systems Security, ser. LNCS, vol. 5352, Dec. 2008, pp. 56–
70.

[3] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in 3rd IEEE Symposium on Security and Privacy, Apr. 1982, pp. 11–20.

[4] S. Chakraborty, K. S. Meel, and M. Y. Vardi, “A scalable approximate
model counter,” in Principles and Practice of Constraint Programming,
ser. LNCS, vol. 8124, 2013.

[5] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in
web applications: A reality today, a challenge tomorrow,” in 31th IEEE

Symposium on Security and Privacy, 2010, pp. 191–206.

[6] J. Kelsey, “Compression and information leakage of plaintext,” in 9th

International Workshop on Fast Software Encryption, ser. FSE ’02, 2002,
pp. 263–276.

[7] R. T. Morris, “A weakness in the 4.2BSD Unix TCP/IP software,” 1985.

[8] Z. Qian, Z. M. Mao, and T. Xie, “Collaborative TCP sequence number
inference attack – how to crack sequence number under a second,” in
19th ACM Conference on Computer and Communications Security, 2012,
pp. 593–604.

[9] A. C. Myers, “JFlow: Practical mostly-static information flow control,”
in 26th ACM Symposium on Principles of Programming Languages,
1999.

[10] A. Sabelfeld and A. C. Myers, “Language-based information-flow se-
curity,” IEEE Journal on Selected Areas in Communications, vol. 21,
no. 1, Jan. 2003.

[11] N. Javanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool for
detecting web application vulnerabilities,” in 27th IEEE Symposium on

Security and Privacy, May 2006.

[12] Q. A. Chen, Z. Qian, Y. J. Jia, Y. Shao, and Z. M. Mao, “Static
detection of packet injection vulnerabilities: A case for identifying
attacker-controlled implicit information leaks,” in 22nd ACM Conference

on Computer and Communications Security, 2015.

[13] F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna, “Cross-
site scripting prevention with dynamic data tainting and static analysis,”
in 14th ISOC Network and Distributed System Security Symposium,
2007.

[14] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L.
Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis for Android
apps,” SIGPLAN Not., vol. 49, no. 6, pp. 259–269, 2014.

[15] D. E. R. Denning, Cryptography and Data Security. Addison-Wesley,
1982.

[16] J. W. Gray, “Toward a mathematical foundation for information flow
security,” in IEEE Symposium on Research in Security and Privacy,
1991, pp. 21–34.

[17] D. Clark, S. Hunt, and P. Malacaria, “Quantitative analysis of the leakage
of confidential data,” Electronic Notes in Theoretical Computer Science,
vol. 59, no. 3, 2002.

[18] G. Lowe, “Quantifying information flow,” in 15th IEEE Workshop on

Computer Security Foundations, 2002.

[19] D. Clark, S. Hunt, and P. Malacaria, “Quantitative information flow,
relations and polymorphic types,” Journal of Logic and Computation,
vol. 15, no. 2, 2005.

[20] M. R. Clarkson, A. C. Myers, and F. B. Schneider, “Belief in information
flow,” in 18th IEEE Workshop on Computer Security Foundations, 2005,
pp. 31–45.

[21] D. Clark, S. Hunt, and P. Malacaria, “A static analysis for quantifying
information flow in a simple imperative language,” Journal of Computer

Security, vol. 15, no. 3, pp. 321–371, 2007.

[22] P. Malacaria, “Assessing security threats of looping constructs,” in 34th

ACM Symposium on Principles of Programming Languages, 2007, pp.
225–235.

[23] B. Köpf, L. Mauborgne, and M. Ochoa, “Automatic quantification of
cache side-channels,” in 24th International Conference on Computer
Aided Verification, ser. CAV’12, 2012, pp. 564–580.

[24] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke, “CacheAudit: A
tool for the static analysis of cache side channels,” in 22nd USENIX
Security Symposium, 2013, pp. 431–446.

[25] K. Zhang, Z. Li, R. Wang, X. Wang, and S. Chen, “Sidebuster:
Automated detection and quantification of side-channel leaks in web
application development,” in 17th ACM Conference on Computer and

Communications Security, 2010, pp. 595–606.

[26] P. Chapman and D. Evans, “Automated black-box detection of side-
channel vulnerabilities in web applications,” in 18th ACM Conference

on Computer and Communications Security, 2011, pp. 263–274.

[27] Q.-S. Phan and P. Malacaria, “Abstract model counting: A novel ap-
proach for quantification of information leaks,” in 9th ACM Symposium

on Information, Computer and Communications Security, 2014, pp. 283–
292.

[28] P. Mardziel, M. S. Alvim, M. Hicks, and M. R. Clarkson, “Quantifying
information flow for dynamic secrets,” in Security and Privacy (SP),

2014 IEEE Symposium on. IEEE, 2014, pp. 540–555.

[29] B. Köpf and D. Basin, “An information-theoretic model for adaptive
side-channel attacks,” in 14th ACM Conference on Computer and Com-

munications Security, 2007, pp. 286–296.

[30] C. S. Păsăreanu, Q. S. Phan, and P. Malacaria, “Multi-run side-channel
analysis using symbolic execution and max-SMT,” in 29th IEEE Com-

puter Security Foundations Symposium, 2016, pp. 387–400.

[31] Q.-S. Phan, L. Bang, C. S. Păsăreanu, P. Malacaria, and T. Bultan,
“Synthesis of adaptive side-channel attacks,” Cryptology ePrint Archive
2017/401, 2017.

[32] B. Kpf and A. Rybalchenko, “Approximation and randomization for
quantitative information-flow analysis,” in 2010 23rd IEEE Computer

Security Foundations Symposium, July 2010, pp. 3–14.

[33] A. Biere, M. Heule, and H. van Maaren, Handbook of Satisfiability.
IOS press, 2009, vol. 185.

[34] M. Backes, B. Kopf, and A. Rybalchenko, “Automatic discovery and
quantification of information leaks,” in 30th IEEE Symposium on Secu-
rity and Privacy, 2009, pp. 141–153.

[35] R. Ensafi, J. C. Park, D. Kapur, and J. R. Crandall, “Idle port scanning
and non-interference analysis of network protocol stacks using model
checking,” in 19th USENIX Security Symposium, 2010.

[36] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,
C. Lewis, X. Gao, and G. Klein, “seL4: From general purpose to a proof
of information flow enforcement,” in 34th IEEE Symposium on Security

and Privacy, May 2013, pp. 415–429.

[37] C. Hritcu, J. Hughes, B. C. Pierce, A. Spector-Zabusky, D. Vytiniotis,
A. A. de Amorim, and L. Lampropoulos, “Testing noninterference,
quickly,” in 18th ACM SIGPLAN International Conference on Func-

tional Programming. New York, NY, USA: ACM, 2013, pp. 455–468.

[38] F. Dörre and V. Klebanov, “Practical detection of entropy loss in pseudo-
random number generators,” in 2016 ACM Conference on Computer and

Communications Security. ACM, 2016, pp. 678–689.

[39] T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi, and
S. Wei, “Decomposition instead of self-composition for proving the
absence of timing channels,” in Proceedings of the 38th ACM SIGPLAN

Conference on Programming Language Design and Implementation.
ACM, 2017, pp. 362–375.

[40] A. D. Pierro, C. Hankin, and H. Wiklicky, “Approximate non-
interference,” Journal of Computer Security, vol. 12, no. 1, pp. 37–81,
Jan. 2004.

[41] G. Smith, “Quantifying information flow using min-entropy,” in 8th

International Conference on Quantitative Evaluation of SysTems, Sept
2011, pp. 159–167.

[42] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data,”
SIAM Journal on Computing, vol. 38, no. 1, pp. 97–139, 2008.

[43] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in 8th

USENIX Symposium on Operating Systems Design and Implementation,
Dec. 2008.

[44] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: a platform for
in-vivo multi-path analysis of software systems,” in 16th International
Conference on Architectural Support for Programming Languages and

Operating Systems, 2011, pp. 265–278.

[45] M. Soos, “The cryptominisat 5 set of solvers at sat competition 2016,”
SAT COMPETITION 2016, p. 28, 2016.

[46] A. Ivrii, S. Malik, K. S. Meel, and M. Y. Vardi, “On computing minimal
independent support and its applications to sampling and counting,”
Constraints, vol. 21, no. 1, pp. 41–58, 2016.

[47] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic attacks
on secure outsourced databases,” in 23rd ACM Conference on Computer
and Communications Security, 2016, pp. 1329–1340.

[48] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo,
I still see you: Why efficient traffic analysis countermeasures fail,” in
33rd IEEE Symposium on Security and Privacy, 2012, pp. 332–346.

[49] J. Alawatugoda, D. Stebila, and C. Boyd, “Protecting encrypted cookies
from compression side-channel attacks,” in Financial Cryptography and

Data Security: 19th International Conference, 2015, pp. 86–106.
[50] S. Sanfilippo, “Small strings compression library,” https://github.com/

antirez/smaz, 2009.
[51] Y. Cao, Z. Qian, Z. Wang, T. Dao, S. V. Krishnamurthy, and L. M. Mar-

vel, “Off-path TCP exploits: Global rate limit considered dangerous,” in
25th USENIX Security Symposium, 2016, pp. 209–225.

[52] “Linux blind TCP spoofing vulnerability,” http://www.securityfocus.
com/bid/580/info, 1999.

[53] J. Dike, “User-mode linux,” in Annual Linux Showcase & Conference,
2001.

[54] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state
merging in symbolic execution,” SIGPLAN Not., vol. 47, no. 6, pp. 193–
204, Jun. 2012.

APPENDIX

A. From Procedure to Logical Postcondition

As mentioned in Sec. III, the logical postcondition Π
proc

represents the relationship between inputs and outputs induced

by procedure proc. To extract Π
proc

from proc, we apply

symbolic execution to proc. After marking each input variable

(i.e., each parameter in VarsC , VarsI ,
9 and VarsS) symbolic

before the user-defined entry point, we utilize KLEE [43]

or S2E [44] to explore all feasible execution paths through

proc that reach a return. On each path through proc, the

symbolic execution engine accumulates a set of constraints

among symbolic variables implied by the branches taken

and assignments computed along that path. These constraints

coupled with the assignments for VarsO defined by our API

make_observable, as accumulated through the return

instruction, form the postcondition for the path, and then Π
proc

is simply the disjunction of the path conditions generated for

each execution path.

Symbolic execution can suffer from state explosion, and

so we leveraged an optimization in our work to manage

this explosion. Specifically, we implemented a searcher to

perform state merging [54] frequently, wherein the constraints

accumulated along two or more execution prefixes ending

at the same instruction are disjoined and then simplified

to the extent possible (using an SMT solver); execution is

then continued from their last instruction, accumulating more

constraints into their now-combined constraints. In doing so,

these two execution prefixes need only be extended once,

versus each being extended separately if no merging occurred.

For example, the two serial (symbolic) conditional statements

shown in Fig. 13(a) induce symbolic execution to explore four

paths, corresponding to whether the first conditional is true or

false and then whether the second is true or false. Without state

merging, this yields four symbolic states from which execution

must continue (Fig. 13(b)). If the two states resulting from the

first branch are merged before the second branch statement

is executed, then the number of states at the end of these

conditional statements is halved (Fig. 13(c)).

This optimization dramatically reduced the number of sym-

bolic states managed in one of our case studies in Sec. VI-C,

improving the speed of extracting Π
proc

by more than 600×.

For this case study, we forced state merging to occur whenever

a symbolic state was forked at a symbolic branch. To reduce

the complexity of the merged path constraint, however, we

avoided merging two path constraints when their expressions

for the outputs in O differed or when two path constraints (in

conjunctive normal form) had less than half of their conjuncts

in common.

A well-known limitation of symbolic execution is how to

manage unbounded loops, since these can prevent symbolic

execution from terminating. In the case studies of Sec. VI we

bounded all inputs, which was enough in these case studies to

9To model the random input generated from random number generator
rand() in symbolic execution, we created a symbolic variable per rand()
function call as its returned value.

cond1?

Input

cond2?

(a) Procedure

cond1

∧ cond2

cond1 cond1

cond2 cond2 cond2 cond2

cond1

∧ cond2

cond1

∧ cond2

cond1

∧ cond2

(b) Path exploration without merging

cond2 cond2

cond1 cond1

(cond1∨cond1)
∧ cond2

(cond1∨cond1)
∧ cond2

(c) Path exploration with merging

Fig. 13: Benefits from state merging, discussed in Appendix A

Sec. Procedure
KLEE

×1
KLEE

×16
KLEE

×1, merging
S2E

×16

VI-A Auto-complete 2d 12h
VI-B Gzip 3d 21h 8h
VI-B Smaz 2d 18h 6h
VI-C v3.18 7d 4d 17m
VI-C v3.18-patched 18m
VI-C v3.18-rmCounter 17m

Fig. 14: Postcondition generation times for case studies

ensure that symbolic execution terminated. Provided that we

bound the input parameters sufficiently loosely to encompass

all values they can take on in practice, this bounding does not

impact the assessment provided by our measures in practice.

Postcondition generation costs are summarized in Fig. 14.

These computations were performed on a DELL PowerEdge

R710 server equipped with two 2.67GHz Intel Xeon 5550

processors and 128GB memory. Each processor includes 4

physical cores and had hyperthreading enabled. As indicated

in Fig. 14, we experimented with both KLEE and S2E to

generate postconditions, depending on the procedure. In the

column headings, a ‘×1’ or ‘×16’ indicates the number

of processes across which the computation was divided. To

enable multi-process support in KLEE (i.e., ‘×16’), we made

a small modification in KLEE’s execution engine, to cause

it to explore only execution paths starting from a predefined

branching prefix. The designation ‘merging’ indicates the use

of the KLEE optimization summarized above; as indicated

in Fig. 14, this optimization was remarkably effective on the

Linux TCP implementations discussed in Sec. VI-C. S2E was

configured to utilize its concolic execution capabilities.

