next up previous
Next: QR Algorithm Up: Conversion to Upper Previous: Conversion to Upper

Householder Transformations

Consider a unitary matrix tex2html_wrap_inline425 , where tex2html_wrap_inline427 , tex2html_wrap_inline429 . Therefore, given any vector tex2html_wrap_inline431 ,

displaymath415

Given tex2html_wrap_inline445 , we want to find tex2html_wrap_inline441 (and hence tex2html_wrap_inline433 ) such that tex2html_wrap_inline451 is a multiple of the first coordinate vector tex2html_wrap_inline453 . Therefore,

displaymath416

With the requirement that tex2html_wrap_inline427 , we obtain

displaymath417

tex2html_wrap_inline457 Given tex2html_wrap_inline459 , let tex2html_wrap_inline461 be the unitary matrix

where is formed by the Householder transformation for the column vector tex2html_wrap_inline465 . Thus,

It is clear that tex2html_wrap_inline467 does not change the first column of tex2html_wrap_inline469 . Repeating this procedure, tex2html_wrap_inline303 is transformed by orthogonal similarity transformations into an upper Hessenberg matrix.



Dinesh Manocha
Mon Apr 20 01:33:57 EDT 1998